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Abstract

Approximate pattern matching is an important computational problem that
has a wide range of applications in computational biology and in information
retrieval. However, searching a short pattern in a text with high error rates
(10%–20%) under the Levenshtein distance is a task for which few efficient
solutions exist. Here we address this problem by introducing a new type of
seeds: the 01∗0 seeds. These seeds are made of two exact parts separated by
parts with exactly one error. We show that those seeds are lossless, and we
apply them to two filtration algorithms for two popular applications, one where
a compressed index is built on the text and another one where the patterns are
indexed. We also demonstrate experimentally the advantages of our approach
compared to alternative methods implementing other types of seeds. This work
opens the way to the design of more efficient and more sensitive text algorithms.

Keywords: approximate string matching, lossless approximate seeds,
Levenshtein distance, computational biology

1. Introduction

We consider the approximate string matching problem, where an error be-
tween a pattern P and a text T is measured by the Levenshtein distance: an
error is either a substitution, an insertion, or a deletion. The first approach to
solve this problem was to perform dynamic programming with an O(|T | × |P |)
algorithm [1]. This kind of approach has been improved by using bit-parallelism
or finite automaton (for instance [2]). However it is still not practical to search
large databases of sequences or a full genome.

Rather than traversing all the sequences, it is possible to start by filtering
candidate regions which show a high-enough similarity between portions of the
text and of the pattern. Such portions are called seeds. Their occurrences must
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then be extended to check if the pattern occurs within k errors. This seed-and-
extend approach is now widely used to solve the approximate pattern matching
problem. The seed definition can be very diverse and depending on the type of
application (size of the alphabet, rate of errors, . . . ) the preferred seeds may
differ. The most widely known seed is the contiguous seed, which consists in
a substring that must be shared between the pattern and the text. For in-
stance it is used in the Blast software for homology search in bioinformatics [3].
Depending on the error rate and on the length of the contiguous seed, those
seeds may be lossy, meaning that the query algorithm is a heuristic that can
lead to false negatives. The classical pigeonhole principle avoids this pitfall by
splitting the pattern in exactly k + 1 parts, which are searched independently
as instances of contiguous seeds. This is an example of lossless seed, that never
discards an actual occurrence. A recent example of this method, using a mod-
ified Burrows-Wheeler transform is shown in [4]. However the more errors we
allow, the shorter the parts will be and therefore the more potential occurrences
we may have. Thus the filtration efficiency becomes lower with higher values of
k. This limitation can be partially overcome by the usage of spaced seeds [5] or
subset seeds [6] that offer a better selectivity/specificity trade off than contigu-
ous seeds [7, 8]. One main drawback is that those seeds tolerate substitutions
only. They do not improve the sensitivity over contiguous seeds with insertions
and deletions. Attempts to generalize spaced seeds to the full Levenshtein dis-
tance were presented in [9] for example, with a strong restriction on the total
number of errors.

Other approaches are hybrid approaches that combine seed filtering and ex-
act search. The pattern is split in non-overlapping parts that can be searched
with a given number of errors. Each method differs in the number of pieces in
the patterns and on the maximal number of errors in each piece. For instance,
Navarro and Baeza-Yates [10] designed a hybrid method which consists of split-
ting the pattern P in j = (|P |+ k)/ logσ |T | parts, where σ is the alphabet size,
and searching these parts with bkj c errors. This approach has also been used

with a LZ-index or an FM-index [11]. In [12], Kärkkäinen and Na introduded a
filtering method based on suffix filters, where the pattern is cut in k+ 1 factors
and the set of seeds is the set of all suffixes with strong matches. In general,
hybrid approaches are more flexible than contiguous or spaced seeds as they
tolerate any kind of errors, without restriction on the positions. However, their
filtration efficiency tends to decrease as the number of errors increases, or they
involve factorizations where some parts have to be searched with multiple errors.

Despite this large body of research on seeding techniques for the approximate
string matching problem, we believe that there is still room for improvement for
small patterns with high error rates (10–20%). In this article we will present
a new hybrid method where the pattern will be split in k + 2 non-overlapping
parts, some of them being searched without error, while others are searched with
exactly one error. This approach results in the definition of a new kind of lossless
seeds, called 01∗0 seeds, that can accomodate a large number of insertions and
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deletions1. In Section 2, we will first introduce the theoretical framework of
these new seeds. Once the type of seeds has been chosen, there are different
ways of using them. The ability to index them or to search them efficiently in
a text index is an important criterion. To illustrate this, we will present two
real-life applications of those seeds in a bioinformatics context. In Section 3, we
will present an algorithm for the approximate pattern matching problem in large
genomic sequences. In this application, 01∗0 seeds are used in conjunction with
a compressed full-text index, namely the FM-index [14]. In Section 4, we will
address the complementary problem of comparing a large collection of patterns
against a relatively short DNA sequence such as a gene. For doing so, we will
explain how to index the seeds themselves. Finally, in Section 5, we will discuss
the application of the 01∗0 seeds to the k-mismatch problem and compare them
to spaced seeds.

2. The 01∗0 seeds

2.1. Definition

Let Σ be a finite alphabet of size σ. Given two strings U and V of Σ∗,
define lev(U, V ) to be the Levenshtein distance between U and V . This is the
minimum number of operations needed to transform U into V , where the only
allowed operations are substitution of a single character and deletion or insertion
of a single character. Each such operation is also called an error. From now on,
we assume that a given natural number k corresponds to a maximum number
of errors.

Let P be a pattern of length m over Σ. Using the pigeonhole principle, it is
well-known that if P is partitioned into k + 1 parts, then every string U , such
that lev(P,U) ≤ k, contains at least one of these parts as a substring. The parts
do not need to be of the same length. Similarly, if P is partitioned into k + 2
parts, denoted P1, . . . , Pk+2, then U should contain at least two disjoint parts
of P . The following lemma allows to push the analysis further. It is indeed
possible to request that these two parts be separated by parts with exactly one
error.

Lemma 1. Let U be a string of Σ∗ such that lev(P,U) ≤ k. Then there exist
i, j, 1 ≤ i < j ≤ k + 2, and U1, . . . , Uj−i−1 of Σ∗ such that

1. PiU1 . . . Uj−i−1Pj is a substring of U , and

2. When j > i+ 1, for each `, 1 ≤ ` ≤ j − i− 1, lev(Pi+`−1, U`) = 1.

Example 1. Assume k = 3. Given the pattern P = AACGTGAGGTAGGTTCCATG of
length 20, we partition it into five parts, of equal length: P1 = AACG, P2 = TGAG,
P3 = GTAG, P4 = GTTC, and P5 = CATG. Consider three strings whose Leven-
shtein distance with P is 3: AACGGAGGTAAGTTCTCATG, AACGTAGGCAAGTTCCATG

1Part of this work has already been published as an extended abstract in the proceedings
of the conference Iwoca 2014 [13].
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Figure 1: Application of Lemma 1 for sequences of Example 1. The pattern
AACGTGAGGTAGGTTCCATG is on the top of each alignment. The two parts with no error (written
Pi and Pj in the Lemma) are highlighted in dark grey, and the parts with 1 error surrounded
by Pi and Pj are highlighted in light grey.

and ATCGTGACGTAGGGTCCATG. For each string, we show in Figure 1 the parts
that fulfil the conditions of Lemma 1.

