
HAL Id: hal-01360482
https://hal.science/hal-01360482v1

Submitted on 30 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Levenshtein Automaton and the Size of the
Neighborhood of a Word

Hélène Touzet

To cite this version:
Hélène Touzet. On the Levenshtein Automaton and the Size of the Neighborhood of a Word. LATA
2016 - 10th International Conference on Language and Automata Theory and Applications, Mar 2016,
Prague, Czech Republic. pp.207-218, �10.1007/978-3-319-30000-9_16�. �hal-01360482�

https://hal.science/hal-01360482v1
https://hal.archives-ouvertes.fr

On the Levenshtein Automaton and the Size of
the Neighbourhood of a Word

Hélène Touzet

CRIStAL (UMR CNRS 9189 University of Lille) and Inria, France
helene.touzet@univ-lille1.fr

Abstract. Given a word P and a maximal number of errors k, we address
the problem of counting the number of strings whose Levenshtein distance
to P does not exceed k. We give an algorithm that scales linearly with
the size of P and that is based on a variant of the classical Levenshtein
automaton.

1 Introduction

The problem of measuring the similarity between two strings arises in many
areas such as computational molecular biology, natural language processing,
spelling correction, plagiarism detection, music information retrieval. A common
metric for it is the Levenshtein distance, also simply called the Edit Distance.
This distance is defined as the smallest number of substitutions, insertions, and
deletions of symbols required to transform one of the words into the other.

In this paper, we investigate the basic problem of the size of the neighbourhood
of a given string: count how many strings are within a bounded distance of a
fixed reference string. This problem has been exposed in [6, 2], among others.
As far as we know, there is no efficient algorithm for solving it. We propose a
dynamic programming algorithm that runs linearly in the length of the pattern.
This algorithm heavily relies upon the Universal Levenshtein Automaton, which
is an advanced automaton for the Levenshtein distance problem introduced in [4,
5]. This automaton is universal in the sense that it does not depend on the two
strings that have to be compared.

The paper is organized as follows. In Section 2, we present the Universal
Levenshtein Automaton. We review its main principles, and revisit them by
proposing some new features, such as the introduction of a Nondeterministic
Universal Levenshtein Automaton. In Section 3, we present the algorithm to
compute the cardinality of the neighbourhood of a word.

2 Definition and Construction of the Deterministic
Universal Levenshtein Automaton

2.1 Preliminaries and notations

Let Σ be a finite alphabet, and let P and V be two strings over Σ. The Levenshtein
distance between P and V , denoted Lev(P, V), is the smallest number of edit

2 H. Touzet

operations needed to transform P into V , where the allowed operations are
substitution of one symbol with another, deletion of a symbol and insertion of a
symbol. A sequence of operations transforming P into V is called an edit script.
For any pair of strings P and V , the distance between P and V can be computed
by dynamic programming in time proportional to the product of the length of P
and V with the Wagner-Fischer algorithm [9].

Assume now that we are given a fixed threshold for the number of errors
k. We consider the decision problem associated to the Levenshtein distance: for
any pair of strings P and V , decide whether the Levenshtein distance is lesser
than or equal to k. In this decision problem, we can also introduce the additional
hypothesis that the pattern P is fixed, and consider the neighbourhood of P ,
noted Lev(P, k): Lev(P, k) = {V ∈ Σ∗; Lev(P, V) ≤ k}.

When P is fixed, it is highly desirable to preprocess P , so that the decision
problem can be solved more efficiently than with the dynamic programming
algorithm. There has been an abundance of literature on this subject. A standard
approach is to start from the Levenshtein automaton, depicted in Figure 1,
which recognizes the set of strings which are at most at distance k to P . This
Levenshtein automaton is a Nondeterministic Finite Automaton (NFA). A run
can be simulated using dynamic programming or bit parallelism [1, 3]. However,
it is of little help to count the number of accepted strings, because distinct paths
in this NFA can recognize the same string. Another possibility is to transform
the Levenshtein automaton into an equivalent Deterministic Finite Automaton
(DFA) [8, 7]. This is a tedious task, that should be performed for each target
string P .

