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Abstract

Monte Carlo and Active Subspace Identification methods are combined with first- and second-order
adjoint sensitivities to perform (forward) uncertainty quantification analysis of the thermo-acoustic sta-
bility of two annular combustor configurations. This method is applied to evaluate the risk factor, i.e.,
the probability for the system to be unstable. It is shown that the adjoint approach reduces the number

of nonlinear-eigenproblem calculations by as much as the Monte Carlo samples.

Keywords: Thermo-acoustic stability, Uncertainty quantification, Annular combustors, Adjoint

methods

Nomenclature
Abbreviations:
AD Adjoint
ASI  Active Subspace Identification
FD Finite difference
MC  Standard Monte Carlo method (benchmark solution)
PDF  Probability Density Function
RF Risk Factor

UuQ Uncertainty Quantification

Greek:
w Complex eigenvalue, w, + iw;
w; Growth rate
wAST Growth rate by surrogate models
Wy Angular frequency

Mathematical:
(-,-  Inner product

N Operator representing the nonlinear eigenvalue problem
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Roman:

o) Vector of thermo-acoustic parameters

i Imaginary unit, i2 +1 =0

q State vector

M Monte Carlo samples for uncertainty quantification of w;

MAST Monte Carlo samples to develop the surrogate models with ASI by regression
M Monte Carlo samples to generate the uncentred covariance matrix in ASI
N Eigenvalue geometric degeneracy

Nyeg  Number of regression coefficients

Subscripts:

0 Unperturbed

1 First-order perturbation

2 Second-order perturbation
Superscripts:

* Complex conjugate

+ Adjoint

B Eigenfunction

H Hermitian

T Transpose

1. Introduction

Thermo-acoustic oscillations involve the interaction of heat release (e.g., from a flame) and sound. In
rocket and aircraft engines, as well as power-generation turbines, heat release fluctuations can synchronize
with the natural acoustic modes in the combustion chamber. This can cause large oscillations of the fluid
quantities, such as the static pressure, that sometimes lead to catastrophic failure. It is one of the biggest
and most persistent problems facing rocket [1] and aircraft engine manufacturers [2].

The output of any frequency-based stability tool is usually a map of the thermo-acoustic eigenvalues
in the complex plane (black squares in Fig. 1). Each thermo-acoustic mode must have negative growth
rate for the combustor to be linearly stable. The design process is even more complex because of the
uncertainty in the thermo-acoustic parameters p of the low-order thermo-acoustic model. For example,
the speed of sound, the boundary impedances and the flame model are sensitive to partly unknown
physical parameters such as the flow regime, manufacturing tolerances, fuel changes, or acoustic and
heat losses. As a consequence, each mode actually belongs to an uncertain region of the complex plane
(Fig. 1). This uncertain region is measured by the risk factor [3], which corresponds to the probability
that the mode is unstable. Although the probabilistic estimation (uncertainty quantification) of the
thermo-acoustic stability is paramount for practitioners, there are only a few studies in the literature
[4, 5, 6, 3].

Uncertainty Quantification (UQ) of thermo-acoustic stability was performed in longitudinal academic
configurations containing one turbulent flame in Ndiaye et al. [6]. Assuming that only the flame model
was uncertain, i.e., the gain and the time delay, the risk factor of the system was obtained by combining
a Helmholtz solver [7] with a Monte-Carlo analysis. Each computation required a few tens of minutes
making the generation of a 10,000 Monte-Carlo sample database CPU-demanding. To reduce the CPU
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Figure 1: Pictorial view of the deterministic locations (black symbols) in the complex plane of the first four thermo-acoustic
eigenvalues in a typical combustor. When uncertainties are taken into account, the eigenvalues belong to an admissible
region of the complex plane (circles) associated with a risk factor, which describes the percentage probability that the mode
is unstable.

cost of UQ analysis, network models [8, 9] can be used, especially for cases involving many uncertain
parameters, such as multiple-flame configurations in annular combustors [4, 10]. Low-order models are
suitable for studying how the uncertainties in the input parameters propagate and affect the uncertainties
in the eigenvalues (forward UQ as defined in Chantrasmi and Iaccarino [11]) . This was performed by
Bauerheim et al. [3] who applied a standard Monte Carlo analysis to a 19-burner annular configuration
represented by a network-based model with 76 acoustic elements and subsequently reduced to a 4x4
matrix through Annular Network Reduction [12]. Assuming that only the amplitude and phase of the
19 flame responses were uncertain, they found that approximately 10,000 computations were necessary
to assess the risk factor of the annular combustor.