We rephrase Lemma 1 as a pure counting problem and establish its proof.

Lemma 2. Let k be a natural number. Assume you have k + 2 containers
numbered from 1 to k + 2, and y tokens with 0 ≤ y ≤ k. Then there exists two
containers i and j, 1 ≤ i < j ≤ k + 2, such that

1. containers i and j are empty, and

2. for each `, i < ` < j, the container ` contains exactly one token.

Proof. Let µ be the number of containers with at least two tokens, called the
multiple containers. In total there are at least µ + 2 empty containers. The 2
comes from the fact that we have k tokens and k+2 containers. Therefore there
are at least µ + 1 pairs of empty containers i and j such that each container
between i and j is non empty. Each of the µ multiple containers can lie between
one distinct pair of empty containers, breaking the property for µ pairs of empty
containers. Stated otherwise, we have at most µ pairs of empty containers with
one intervening multiple container. This leaves us with µ + 1 − µ = 1 pair
satisfying the property that the intervening containers (if any) have exactly one
token.

As a consequence of Lemma 1, we can design a seeding framework for lossless
filtering for the approximate pattern matching problem with k errors. To this
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end, we introduce some terminology that will be used in the remainder of the
paper.

Definition 1. Let P = P1 . . . Pk+2 be a pattern divided into k+ 2 parts. Then
the 01∗0 seed for P and k is the regular expression

∪k+1
i=1 ∪k+2

j=i+1 Pi lev1(Pi+1) . . . lev1(Pj−1) Pj

where lev1(u) denotes the set of strings whose Levenshtein distance with u is 1.
A subseed is the regular expression associated to a given pair (i, j):

Pi lev1(Pi+1) . . . lev1(Pj−1) Pj .

An instance of a seed, or of a subseed, is a string u of Σ∗ which is recognized by
the seed, or the subseed. Given a text T on Σ∗, an occurrence of the seed for P
is a substring of T which is an instance of the seed. Therefore, an occurrence is
characterized by its start position and its end position in T .

2.2. Filtration efficiency

The filtration efficiency is the primary criterion used to evaluate the perfor-
mance of a seed. The thorough analysis of the average case for the 01∗0 seeds,
such as what is done in [15] for example, is beyond the scope of this paper.
Having a formula for the expected numbers of occurences of subseed instances
for a given pattern is also a non trivial task, since this formula would be highly
dependent of the structure of the pattern and of its internal repeats. We leave
it as an open question for future work. Here we present a simple lemma, that
gives an upper bound for the probability of an occurrence of a subseed.

Lemma 3. If the text T is a sequence of independent and identically distributed
characters of Σ, then the probability to have an occurrence of the subseed Pi . . . Pj
at a given position of the text is smaller than

1

σpi
× L(pi+1) × . . . × L(pj−1) × 1

σpj

where pi, . . . , pj are the lengths of the parts Pi, . . . , Pj and

L(p) = p(σ−1)
σp + p

σp−1 + σ(p+1)
σp+1 .

Proof. By Definition 1, Pi lev1(Pi+1) . . . lev1(Pj−1) Pj gives the set of all
possible instances of the subseed. The probability to observe Pi and Pj is
1
σpi

and 1
σpj respectively. For each part P of length p in {Pi+1, . . . , Pj−1},

p(σ−1)
σp + p

σp−1 + σ(p+1)
σp+1 bounds the probability to observe lev1(P ). Indeed, p(1−σ)σp

is an upper bound for the probability of the set of words with one mismatch
from P , p

σp−1 is an upper bound for the probability of the set of words with one

deletion from P , and σ(p+1)
σp+1 is an upper bound for the probability of the set of

words with one insertion from P .

5



This lemma can be used to obtain an upper bound on the average number
of occurrences found in a random text, by summing up all the probabilities of
all subseeds. For example, for k = 3, a pattern of length m = 20 divided in five
equal parts of length 4, a text of size 108 over the DNA aphabet {A,C,G, T}
and the result is 6,747 occurrences.

Complementary to this lemma, we generated an independent and identically
distributed random sequence of length 108 over the DNA alphabet as well as
100 patterns of length 20. We then searched for the 01∗0 seeds for k = 3. For
each pattern, we counted the total number of occurrences of the seeds in the
text, including overlapping occurrences. The distribution is plotted in Table 1.
The average number of observed occurrences per pattern is 6,665 (98.7% of our
estimated upper bound).

For the purpose of comparison, we also estimated the filtration efficiency of
several other types of seeds, for the same text and the same collection of patterns.
First, we considered the classical pigeonhole principle, which guarantees lossless
filtration. The pattern is split in k + 1 = 4 non-overlapping parts of length
5. In Table 1, we call it the k + 1 pigeonhole seed. The average number of
occurrences is 385,651. We then analysed a k + 2 version of the pigeonhole
principle: the pattern is divided in k + 2 = 5 non-overlapping parts of length
4, and two parts must match exactly. In a first case, we require that any two
exact parts are separated by a distance compatible with at most k errors: the
number of positions between two exact parts Pi and Pj (i < j) should range
from pi+1 + · · ·+pj−1−k to pi+1 + · · ·+pj−1 +k. In a second case, we consider
a weakened form of Lemma 1: all parts in-between the two exact parts should
contain exactly one error. As a consequence, the number of positions between
Pi and Pj ranges from pi+1+· · ·+pj−1−(j−i−1) to pi+1+· · ·+pj−1+(j−i−1).
We refer to this seed as the bounded k + 2 pigeonhole seed. It can be seen as
an intermediate seed between the k+ 2 pigeonhole seed and the 01∗0 seeds and
allows us to better understand the behavior of 01∗0 seeds. In those two cases,
the average number of occurrences is respectively of 86,145 and 44,746 (see
Table 1, k+2 pigeonhole and bounded k+2 pigeonhole). These plots show that
moving from k+ 1 parts to k+ 2 parts allows to improve the filtration efficiency
by a factor greater than 4. The additional constraint on distances beween parts
further decreases the number of occurrences by almost half. Finally, the 01∗0
seed offers a new gain of a factor 6.7. Overall, this is more than 57 times better
than the filtering rate achieved with the k + 1 pigeonhole principle. As a last
case, we chose to divide the pattern in only three parts, of lengths 6, 7, and 7.
Contrary to the four preceding seeds, this seed is lossy since it allows for some
false negatives. The average number of occurrences is 36,207 (see Table 1, lossy
seed). Interestingly, this value is close to the bounded k + 2 pigeonhole seed,
but the former maintains full sensitivity. It is far from being as selective as 01∗0
seed.