In order to avoid expensive Monte Carlo methods and speed up the uncertainty evaluation, a UQ
approach called Active Subspace Identification (AST), as proposed by Constantine et al. [13] and Lukaczyk
et al. [14], was tested in Bauerheim et al. [5, 3]. The objective was to reduce the dimension of the
parameter space to just a few by analysing growth-rate gradients, dw;/9p. (The partial derivative 9/0p
is a shorthand for 9/90p, with k = 1,2,..., N, where N is the number of parameters.) A set of “active
variables” were then calculated to describe the response surface of the growth rate, i.e., the function
w; = w;(p) by least-square methods. In the annular combustor investigated by [3], only three/five active
variables were sufficient to represent the 38-dimensional response surface with surrogate algebraic models
obtained by regression. Using these surrogate models, they performed a Monte Carlo analysis at lower
cost to calculate the risk factors given uncertainties in the input parameters. Evaluating the gradients
Ow;/Op by finite difference is a time-consuming task when the number of parameters, p, and the Monte
Carlo sampling are large. Consequently, being able to accurately estimate the gradients of the growth
rate w;(p) at low cost is necessary to achieve an efficient UQ analysis [15, 16].

The aim of this paper is to reduce such a computational effort by combining first- and second-order
adjoint-based eigenvalue sensitivities (Section 2), detailed in Part I of this paper [17], with a standard
Monte Carlo method (Section 3) and a Monte Carlo method integrated with Active Subspace Identifica-
tion (Section 4) to predict the probabilities that two annular-combustor configurations are unstable.

2. Mathematical framework

We study the same annular combustor of Part I of this paper [17], whose model is detailed in [12]. It
consists of a combustion chamber connected by longitudinal burners fed by a common annular plenum
(Fig. 2).

We briefly recall the theoretical framework that we need here. The stability is governed by a nonlinear
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Figure 2: Schematic of the annular combustor, which consists of a plenum and combustion chamber connected by longitu-
dinal burners [12, 3].

eigenproblem!

N {wo,pPo} qo =0, (1)

where wy is the eigenvalue?, which appears under nonlinear terms of exponential, polynomial and rational
type, and qq is the eigenfunction containing the acoustic pressure and velocity at two locations in the
plenum and combustion chamber (see [3] for details). The eigenvalue of interest is calculated by solving
for the nonlinear characteristic equation of (1). We use a Levenberg-Marquardt algorithm with the
initial relevant parameter set to 0.01. The initial guess of the frequency is the natural frequency of the
combustion chamber. The vector of thermo-acoustic paramaters contains only the flame parameters, pg
= ({nos, 70:}), where i = 1,2,..., N, because they are assumed to be the most uncertain factors [3]. The
flame gains (or indices), ng;, and the time delays, 79;, relate the unsteady heat-release rate, Q, to the
acoustic velocity, ;, at the burner’s location as a Flame Transfer Function [18]

Q= %Sﬂlm exp(iwoTo; )i, ?

where v is the unburnt-gas heat capacity ratio, p is the static pressure and S; is the section of the ith
burner. The combustor has 19 burners (Fig. 1), thus, 38 flame parameters. These parameters are reported
in Tables 1 and 2 in Part L.

We perturb a flame parameter, p = pg + €p1, and calculate the perturbation operator numerically
as 0, N{wo, ep1} = N{wo, p} — N{wo, po}, where ¢ < 1. Hence, §,N{wo, €p1} represents exactly all the
orders of its Taylor series (providing that ep; is sufficiently small)

ON 10°N
OpN{wo,ep1} = ——ep1 + =

5o P+ 3 g7 (P2 +0(E).

IFrom now on, the subscript 0 denotes unperturbed quantities, 1 denotes first-order quantities and 2 denotes second-order
quantities.
2Tts real part, wy, represents the angular frequency (rad/s) whereas the imaginary part, w;, represents the growth rate

(1/s).



In Part I, it was shown that the first-order eigenvalue drift reads

T <(Al8_75p-/\/-{w076p1}(i0>
1= ) ) (3)
<él+ ON{w,po} ) 610>

0> Ow
where (ia' is the adjoint eigenfunction, which is solution of the adjoint eigenproblem N {wyq, po}H 616"20,
in which (-, -) represents an inner product and  is the complex transpose. If the unperturbed eigenvalue
wp is N-fold degenerate, and &g ; are the N independent eigenfunctions associated with it, we obtain an
eigenproblem for the first-order eigenvalue drift, w, and eigendirection, «;, as follows

.+ ONA{w,po}| . ) R
<eo+,i7 7{&0 ) L, G0 pwiey = — (€9,i,0pN {wo, ep1} €0,5) 0, (4)
for i, = 1,2,..., N. Einstein summation is used, therefore, the inner products in equation (4) are

the components of an N x N matrix and o; are the components of an N x 1 vector. Among the N
eigenvalues drifts, wy, outputted by (4), we select the one with largest growth rate, w;1, because it causes
the greatest change in the stability. In thermo-acoustics, degeneracy occurs in rotationally symmetric
annular combustors in which azimuthal modes have 2-fold degeneracy [see, e.g., 19].

The second-order eigenvalue drift reads

~ ONA{w,
<q§, ({aw‘"’}

<q+ aN%u:po}

w11 + 6N {wo, ep1} éh) >

)
wo

(UQ:—2

+

0>

()

The calculation of the perturbed eigenfunction ¢, which is necessary only for the calculation of the
second-order eigenvalue drift, is described in [17].

3. Uncertainty quantification via standard Monte Carlo method

Part I of this paper showed that using the adjoint method can drastically reduce the computational cost
of deterministic sensitivity analysis. A similar approach can, thus, be used when the parameters are varied
randomly. This section shows how the adjoint method can provide efficient Uncertainty Quantification
(UQ) strategies to predict thermo-acoustic stability from a probabilistic standpoint. We study two of the
three configurations of Part I3, i.e., the weakly-coupled rotationally symmetric Case A, and the strongly-
coupled rotationally asymmetric Case C, which is relevant to industrial configurations [20]. A standard
Monte Carlo method (MC) is integrated with the adjoint formulation for the calculation of the Probability
Density Function (PDF) and Risk Factor (RF), the latter of which is defined as the probability that the
system is unstable, given a PDF for the input parameters [3]

RF = /0 b PDF(w;)dw;. (6)

In practical applications, the uncertainties are typically greatest in the flame parameters and acoustic
damping. Here, we calculate how the thermo-acoustic growth rate, w;, which governs the stability, is
affected by uncertain flame parameters. Studying uncertainty quantification for the acoustic damping,

3Case B is the rotationally symmetric version of Case C. They have a similar probabilistic behaviour (not shown) and
Case B is not reported here for brevity.



for example through impedance boundary conditions, is just as straightforward [6, 21]. We assume we
know the maximum and minimum values of the uncertain flame parameters. Using the Principle of
Maximum Entropy, we choose the uniform distribution for the input parameters because it is the least
biased possible distribution given the available information [22]. Note that [6] have shown that the PDF
shape has a minor effect on the risk factor in the case they considered.

By the standard Monte Carlo method used by [3], M random values of p, called the Monte Carlo
sampling pM© are selected with respect to their PDFs and the nonlinear eigenproblem (1) is solved M
times to provide M eigenvalues. This means that with this method, which is the reference solution, we
have to solve for M nonlinear eigenproblems. The Monte Carlo method always converges to the final
PDF but suffers from slow convergence, being ~ O(1/+/M), which could be prohibitive in large systems
such as the Helmholtz equation in complex geometries. This calls for the adjoint-based method.

To avoid the computations of the M samples, here ~ O(10%), the Monte Carlo analysis is viewed
as a random perturbation around the unperturbed state. Consequently, the adjoint sensitivities of Sec-
tion 2 are applied to obtain the eigenvalue drifts providing an efficient UQ strategy. Thus, the random
sequence of parameters pM¢ is used as a perturbation in the first-order eigenvalue drift in equation (4),
for degenerate eigenproblems, or in equation (3) for non-degenerate cases. Then, the perturbed eigen-
vector is calculated by SVD and the second-order drift is calculated by equation (5) for each sequence
of random parameters. These are only vector-matrix-vector multiplications or lower-rank linear systems.
Importantly, the adjoint method requires the computation of only one nonlinear eigenproblem (1) and
its adjoint, regardless of the Monte Carlo sampling M or the number of perturbed parameters.