These empirical measurements show that the 01∗0 seed is significantly more
selective than all other seeds presented in Table 1. It provides orders of mag-
nitude more efficient filtering. Of course, this higher selectivity comes at the
price of some additional work to locate seeds in the text. Each seed is composed
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01∗0 seed k + 1 k + 2 bounded k + 2 lossy
pigeonhole pigeonhole pigeonhole seed

average 6,598 385,651 86,145 44,747 36,207
std. dev. 106 4,221 2,078 967 419

Table 1: Distribution of the number of occurrences for five different seeds on a dataset con-
stituted by 100 patterns of size m = 20 in a random sequence of length 108 on the DNA
alphabet. The 01∗0 seed and the three pigeonhole seeds are designed for k = 3 errors. So for
the 01∗0 seed and the k + 2 pigeonhole seeds, the pattern is divided in 5 parts of length 4.
For the k+ 1 pigeonhole seed, the pattern is divided in 4 parts of length 5. For the lossy seed,
each pattern is split in 3 parts of lengths 6, 7, and 7, respectively. There are on average 26.85
occurrences of the whole pattern within 3 errors.

of (k+1)(k+2)
2 subseeds, and some parts of the subseed should be searched with

errors. This task, however, is facilitated by the regular structure of the 01∗0
seeds. Firstly, each part of the subseed contains exactly 0 or 1 error. Secondly,
distinct subseeds may share a common exact prefix or a common exact suffix as
well as parts with one error. Those two properties confer a practical advantage
over suffix filters introduced in [12], for example.

In the two following sections, we will provide two examples of algorithms
based on 01∗0 seeds, that show the practicability of these seeds.

3. Application to the pattern matching problem

Let us consider the problem of finding matches of the pattern P with at most
k errors in the text T . We assume a small pattern (several dozens of letters) and
a large text (millions or billions of letters) over a small alphabet (e.g. DNA) that
is known in advance. This problem arises naturally in several applications in
computational biology, such as identifying regulatory signals along the genome,
predicting targets of non-protein coding small RNAs or analysing spacers in
CRISPR for potential transfers from viruses or plasmids, to mention a few.
More generally, introducing some errors would improve the sensitivity in the
presence of sequencing errors or variants.

We devise an efficient filtration algorithm for this problem based on the 01∗0
seeds. We will first justify our choice of using an FM-index for T . Then we will
explain how seeds are searched in the FM-index, and how the property of the
01∗0 seeds is used during the verification step to restrict the number of errors
searched for.

3.1. Choice of index

We are in the situation where the text is known in advance, and we may
have hundreds of short sequences to be queried in the text. This situation is
particularly suitable for text indexes. Using a text index, it is possible to reduce
time consumption at the expense of space consumption. Two main families of
indexes are used: q-gram indexes and full-text indexes. The former allow to
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efficiently recover occurrences of a fixed-length word, while the latter allow to
search for any pattern of any length. A third family of indexes consists of in-
dexes specifically designed for approximate search [16, 17, 18, 19]. However,
these indexes are not compressed indexes (i.e. whose space consumption is pro-
portional to the empirical entropy of the text) and, to the best of our knowledge,
no implementation of the proposed solutions exists.

Compressed full-text indexes appear to be the indexes of choice, because they
limit space consumption and allow for patterns of arbitrary sizes. Among com-
pressed indexes, FM-indexes [14] have an optimal time complexity for counting
the occurrences of a pattern, while pattern search is more complex and count-
ing is more time consuming with LZ-indexes [20]. The FM-index accompanied
by the Burrows-Wheeler transform has been successfully used in a variety of
bioinformatics tools [4, 21, 22]. We will show in the remainder of this section
that 01∗0 seeds are appropriate for a search in the FM-index.

3.2. Seed filtration

Given a pattern P , we enumerate all possible subseeds for the pattern. Each
subseed for P is characterized by two parts Pi and Pj , 1 ≤ i < j ≤ k + 2,
that occur exactly in the text. According to Lemma 1, all the intervening parts
between Pi and Pj must be searched with exactly one error. We recall that
in the FM-index, patterns are searched backwards, therefore, we first start by
searching any part P`, with 1 < ` ≤ k + 2, assuming it is Pj . This is an exact
search in the index. Then the parts preceding P` are searched with at most
one error (by backtracking as in BWA for instance [21]). When a part is found
exactly, we know that Pi has been reached. Starting with P`, we can have several
parts that fulfil our requirements; on reaching different parts Pi1 , . . . , Piq each
of them matching exactly at different locations in the text. All the possible
solutions are searched. If P` cannot be found exactly or if a part cannot be
found with at most one error, this P` is skipped and we move on the next one.

Therefore, at most we will have considered the (k+1)(k+2)
2 possible pairs (i, j).

All those pairs are searched within the FM-index.

Example 2. Let us continue with Example 1, also shown in Figure 1: k = 3
and P = AACG TGAG GTAG GTTC CATG, which is partitioned into 5 parts of equal
length. Assume that the text T is the concatenation of the three strings at
distance 3 from P :
T =AACGGAGGTAAGTTCTCATGAACGTAGGCAAGTTCCATGATCGTGACGTAGGGTCCATG.

– The algorithm first tries j = 5. P5 = CATG is found with no error in the FM-
index. So, it has some exact occurrences in the text. Therefore, we continue to
go through the FM-index to extend P5 to the left and find all possible values
for i. We find i = 4 (P4 occurs exactly), i = 3 (P4 occurs with one error and P3

exactly) and i = 1 (P4, P3 and P2 occur with one error and P1 exactly). This
gives three different seed instances, leading to three seed occurrences.
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P1 P2 P3 P4 P5 P4 P5 P3 P4 P5

AACG TGAG GTAC GTTC- CATG GTTC CATG GTAG GTTC CATG

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
AACG -GAG GTAA GTTCT CATG AACGTAGGCAA GTTC CATG ATCGTGAC GTAG GGTC CATG

– With j = 4, GTTC occurs exactly in the FM-index, and corresponds to two
occurrences in T . By extending P4 to the left, we keep just one instance since
the second one cannot be extended to P3 = GTAG with at most one error.

P1 P2 P3 P4 P4

AACG TGAG GTAC GTTC GTTC

| | | | | | | | | | | | | | | | | |
AACG -GAG GTAA GTTC TCATGAACGTAGGCAA GTTC CATGATCGTGACGTAGGGTCCATG

Note that in this particular case, the first occurrence of P in T is covered by
two overlapping 01∗0 subseeds, characterized by i = 1 and j = 5, and i = 1
and j = 4, respectively. This redundancy is solved with the extension and
verification step, which is described in the next subsection.

– With j = 3, we have two occurrences of GTAG in the text. The first one cannot
be extended to the left with P2 = TGAG. As for the second occurrence, P2 is
found with one error, but P1 = AACG does not exactly match. So, the occurrence
is discarded.

P3 P2 P3

GTAG TGAG GTAG

| | | | | | | | | | |
AACGGAGGTAAGTTCTCATGAAC GTAG GCAAGTTCCATGATCG TGAC GTAG GGTCCATG

– With j = 2, there is no exact occurrence of the part TGAG in the text.

At this point, all the seed instances occurring in the text are identified. We
then proceed to the extension and verification step.

3.3. Elongation and verification

To perform the elongation of an instance of the seed, we first need to have
a deeper look at the error distribution along the pattern. We know that the
subseed instance has a Levenshtein distance of j − i − 1 with Pi . . . Pj , which
makes j − i − 1 errors. The following lemma gives an upper bound for the
number of errors in P1 . . . Pi−1 and in Pj+1 . . . Pk+2.

Lemma 4. Let U be a string of Σ∗ such that lev(P,U) = y ≤ k. Then there
exists a 01∗0 subseed Pi . . . Pj such that the prefix P1 . . . Pi−1 contains exactly
i − 1 − (k − y) errors and the suffix Pj+1 . . . Pk+2 contains exactly k + 2 − j
errors.

Proof. The hypothesis of the Lemma can be rephrased as follows. Assume you
have k + 2 containers numbered from 1 to k + 2, and y tokens with 0 ≤ y ≤ k.
Let δ = k − y. The proof is by recurrence on k.
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We start by noting that for k = 1, the solutions are (1, 2) (token in container
3), (2, 3) (token in container 1) or (1, 3) (token in container 2), when y = 1.
When y = 0 the unique solution is (2, 3).

Assume now that k > 1. We choose i and j, such that the pair (i, j) fulfils
the conditions of Lemma 2, and i is the container furthest to the left satisfying
this condition. Let η be such that i− 1− δ + η is the number of tokens present
in containers 1 to i− 1. There are three possibilities for η.

If η = 0: the tokens from containers 1 to i− 1 sum up to i− 1− δ and the
tokens from j + 1 to k + 2 sum up to k + 2− j. So the pair of containers (i, j)
fulfils the criteria of our lemma.

If η > 0: there are (i − 1 − δ + η) + (j − i − 1) = j − δ − 2 + η tokens in
containers 1 to j. This leaves y − (j − δ − 2 + η) tokens in containers j + 1 to
k + 2. In other words we have k − j + 2− η tokens in the k − j + 3 containers
from j to k + 2 (as container j is empty). By recurrence, we know that there
is a pair (j′, j′′), with j ≤ j′ < j′′ ≤ k + 2, such that containers j′ and j′′ are
empty and there are j′ − j − (η − 1) tokens in containers j to j′ and there are
k + 2 − j′′ tokens in containers j′′ + 1 to k + 2. Finally from container 1 to j′

we have (j − δ − 2 + η) + (j′ − j − (η − 1)) = j′ − 1 − δ tokens. Therefore we
found a pair (j′, j′′) that fulfils our conditions.

If η < 0: since container i is empty there are also i− 1− δ + η tokens until
container i. By recurrence, we know that we can find a pair (i1, i2) which fulfils
Lemma 2. That contradicts our initial hypothesis, as i1 < i2 ≤ i.

As a consequence of this Lemma, seed instances are first extended to the
left, to find P1 . . . Pi−1 with at most i − 1 errors. To gain more efficiency, this
extension is directly carried out in the FM-index. Indeed, the retrieval of the
positions of occurrences is the most time consuming part in an FM-index (in
O(log1+ε n) per occurrence [23]). Once this extension has been performed, all
occurrences of the prefix P1 . . . Pj are retrieved. Then the extension to the
right is performed in the text using a banded dynamic programming algorithm.
The starting point of the extension is the ending position of the occurrence of
P1 . . . Pj in the text. Following Lemma 4, Pj+1 . . . Pk+2 must be searched with
at most k−j+2 errors in the text. Therefore, the bandwidth is 2×(k−j+2)+1 in
the dynamic programming algorithm. Note that the extension to the right could
also have been performed in the index using a bidirectional Burrows-Wheeler
transform [24, 25]. That would, however, increase the memory footprint and
provide only a moderate speed up, since many false positive seed instances have
been removed at this step.

3.4. Implementation

This algorithm was implemented in a software called Bwolo. Bwolo is writ-
ten in C++, with the help of SeqAn library and the FM-Index implemented
within [26]. It can be downloaded from http://bioinfo.lifl.fr/olo. In this
implementation, patterns are divided into parts whose length differs by at most
one character.
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3.5. Experimental results

In this section, we present some experimental results in order to measure
the performance of our algorithm. We compare Bwolo to a selection of tools
that were chosen for their complementarity. Widely utilized in bioinformatics,
Exonerate is a generic tool for pairwise sequence alignment, which uses exact
sparse dynamic programming to perform the search [27]. We use it as a stan-
dard for an on-line exact algorithm for our problem. RazerS3 is a read mapping
program based on counting q-grams [28]. It performs the verification via an im-
plementation of the improved Myers bit-vector algorithm proposed by Hyyr [29].
RazerS3 works without a precomputed index for the text. Bowtie2 [22], like
our tool, indexes the text with an FM-index and searches for exact contiguous
seeds. It then uses backtracking for handling errors and dynamic programming
to build the full alignment. Readaligner [30] relies on suffix filters [12] searched
within an FM-index too. Lastly, we used an in-house implementation for ap-
proximate search in an FM-index written with the SeqAn library. It is based on
a breadth-first search method with no prior filtration. Unfortunately, we were
not able to include hybrid methods described in [11] in our benchmark, since
the implementation is not available.

All these tools were configured to be fully sensitive and output all occurrences
of the pattern. Exonerate was launched using the options --exhaustive -m

affine:bestfit --bestn 1 --score -3 --gapextend -1 --gapopen -1 --showalignment

yes --verbose 0, RazerS3 with --filter pigeonhole --percent-identity

[Id] --recognition-rate 100 -f such that [Id] = 100×(1− k
m ), Bowtie2 with

-a -L [Seeds] -i C,[Seeds],0 such that [Seeds] = m
k+1 and Readaligner with

options --all -i 3. Moreover, for each tool the score system is based on the
unit score, which computes the Levenshtein distance.

The tests were run on a single thread of a server equipped with two Intel(R)
Xeon(R) CPU E5-2420 and 205GB of RAM. The CPU time and the memory
consumption were measured using the GNU time command.