First, we evaluate how many Monte Carlo samples are needed for the risk factors to converge. Table
1 shows the convergence of the risk factor for three Monte Carlo samplings of 10,000, 20,000 and 30, 000
imposing a standard deviation of 5% on the flame indices and time delays. We choose the Monte Carlo
sampling of M = 10,000 for UQ as a compromise between accuracy and computational cost. (The
discrepancy of ~ 0.6% in the M = 20, 000 case is due to the bin sizes and consequent numerical integration
error. If we were to run multiple Monte Carlo simulations, the ensemble average of the discrepancy would
tend to zero.)

M:zzip?easrlo RF via MC | RF via 1st-order AD | RF via 2nd-order AD
- 10,000 33.3% 40.3% 34.9%
2 20,000 33.9% 41.3% 34.2%
o 30,000 33.3% 40.6% 33.7%
o 10,000 40.9% 34.7% 41.5%
2 20,000 40.8% 34.5% 41.3%
o 30,000 40.9% 34.6% 41.1%

Table 1: Risk factors (RF) calculated by the Monte Carlo method as a function of the Monte Carlo samples. MC is the
standard Monte Carlo method, which provides the benchmark solution, and AD stands for adjoint. The standard deviation
of the flame indices and time delays is 5%.

Secondly, we impose different standard deviations to the uniform distributions of the flame parameters
and calculate the growth-rate PDF's and risk factors. The results are shown in Table 2. When the standard
deviations are smaller than 2.5%, the first-order adjoint method provides accurate predictions, although it
becomes less accurate for larger deviations. However, the second-order adjoint method provides accurate
predictions of the risk factor up to standard deviations of 10%, matching satisfactorily the benchmark
solution by MC.

In Fig. 3 we depict the eigenvalues via Monte Carlo simulations obtained by MC (first row), first-
order adjoint method (middle row) and second-order adjoint method (bottom row) for the weakly coupled
Case A. The clouds (left panels) are obtained by imposing a uniform probability distribution between
+0.1n,+0.17, which represent the uncertainties of the flame parameters (last row of Table 2 for Case A).
The PDFs of the perturbed growth rates are depicted in the right panels. The PDF shape is satisfactorily
predicted by the first-order adjoint method, however, to obtain accuracy on the risk factor the second-
order adjoint formulation is necessary. For this case, the risk factor predicted by MC is 34.5%, by



Standard | Rp via MC | RF via lst-order AD | RF via 2nd-order AD
1% 15.4% 14.7% 15.4%
| 25% 31.3% 33.2% 31.2%
gl 5% 33.25% 40.3% 33%
10% 34.5% 43.2% 34.9%
1% 18.3% 17.5% 18.3%
Ol 25% 35.4% 31.1% 35.3%
Sl 5% 40.9% 34.7% 40.4%
10% 42.2% 30.0 % 41.5%

Table 2: Risk factors (RF) calculated by the Monte Carlo method as a function of the standard deviation of the flame index
and time delay uniform distributions. MC is the standard Monte Carlo method and AD stands for adjoint.

first-order AD is 43.2% and by second-order AD is 34.9%.

The same quantities for Case C are shown in Fig. 4. For this case, the risk factor predicted by MC is
42.2%, by first-order AD is 30% and by second-order AD is 41.5%. The strongly coupled configuration
C is more prone to being unstable in practice than the weakly coupled configuration A: For the same
level of uncertainty of the flame parameters (10%), the growth rate is uncertain up to within ~ 150s~!
in Case C, whereas it is uncertain up to within ~ 20s~! in Case A.

In general, the UQ analysis shows that the uncertainty present in the flame parameters can significantly
affect the thermo-acoustic stability. Deterministic calculations of the eigenvalue (big circles in the left
panels of Figs. 3,4) are not sufficient for a robust thermo-acoustic stability analysis, i.e., systems that
are deterministically stable can have a great probability of becoming unstable. This is because thermo-
acoustic systems are highly sensitive to changes in some design parameters, as shown in [17]. Note that
other sources of uncertainties, such as partly unknown acoustic losses, can affect the stability, although
this is not considered here for simplicity.

4. Uncertainty quantification via Monte Carlo method with Active Subspace Identification

Active Subspace Identification (ASI) is a method to reduce the parameter space dimension and create
algebraic surrogate models useful to apply the Monte Carlo method for uncertainty quantification [13, 3].
The aim of this section is to combine the Monte Carlo method and ASI with the adjoint framework in
order to further reduce the number of operations to perform.