3.5.1. Randomly generated sequences

This first test uses independent and identically distributed sequences on the
DNA alphabet. The size n of the sequences ranges from 104 to 109. We also
generated 100 patterns of length 20 at random and measured the computation
time of each tool for k = 2 and k = 3. Results are shown in Figure 2.

Bwolo is the fastest tool for long sequences, from 106 nucleotides, apart
for k = 2 where Readaligner is the fastest when the sequence is longer than
2 × 108. As expected, the added-value of Bwolo is even more obvious when
k = 3. The two tools with no filtration, Exonerate and the exact search in the
FM-index, are slow. Bowtie2 operates slowly compared to all the other tools,
especially with larger values of n. This confirms that Bowtie2’s heuristics, which
has been designed for long patterns (at least 50 nt) and few errors, is not well
adapted to shorter patterns with higher error rate. Unfortunately, there is not
yet a specialized tool for this type of problem. In our benchmark, Bowtie2 is
obliged to use a seed with low filtering power that lets too many occurrences
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happen. This dramatically increases the verification effort due to the cost of
retrieving text positions from the FM-index. Interestingly enough, RazerS3,
which uses the same seed, functions well on this data. This is consistent with
the fact that a linear method can, in certain conditions for large k and n, be
more efficient than a method based on a text index [10]. However, Bwolo is still
five times faster than RazerS3 for sequences of length 109. Indeed, the number
of seed occurrences is an order of magnitude less with Bwolo, which offsets the
additional time needed to query the FM-index in the verification step. With the
configuration we used, Readaligner relies on suffix filters to align the sequences.
Those filters have very good performances when the number of errors is not too
high (k = 2 in our case). With suffix filters the most time-consuming case occurs
when all parts contain exactly one error but the last one. With k = 3, the last
part is 5nt long. Searching such a small part leads to many false positives.

For k = 2, we can observe that there are smaller differences in the CPU
time between FM-index and Bwolo on larger texts. The former takes 18.4 s on
the 1GB sequence while the latter takes 13.8 s. This small difference is actually
misleading. Unserializing the index (which is the same in both cases) takes
12 s on that same sequence. Ignoring that step, which is constant whatever
the number of sequences to search is, leads to a three-fold speedup using the
01∗0 seeds compared to the breadth-first approach. With a higher error rate
(k = 3) we have a seventy-five-fold speedup on the 1GB sequence. For the
sake of comprehensiveness, we should mention that Readaligner takes 1s to
unserialize its index and RazerS3 takes 8s to load the 1GB sequence. Taking
that into account shows why Readaligner becomes quicker with long sequences
and a small error rate: this is due to the loading of the index which is much
more efficient than for RazerS3 and Bwolo.

All tools have a reasonable memory consumption, independent of the value
of k, which grows linearly with the size of the text. For example, it is 13 MB
for Readaligner, 27 MB for Bwolo, 99 MB for Bowtie2, 25 MB for RazerS3,
and 31 MB for Exonerate for n = 107. The memory consumption of Bwolo
and Bowtie2 is dominated by the size of the FM-index. It is larger for Bowtie2
because it also deals with the inverted text and uses a different implementation.
It is quite surprising that RazerS3 and Exonerate have a memory peak in the
same order. It may be possible that they load both all the text and keep all
results in memory.

3.5.2. Reads from the Human genome

The second test uses an external dataset made of short sequences, taken
from [31]. In this article, theH3 dataset contains 10 millions of sequencing reads
of length 40 that have been generated from the Human genome (assembly 37.1
from the NCBI, 25 chromosomes for 2.7 Gbp) with exactly three mismatches.
Compared to the previous test, it allows us to evaluate the performance of the
software with longer patterns, hence longer seeds. The maximum number k of
errors is 3 (including indels, not only substitutions). We ran Bwolo, RazerS3,
and Bowtie2 on the full set of reads (107 reads). Since we were not able to
obtain results with both Bowtie2 and Readaligner on the full dataset within a
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Figure 2: Running time for 100 randomly generated sequences. Both axes are in logarithmic
scale. Bwolo is our algorithm. FM-index refers to the breadth-first search implementation in
an FM-index.

reasonable amount of time, we also used a selection of 10,000 reads. Table 2
shows the results. As in the previous test, Bwolo achieves the best performances.
However, the difference between Bwolo, Readaligner and RazerS3 is even more
striking than in the previous test. This is due to the time needed to load the
index. It was negligible on this dataset, but it constituted an important part of
the search time with a much smaller dataset as in the previous test.

index construction 10, 000 reads 107 reads

time mem. time mem. time mem.
(min.) (GB.) (min.) (GB.) (min.) (GB.)

Bwolo 127 9.6 1.6 6.5 925 9.1
RazerS3 0 0 8.4 6.5 7, 790 152
Readaligner 451 5.5 41 3.6 NA NA
Bowtie2 176 5.4 2, 603 8.3 NA NA

Table 2: Running time and space consumption on the Human genome benchmark. NA: non
available.

4. Application to the approximate dictionary matching problem

In this section, we consider the approximate dictionary matching problem:
finding all approximate occurrences of a set P of string patterns in a query text
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Q. More specifically, we assume that P is a database of short patterns (about
20 letters each) that is known in advance and can be preprocessed. We want to
query this database with a sequence Q of a few hundred letters. We will show
how the 01∗0 seeds can be used to solve this problem by indexing P.

4.1. Indexing pairs of exacts parts in 01∗0 seeds

Let us assume that we have a collection P of patterns and that all patterns
have the same length m. We will discuss later, in Subsection 4.4, the case where
the patterns have different lengths. The query is a sequence Q whose length n
is greater than m.

In accordance with the principle of the 01∗0 seeds, every pattern P of P is
split into k + 2 non overlapping parts, P1, . . . , Pk+2. For the sake of simplicity
we will assume for now that k + 2 divides m and that all parts have the same
length p. The first step of the algorithm is to search for all possible pairs of
exact parts of all patterns of P that are present in the text Q. For this purpose,
we work subseed by subseed and for each pair i and j, 1 ≤ i < j ≤ k + 2
corresponding to a given subseed, we will use an array Ai,j , indexed by strings
of length 2p, corresponding to pairs of parts. Given a string S of length 2p,
Ai,j [S] is the set of all patterns whose part i concatenated to part j equals S:

Ai,j [S] = {P ∈ P;PiPj = S}

There are as many arrays as possible subseeds, which makes k(k+1) arrays,
each of size σ2p. This is of course practical only for small values of p and σ,
which is the case in our application.

Example 3. We show an example of construction of the Ai,j arrays in Fig-
ure 3. The set P consists of three patterns of length 8: P 1 = ATACCACT,
P 2 = TAACATCT, P 3 = ACCATTAT. The number of errors is k = 2. So each
pattern is split in four parts of length 2. We have 6 arrays, A1,2, A1,3, A1,4,
A2,3, A2,4 and A3,4. We give the content of each of these 6 arrays. For example,
A1,2 has three elements. The first one is 3 indexed by ACCA, meaning that the
pattern P 3 is such that P 3

1 = AC and P 3
2 = CA. For the array A2,4, we have

A2,4[ACCT] = {1,2}, because P 1 and P 2 share the same second part, which is
AC, and the same fourth part, which is CT.