4.1. The algorithm
Following [13, 3] and integrating the algorithm with an adjoint method, the procedure we propose

to reduce the number of parameters by recognizing the active variables and applying the Monte Carlo
method for UQ is as follows.

1. Evaluation of the covariance matrix. We define the uncentred covariance matrix through the
dyadic product

C = E[Vpw(Vpw)T], (7)

where the column vector Vpw = [w/0p1 Ow/Ops ... Ow/Opn]T is the eigenvalue’s sensitivity with
respect to the N thermo-acoustic parameters, and E is the expectation operator. Note that this
vector consists of partial derivatives, therefore, N eigenvalues need to be calculated. To compute
the covariance matrix, we perform a Monte Carlo integration [13], yielding

e | |
C~ e g [V (D) (Vpw(p?))], (8)
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Figure 3: Weakly coupled Case A. Perturbed eigenvalues calculated by the standard Monte Carlo method (MC, first row),
1st-order adjoint method (second row) and 2nd-order adjoint method (last row) via a Monte Carlo sampling of 10,000. With
the MC approach, 10,000 nonlinear eigenvalue problems are solved, whereas with the AD approaches only one eigenproblem
and its adjoint are solved. Normalized histograms of the growth rates are shown in the right panels. The dotted lines
divide the stable plane (w; < 0) from the unstable plane (w; > 0). The big dot is the unperturbed deterministic eigenvalue,
wo = 5.059 x 103rad/s — i1.392s~ 1. The standard deviation of the uniform distribution of the flame parameters is 10%
(last row of Table 2 for Case A).
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Figure 4: Same as Fig. 3 but for the strongly coupled Case C. The big dot is the unperturbed deterministic eigenvalue,

wo = 4.304 x 103rad/s + 3.6 x 1073571,

10% (last row of Table 2 for Case C).

The standard deviation of the uniform distribution of the flame parameters is

where the vector of parameters, pU), is drawn from the relevant uniform PDF of M¢¥ Monte Carlo
samples. As far as the number of computations is concerned, M <" x N eigenvalues, w, are calculated



by either finite difference (FD), which requires solving M“°” x N nonlinear eigenproblems, or the
adjoint approach (AD), which requires solving only one nonlinear eigenproblem and its adjoint
regardless of the number of parameters and Monte Carlo samples.

. Identification of the active variables. C is symmetric and, therefore, admits the real eigenvalue
decomposition

C=WAWT, (9)

Based on the relative importance of the eigenvalues A;, we select the ) dominant eigenvectors, Wy,.
This choice might be rather subjective depending on the case [13]. Fig. 5 shows that there are gaps
between the first and second eigenvalues as well as between the fifth and sixth eigenvalues. This
suggests that five active variables should be kept. Physically, the first group (A1) is associated with
a mean-flame effect, while the second group (from Ay to As) corresponds to a symmetry-breaking
splitting effect, as exhaustively explained by [3].

) (a) Case A ) (b) Case C
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Figure 5: Part of the spectrum of the covariance matrix, C. The dominant eigenvectors provide the @ directions in the
parameter space along which the growth rate varies the most. We recognize the first Q = 5 eigenvalues as active variables
because they are dominant and less sensitive to the Monte Carlo sampling, M<°V. Case A is shown in the left panels and
Case C in the right panels.

3. Development of surrogate models. We develop algebraic surrogate models for the growth rate

as a function of the active variables, Wip, k= 1,...,Q, by a least-square method



Q
W (p) = ag + Z a;Wip+
j=1
Q Q Q Q@ Q
D ) ap(WIp)(Wip) + > ) D (W p)(Wip)(W/p).  (10)
Jj=1k=j j=1k=j I=k

Quadratic and Cubic

The function w;(p)*°7 is also known as the response surface and needs M 457 Monte Carlo samples

for least-square fitting, where MAST is greater than the number of regression coefficients, Niyeg.
Here, we compare a linear regression model with a cubic one by (i) retaining only the active
variables, @ = 5 (Fig. 5), and (ii) using all 38 variables, @ = 38. A detailed comparison of different
regression models is beyond the scope of this paper because the focus is on the adjoint methods.
Other surrogate models were tested by [3].

4. UQ analysis. M cheap Monte Carlo algebraic evaluations of w;“SI are performed to estimate the
growth-rate risk factor, avoiding the nonlinear eigenproblem. In both Cases, we use M = 50, 000,
which ensures convergence of the risk factor and PDFs (not shown).