4.2. Querying the Ai,j arrays

The two exact parts of the 01∗0 seeds are identified using the Ai,j arrays.
We still have to determine what is the range of distances between those two
parts on Q to make it possible that Pi and Pj are the exact parts of a subseed
of a 01∗0 seed. For that, we will use the weakened form of Lemma 1, introduced
in Section 2.2 for the bounded k+2 pigeonhole seed. Let assume that for a given
pattern P , the parts Pi and Pj match on the query sequence Q. There are
j− i− 1 parts between the exact parts Pi and Pj in the pattern. Each part has
length p, and should occur with exactly one error in Q. So the total number of
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A2,4[ACCT] = {1,2}

Figure 3: Example of indexing and querying strategy on a set P of three patterns of length
8: P 1 = ATACCACT, P 2 = TAACATCT, P 3 = ACCATTAT. The number of errors is k = 2. Each
pattern is split in four parts of length 2.

positions between Pi and Pj on Q should be comprised between (i−j−1)(p−1)
and (i− j − 1)(p+ 1). Therefore at each position of the text Q, we must search
for:

1. two consecutive parts in A1,2, A2,3, . . . , Ak+1,k+2,

2. two parts separated by p− 1, p or p+ 1 positions in A1,3, . . . , Ak,k+2,

3. . . .

4. two parts separated by k(p− 1), . . . , k(p+ 1) positions in A1,k+2.

So, for each d in [0..k] and for each i ∈ [1..k−d+1], the arrayAi,i+d+1 needs 2d+1
queries. Since there are k+ 1− d such arrays for a given value of d, this gives a
total of

∑k
d=0(2d+1)(k+1−d) = O(k3) queries. Finally identifying candidates

in P which have compatible pairs with Q can be done in time O(|Q|k3 + occ),
where occ is the number of occurrences. Indeed, queries in Ai,j arrays can be
done in constant time (plus the time needed to retrieve the occurrences). This
step is illustrated in the example below.

Example 3 (continued). We now have a text to query: Q = AATCACAATCTTCAA.
We show how the text is scanned in the bottom part of Figure 3. At a given
point, the parts queried will be the ones in a frame. While maintaining the first
part identical (AC), the second part queried in A2,4 will be AT, TC and CT as
we must account for potential deletion or insertion in the inner part. The case
shown in the figure illustrates the case where an insertion is assumed.

4.3. Aligning candidates against the query

Once the candidates have been retrieved, they must be aligned against Q
to check if there are at most k errors between the pattern and Q. Let assume
that P is a pattern of P that has been selected by the preceding filtering step
of the algorithm. By construction, there exist i and j, 1 ≤ i < j ≤ k + 2, q,
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0 ≤ q ≤ n − 1 and δ, (j − i − 1)(p − 1) ≤ δ ≤ (j − i − 1)(p + 1), such that
Pi = Q[q . . . q+ p− 1] and Pj = Q[q+ δ . . . q+ δ+ p− 1]. First we need to check
whether the two parts Pi and Pj could be the exact parts of a 01∗0 subseed.
For that, the alignment of Pi+1 . . . Pj−1 against Q[q+p . . . q+ δ−1] must verify
that each part has exactly one error to the corresponding substring in Q. Then
to extend this subseed, we must align the two remaining substrings P1 . . . Pi−1
and Pj+1 . . . Pk+2 to Q by dynamic programming. Similarly to what is done
in Bwolo, we can bound the number of errors for each subtring and speed up
the computation accordingly. When aligning P1 . . . Pi−1 against Q, we know by
Lemma 4 that we can assume that there are at most i− 1 errors.

Example 3 (continued). We continue with the example of Figure 3. Recall
that at this step of the algorithm, the framed subwords correspond to parts P 1

2

and P 1
4 in P 1, and to parts P 2

2 and P 2
4 in P 2. The next step is to align AAT

(the inner sequence between the two considered parts in Q) against P 1
3 = CA

and P 2
3 = AT with exactly one error. As lev(CA, AAT) > 1, P 1 is not a candidate

anymore. Regarding P 2, since lev(AT, AAT) = 1, we have found an instance of a
subseed. It means that P 2 is still a valid candidate, that must be fully aligned
against Q. As we are considering parts 2 and 4, we must align the prefix P 2

1

on Q, before position 5, with exactly one error (if part 1 had no error we would
already have a hit).

4.4. Dealing with variable-length database sequences

For the sake of simplicity, we started by assuming that patterns in P all have
the same length m and that k+ 2 divides this length. We will now explain how
to relax those assumptions.

First we will consider the case where a pattern P of P is strictly longer than
m. The first k + 1 parts of P will all have the same length p. The length of
the last part will be p′ = |P | − (k + 1)p. Therefore the first k + 1 parts of P
are treated in the same way as the parts of the other sequences. This cannot
be true for the last part whose size can vary. This part of P is still indexed
on its first p letters. However the Ai,k+2 arrays (with 1 ≤ i ≤ k + 2) have to
store slightly more information compared to the other arrays. In addition to
the indices, the trailing p′ − p letters of the last parts are also stored:

Ai,k+2[S] = {(P,w);PiPk+2[1 . . . p] = S and w = Pk+2[p+ 1 . . . p′]}

Therefore when querying any array Ai,k+2 with some subtring S = Q[q . . . q +
p − 1]Q[q′ . . . q′ + p − 1], all the entries (P ′, w) ∈ Ai,k+2[S] are retrieved, such
that w = Q[q′ + p . . . q′ + p+ |w| − 1]. Rather than storing entries of Aj,k+2 as
plain lists, they are stored in a trie. In this trie, a path labelled w from the root
to a leaf, gives all the patterns stored in Aj,k+2 that have w as trailing letters.

Second we consider the case where a pattern P in P is shorter than m.
We will assume that only the last part is shorter than the other ones. Let
p′ = |Pk+2|, for each part i, 1 ≤ i ≤ k + 1, we will have P ∈ Ai,k+2[PiPk+2w],

for all w ∈ Σp−p
′
. If other parts also have to be smaller, we process them

similarly.
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4.5. Implementation

This algorithm for the multi-pattern matching problem has been imple-
mented in C++ in a software called Piccolo, which is available at http://

bioinfo.lifl.fr/olo/. Piccolo uses the same partition as Bwolo. For the
Ai,j arrays, the index data structure is simply a lookup table, like in Blastn.