This procedure is summarized in Fig. 6.
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4.2. Results

First, we investigate the accuracy of the surrogate models obtained by FD and AD methods. In Fig.
7, the results are shown for the weakly coupled Case A and strongly coupled Case C. In these charts, the
straight line represents the correct perturbed growth rate: the larger the scattering of the growth rates
calculated via ASI surrogate models, the larger the error. The scattering is quantified by the coefficients
of determination, reported in Table 3, defined as

it (WS — @)

Zij\il(wi — ;)2

where the bar indicates the mean value of the MC database of Section 3 (M = 10,000) and the superscript
AST indicates the eigenvalue obtained by running the Monte Carlo UQ analysis with the surrogate models.
The scattering between the FD-surrogate models and the 2nd-order AD-surrogate models (equation (5))
is similar (Table 3), meaning that the AD method can be applied to ASI. The accuracy obtained via
ASI does not increase significantly as the number of eigenvectors is retained, which means that the
variables retained are indeed the most influential (active). For the configurations analysed, the 1st-order
AD-surrogate model is less accurate.

R*=1-

; (11)

(a) Case A (b) Case C
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Figure 7: 50,000 Monte Carlo experiments obtained by evaluating the cubic least-square surrogate models by ASI with
Q = 5 active variables. Results from FD-based (first row); 1st-order AD-based (second row) and 2nd-order AD-based (third
row) surrogate models. Case A is shown on the left and Case C on the right. The straight line is the correct solution, the
higher the scattering, the larger the error.

Secondly, the results of the uncertainty quantification are reported in Table 3, which shows the risks
factors calculated with the FD-based models and the AD-based models. The correct growth-rate risk
factor calculation is given by MC from the standard Monte Carlo simulation (first row of Table 3). As
for the number of computations, applying ASI with finite difference involves calculating MY x N=30 x

12



38=1, 140 eigenproblems. On the other hand, by using the adjoint approach we have to solve only one
nonlinear eigenproblem and its adjoint, and use the sensitivity equations of Section 2. The second-to-last
column of Table 3 summarizes the number of nonlinear-eigenproblem computations needed following FD
and AD surrogate models and the MC method of Section 3.

Thirdly, we discuss the complexity and accuracy of the surrogate models. These algebraic models
are computationally cheap providing that the number of regression coefficients is small. This number is
exactly given by

Neeg=1+Q+¢ 2Q+§Q(Q—1)+%Q(Q—1)(Q—2) , (12)

where ¢ = 0 in linear regression and ¢ = 1 in cubic regression. The last column of Table 3 reports
Nyeg for the four surrogate models developed. On the one hand, linear regression is cheap because it
requires only N,., = 6 but the predicted risk factors and coefficients of determination are unsatisfactory.
This does not appreciably improve when all the @ = 38 (N,¢y = 39) variables are retained. On the
other hand, a cubic regression is needed to obtain good predictions of the risk factor. Retaining all
the variables, Q = 38, needs N,., = 10,660, which makes the development of such a surrogate model
computationally time-consuming. However, retaining only () = 5 active variables requires the calculation
of only N,.y = 56, which significantly decreases the complexity of the original Monte Carlo problem
keeping high accuracy on the risk factors. In summary, the cubic regression model* based on the first five
active variables provides an excellent compromise between computational cost and accuracy, also when
the gradients are obtained by the adjoint method.

4Quadratic models are not considered here because Bauerheim et al. [3] showed that modelling the cubic terms appre-
ciably improves the accuracy of the response surface.
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Risk factor R?

Model Case A | Case C | Case A | Case C eigl\elﬁgil(?si ]ins Nreg

MC (Tab. 2) | 34.5% | 42.2% 1 1 M = 10,000 -
= g| D 38% | 44.4% | 0.81 0.83 | M x N = 1,140
Z | | st-order AD | 45% | 49.8% | 0.72 0.75 1 39
5| ©| 2nd-order AD | 39.4% | 45.3% | 0.80 0.81 1
: . | FD 2% | 458% | 0.80 0.80 | M x N = 1,140
2| | 1st-order AD | 532% | 50.3% 0.7 0.77 1 6
= | 2| 2nd-order AD | 40.8% | 45.1% | 0.79 0.83 1
- | %|FD 35% | 42.9% | 0.96 0.94 | M x N = 1,140
Z | Il | 1st-order AD | 40.2% | 47.3% | 0.86 0.82 1 10,660
2| | 2nd-order AD | 35.6% | 43.6% | 0.95 | 0.94 1
= _T¥p 351% | 43.1% | 0.95 | 0.94 | M’ x N =1,140
Z 1 Il | ist-order AD | 44.5% | 46.2% | 0.85 0.83 1 56
©|e 2nd-order AD 35% 43.3% 0.95 0.94 1

Table 3: Growth-rate risk factors and number of nonlinear eigenproblems by finite-difference (FD) and adjoint- (AD) based
surrogate models for the weakly coupled and strongly coupled Cases A and C. Linear and cubic least-square surrogate
models based on Q = 5 and Q = 38 active variables. The coefficient of determination, R2, is a measure of the scattering of
Fig. 7, hence, the accuracy of the surrogate model (R? > 90% are highlighted in bold). The results for the cubic surrogate
model with @ = 5 are shown in Fig. 7.
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Finally, to evaluate how robust the calculation of the risk factor is, we run 16 sets of M = 50,000
Monte Carlo simulations and calculate the mean and standard deviations of the results, as shown in
Fig. 8 for the cubic surrogate model with ) = 5. Repeating this procedure several times provides an
estimation of the confidence interval of the risk factor. As shown in Table 3, the first-adjoint method is
unsatisfactorily accurate in the weakly coupled regime (RF = 44.5% compared with RF = 35.1% by MC)
but in the strongly coupled regime the estimation is more accurate (RF = 46.2% compared with RF =
43.1% by MC). However, Fig. 8 reveals that the latter estimation is not robust because the interval of
confidence by the first-order adjoint method is +3.56% (panel d). Nevertheless, using the second-order
adjoint method (panel f) provides a reliable risk factor because the mean value RF=43.3% is in agreement
with FD (panel b) and the standard deviation is small, 0.41%. This analysis indicates that combining a
second-order adjoint method with the AST method to compute surrogate models is a robust and accurate
method to predict stability margins of annular combustors.

Case A Case C
(a) std=0.35 % (b) std=0.39 %
40 60
X 40
~— 20
% 20
0 0
(c) std=2.15 % (d) std=3.56 %
60 60
40
20
0
(e) std=0.35 % (f) std=0.41 %
40 T T T T 1 60 T : - -
S 40
~— 20
E ‘ 20
0 0
1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15
I D
I 1st-ord AD
[ 12nd-ord AD
mean

Figure 8: Risk factors obtained by running 16 sets of M = 50,000 Monte Carlo simulations with the cubic surrogate model
with @ = 5. Case A is depicted in the left panels, Case C in the right panels. ‘std’ stands for standard deviation.

5. Conclusions

Deterministic calculations of the growth rates of two annular-combustor configurations are not suffi-
cient for a robust thermo-acoustic stability analysis. It is shown that systems that are deterministically
stable can have a great probability of becoming unstable because thermo-acoustic systems are highly
sensitive to changes in some design parameters. In order to calculate the probabilities that the annular
combustors are unstable (risk factors), given uncertainties in the flame parameters, we first combine an
adjoint algorithm with a standard Monte Carlo method. The risk factors and probability density func-
tions are accurately predicted by adjoint methods and the number of nonlinear eigenproblems solved is
reduced by a factor equal to the number of Monte Carlo samples which, in this case, is 10,000. The
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strongly coupled annular combustor (Case C), of industrial interest, is found to be significantly more
sensitive to uncertainties of the flame parameters than the weakly coupled configuration (Case A).

Secondly, we combine the adjoint algorithm with Active Subspace Identification to develop growth-
rate algebraic models to further reduce the number of computations required by the standard Monte
Carlo method. The number of nonlinear eigenproblems solved is reduced by a factor equal to the number
of Monte Carlo samples needed to calculate the covariance matrix, which, in this study is 1,140. The sur-
rogate model obtained by cubic regression is found to be an excellent compromise between computational
cost and numerical accuracy.

The first-order adjoint framework is a reliable tool for uncertainty quantification as long as the rate of
change of eigenvalues with parameters is approximately linear around the operating point in question and,
when it is not, the standard deviations of the system’s parameters are not too large. In these scenarios, the
second-order adjoint method proved more accurate and versatile. The adjoint framework is a promising
method for design to obtain quick accurate estimates of risk factors at very cheap computational cost.
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