4.6. Experimental results

We measure the performance of Piccolo on a case study from computa-
tional biology: the classification of plant miRNAs (microRNAs) in families.
Plant miRNAs are short non-coding RNAs that are 21–24 nucleotides long, and
that are produced from larger precursor sequences that can be hundreds of nu-
cleotides long. Many miRNA genes are conserved across plant species, and form
gene families. So an important step for the miRNA annotation is to compare a
precursor sequence to a known miRNAs, in order to identify homologs. For that,
the protocol is to align the sequence of the precursor to a database of known
miRNAs, such as miRBase [32]. What is found commonly in the literature is to
require a full-length alignment of a miRNA with up to 3 errors [33].

To our knowledge, there exist no dedicated tools for such a task, either with a
precomputed index or not. One possibility is to perform dynamic programming
on each miRNA sequence of the database against the precursor sequence. This
is slow in practice, and one has to resort to heuristic methods, in particular
Blastn. In this case Blastn provides quick results at the cost of some false
positive and false negative results.

We will therefore test our program against Exonerate (as in Section 3)
and Blastn. The data was retrieved from miRBase 21. It consists of 124
miRNA precursors from Amborella trichopoda (minimum length: 80, maximum
length: 2354, average length: 284, median length: 228) and 4,713 plant miRNAs
(excluding those from Amborella trichopoda, minimum length: 17, maximum
length: 26, average length: 22, median length: 21). The programs were launched
on one thread of an Intel i7-4600 dual core processor. Exonerate was run with
the same options as in Section 3. For fair comparison we used a slightly modified
version that searches matches on the forward strand only. Blastn was launched
in its standalone version but with the smallest seed available in the online version
(as most users usually do), which spans seven characters. Blastn does not allow
arbitrary costs for the gaps; we chose the costs that were closest to those for
Exonerate. The options were -strand plus -outfmt 6 -task blastn-short

-min raw gapped score 53 -penalty -5 -reward 4 -gapopen 5 -gapextend

5.
The computation times, including the indexation time for Blastn and Pic-

colo, are presented in Table 3. Unsurprisingly the dynamic programming ap-
proach of Exonerate is much slower. It takes more than 400 times longer than
Blastn and Piccolo. The very well optimized Blastn is not the fastest, as Pic-
colo is slightly faster. Moreover, Blastn has higher memory footprint. This
shows that even a naive implementation of the Ai,j arrays based on a lookup
table yields good performances on the space consumption side. We deliberately
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time memory alignments false negatives false positives
(s.) (MB.)

Exonerate 168 4 1428 – –
Blastn 0.4 130 1282 146 225
Piccolo 0.3 72 1428 – –

Table 3: Computation time and memory usage for Exonerate, Blastn and Piccolo for a dataset
of 4,713 plant miRNAs searched among each of 124 miRNA precursors. The column align-
ments gives the total number of alignments found by the tool and satisfying the specification
of the problem: up to 3 errors. For Blastn, we also report the number of false negatives
(alignments that have not been found) and false positives (alignments that do not satisfy the
specification).

opted for this index data structure to enhance the running time. In presence
of a larger database of patterns, the algorithm could also be implemented with
hashtables or a compressed full-text index.

Exonerate and Piccolo, which are exact methods, both find 1,428 alignments.
Since Blastn is a heuristic, it has false positive and false negative results: Blastn
misses 146 alignments (almost 10%), and outputs 225 local alignments that
contain more than three errors when extended to the full length miRNA. Such
false results can bias the type of miRNAs found and therefore could hinder the
understanding in their evolution. In conclusion, Piccolo is as fast as Blastn, but
with the advantage of being fully sensitive.

5. Application to the k-mismatch problem

In this last section, we make a short digression and study the application
of the 01∗0 seeds to the k-mismatch problem: given a pattern P , a threshold
k, find all strings U whose Hamming distance between P and U is less than k.
01∗0 seeds are not specifically designed to solve this problem. The reason why
we perform this analysis is because it allows us to compare the filtering power
of 01∗0 seeds to spaced seeds. A spaced seed consists of an `-mer in which some
predefined positions can match any character symbol in the alphabet. Exact
match positions are usually denoted #, and positions which are not required to
match -. Spaced seeds are known to offer a good sensitivity-selectivity trade
off when dealing with mismatches [7, 8]. In particular, spaced seeds are better
than contiguous seeds. Note also that the k-mismatch problem has attracted
attention very recently in [34], and that our 01∗0 seeds when restrained to
substitutions could be viewed as a special case of the framework introduced in
their paper.

Given a pattern P of length m partitioned in k + 2 parts, P1, . . . , Pk+2, we
define S(P1, . . . , Pk+2) to be the set of words of Σm that are recognized by the
01∗0 seed based on this partition. Our goal is to compute the cardinality of
S(P1, . . . , Pk+2). Since we have only mismatches, this value depends only on
the distribution of p1, . . . , pk+2, the lengths of P1, . . . , Pk+2, and on the size σ
of the alphabet.
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Figure 5: Deterministic Finite Automaton for the regular expression {0, 1, 2}⇤01⇤0{0, 1, 2}⇤.
↵ is the initial state and � is the unique final state.

of 01⇤0 seeds to spaced seeds. Spaced seeds consist of a `-mer in which some
predefined positions can match any character symbol in the alphabet. Exact
match positions are usually denoted #, and positions which are not required to
match -. Spaced seeds are known to o↵er a good sensitivity-selectivity trade
o↵ when dealing with mismatches [7, 8]. In particular, spaced seeds are better
than contiguous seeds. Note also that the k-mismatch problem has attracted
attention very recently in [32], and that our 01⇤0 seeds when restrained to
substitutions could be viewed as a special case of the framework introduced in
their paper.

Given a pattern P of length m partitioned in k + 2 parts, P1, . . . , Pk+2,
we define S(P1, . . . , Pk+2) to be the set of words of ⌃m that are recognized by
the 01⇤0 seed based on this partition. Our goal is to compute the cardinal of
S(P1, . . . , Pk+2). Since we have only mismatches, this value depends only of the
distribution of p1, . . . , pk+2, the lengths of P1, . . . , Pk+2, and on the size � of the
alphabet.

Lemma 5. The cardinal of S(P1, . . . , Pk+2) is �k+2 where �k+2 is defined by
the linearly recursive sequence.
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Proof. We convert the problem in a new alphabet, {0, 1, 2}. For each i, 1  i 
k + 2, define Hi : ⌃pi ! {0, 1, 2} by

Hi(U) = 0, if ham(Pi, U) = 0
Hi(U) = 1, if ham(Pi, U) = 1
Hi(U) = 2, otherwise (ham(Pi, U) � 2)

where ham denotes the Hamming distance. In this context, the set S(P1, . . . , Pk+2)
is exactly the set of words U of ⌃m such that H1(U1) . . . Hk+2(Uk+2) is ac-
cepted by the regular expression {0, 1, 2}⇤01⇤0{0, 1, 2}⇤, where U1, . . . , Uk+2 is
the unique partition of U in parts of length p1, . . . , pk+2 respectively. The DFA
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Figure 4: Deterministic Finite Automaton for the regular expression {0, 1, 2}∗01∗0{0, 1, 2}∗.
α is the initial state and δ is the unique final state.

Lemma 5. The cardinality of S(P1, . . . , Pk+2) is δk+2 where δk+2 is defined by
the linearly recursive sequence.
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Proof. We convert the problem in a new alphabet, {0, 1, 2}. For each i, 1 ≤ i ≤
k + 2, define Hi : Σpi → {0, 1, 2} by

Hi(U) = 0, if ham(Pi, U) = 0
Hi(U) = 1, if ham(Pi, U) = 1
Hi(U) = 2, otherwise (ham(Pi, U) ≥ 2)

where ham denotes the Hamming distance. In this context, the set S(P1, . . . , Pk+2)
is exactly the set of words U of Σm such that H1(U1) . . . Hk+2(Uk+2) is ac-
cepted by the regular expression {0, 1, 2}∗01∗0{0, 1, 2}∗, where U1, . . . , Uk+2 is
the unique partition of U in parts of length p1, . . . , pk+2 respectively. The DFA
(Deterministic Finite Automaton) for this regular expression is given in Fig-
ure 4. It has three states: α, β and δ. Let αi (respectively βi, δi) denote the
number of strings U of Σp1+···+pi , such that the DFA starting at the initial state
ends in the state α (respectively β, δ) after reading the string H1(U1) · · ·Hi(Ui).
From the DFA, we infer the following relations.
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m = 20 k + 1 k + 2 spaced-seed 01∗0 seed
pigeonhole pigeonhole

k = 1 10,10 7,7,6 ###-###-###-###-# 7,7,6
k = 2 7,7,6 5,5,5,5 ##-#--##-#---## 5,5,5,5
k = 3 5,5,5,5 4,4,4,4,4 #-#---#-#---#-# 4,4,4,4,4
k = 4 4,4,4,4,4 4,4,3,3,3,3 #----#----#----# 4,4,3,3,3,3

m = 20 k = 1 k = 2 k = 3 k = 4
k + 1 pigeonhole 2,097,151 402,616,321 4,288,679,935 21,307,718,401
k + 2 pigeonhole 36,862 6,283,267 166,465,276 2,104,103,941
spaced-seed 65,464 100,506,112 1,593,257,920 21,307,718,401
01∗0 seed 20,500 3,174,595 69,334,045 973,241,233

Table 4: The top table displays the form of seed used for each value of k. For the k + 1
pigeonhole, k+2 pigeonhole and 01∗0 seeds, each line gives the length of each non-overlapping
part. For the space seed, # are for fixed positions and - are for variable positions. In the bottom
table, we report the number of words of length m = 20 recognized by the corresponding seed.

where for each i, 1 ≤ i ≤ k+2, for each x in {0, 1, 2}, Hi(x) denotes the number
of strings U of Σpi that are mapped to x by Hi. In other words, this is the
cardinality of H−1i (x). From the definition of Hi, it is straightfoward to see that

Hi(0) = 1
Hi(1) = (σ − 1)pi
Hi(2) = σpi − (σ − 1)pi − 1

This gives the expected result.

Lemma 5 allows us to characterize exactly the number of words caught by
the 01∗0 seed. In Table 4, we report a comprehensive comparison with spaced
seeds and k+1, k+2 pigeonhole seeds for the special case of a pattern of length
m = 20 on the DNA alphabet, and values of k ranging from 1 to 4. Spaced seeds
were designed with Iedera [6, 35]: in each case, we selected the lossless spaced
seed with maximum weight (the number of #), and then maximum length (the
number of # plus the number of -). The two k+ 2 pigeonhole seeds considered
so far are identical here, since only mismatches are allowed: Two exact parts
Pi and Pj should be separated by exactly pi+1 + · · · + pj−1 positions. In the
bottom table, we report the number of words of length m = 20 recognized by
the corresponding seed. For the k+ 1 pigeonhole seed, we require that one part
occurs exactly in the string, at the same position. For the k+2 pigeonhole seed,
we require that two parts occur exactly in the string, at the same positions.
For the spaced seed, we require that there exists at least one seed shared by
the pattern and the string. Finally, for the 01∗0 seed, we use Lemma 5. This
table shows that the 01∗0 seed is always the best seed, and that it improves the
filtering power of spaced seeds by a factor of at least 20 as soon as there are at
least 2 errors in the pattern.
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6. Conclusion

We have introduced a new type of seeds, named 01∗0 seeds, that are espe-
cially well-suited to deal with patterns containing a high rate of errors. We have
shown that these seeds are easy to use with two complementary applications:
the pattern matching problem, where the seeds are efficiently searched in a com-
pressed full-text index, and the multi-pattern matching problem where the seeds
are indexed in a classical lookup table and the text is processed on-line. Each
of these two algorithms were implemented. The programs are open source and
are available at http://bioinfo.lifl.fr/olo. We also made some theoretical
comparisons to contiguous and spaced seeds and we showed that 01∗0 seeds have
a better filtering power than their counterparts under the k-mismatch problem.

We believe that 01∗0 seeds constitute a promising alternative to existing
approaches. They should prove useful for a variety of applications where the
sensitivity of the search is critical. We have illustrated this through a selection of
examples coming from computational biology. Another application in this field
concerns the processing of third generation sequencing data, such as produced
by PacBio or Oxford Nanopore sequencers [36]. Those emerging technologies
are known to deliver longer sequencing reads at the price of a higher error rate.
So exploiting the power of these sequencers requires the development of new
algorithms for the assembly problem as well as for the mapping problem that
are able to accomodate error-prone sequences, which is a key point of 01∗0 seeds.

The 01∗0 seeds also raise new computational problems. The first one is a
formal analysis of the selectivity of those seeds. In this article, we have only pro-
vided an empirical study on randomly generated sequences. Another question of
interest is the indexing strategy of 01∗0 seeds, that could still be improved as we
must take into account the potential shifts introduced by insertions or deletions
in the 1∗ parts of the 01∗0 seeds. A future research would be to devise a more
efficient indexing strategy that could help in lowering the query complexity.
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[23] P. Ferragina, G. Manzini, V. Mäkinen, G. Navarro, Compressed representa-
tions of sequences and full-text indexes, ACM Transactions on Algorithms
3 (2).

[24] T. Schnattinger, E. Ohlebusch, S. Gog, Bidirectional search in a string with
wavelet trees, in: Combinatorial Pattern Matching, no. 6129 in Lecture
Notes in Computer Science, Springer, 2010, pp. 40–50.

[25] D. Belazzougui, F. Cunial, J. Kärkkäinen, V. Mäkinen, Versatile succinct
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