In [4, 5], a universal Levenshtein automaton was introduced. The term univer-
sal conveys its one-time construction and independency of the two input strings.
Thus it can be applied to any pair of strings P and V of arbitrary length over any
arbitrary alphabet Σ. This new automaton is based upon insightful observations
of the nondeterministic Levenshtein automaton for a fixed word, and extends
the work done for the determinization algorithm described by the same authors
in [7].

The remainder of this section is devoted to a thorough presentation of the
Universal Levenshtein Automaton. First, in Section 2.2, we explain how to convert
the two input strings, P and V , into a single string that contains the required
information to determine their distance. Then, in Subsections 2.3 and 2.4, we
explain how to construct the Universal Levenshtein Automaton.

Notation: For a word V ∈ Σ∗, |V | is the length of this word, and |V |Σ is the
number of distinct symbols of Σ present in V . For each positions i, j in V
(1 ≤ i ≤ |V |), Vi is the ith letter of V and V [i..j] is the subtring of V starting at
position i and ending at position j. ε denotes the empty string.

2.2 Bit vector representation

Let P and V be the two strings. In the two-dimensional dynamic programming
table of the Wagner-Fischer algorithm, all edit scripts with at most k errors have

The Neighbourhood of a Word for the Levenshtein Distance 3

S

S

S A

A

A L

L

L A

A D

D

D

A

ΣΣ

Σ

Σ Σ

Σ Σ

Σ Σ

Σ ΣΣ

Σ
, ε

Σ
, ε

Σ
, ε

Σ
, ε

Σ
, ε

Σ
, ε

Σ
, ε

Σ
, ε

Σ
, ε

Σ
, ε

0#0 1#0 2#0 3#0

0#1

0#2

4#0

1#2 2#2 3#2 4#2 5#2

1#1 2#1 3#1 4#1 5#1

5#0

Fig. 1. Levenshtein automaton for the word SALAD. In general, this automaton has
m+1 columns and k+1 levels. The i#x notation for each state corresponds to i symbols
read in the pattern and x errors recorded. Horizontal transitions represent identities,
vertical transitions represent insertions, and the two types of diagonal transitions
represent substitutions (Σ) and deletions (ε), respectively.

a path that stays around the diagonal. The width of this diagonal is 2k + 1. To
compute the values in this portion of the table, it is sufficient to know which
coordinates (i, j) of the cells are such that Pi = Vj . This information captures
the similarity between the two strings P and V . We show an example in Figure 2
(left), where grey cells represent coordinates such that Pi = Vj , and white cells
represent other coordinates. At this point, one can forget the two input words, P
and V .

The idea of the Universal Levenshtein Automaton is to work directly on
these configurations of white and grey cells. For this, each horizontal line of the
diagonal is represented by a bit vector of length 2k + 1: 0 for white cells, and 1
for grey cells. These bit vectors will serve as the new alphabet, rather than Σ.
This encoding captures the local structural properties of the input words, and
guarantees alphabet independence.

−2 0 1 2−1

00000

00100

00110

10010

00010

S

A

L

A

D

B A L L A D

L

A

D

A

S

Fig. 2. Bit vector representation for the string SALAD with respect to BALLAD

Definition 1. Let P ∈ Σ∗ and let s ∈ Σ. The characteristic vector χ(s, P) is
the bit vector of length |P | such that the ith bit is 1 if s = Pi, and 0 otherwise.

4 H. Touzet

Definition 2. Let P ∈ Σm, V ∈ Σn such that n ≤ m+k. Let P ′ = kP2k and
V ′ = V $m−n+k, where $ is a new symbol not present in Σ. The k-encoding of V
with respect to P is the sequence of m+ k bit vectors of length 2k + 1 such that
the jth element is the characteristic vector χ(V ′j , P

′[j − k..j + k]).

The new symbol $ is a sentinel character that serves two purposes. It is added
to the prefix and to the suffix of P to standardize the length of bit vectors.
Additionnaly, it is added to the suffix of V to deal with edit scripts that end
with one or several deletions of symbols of P . These operations will be treated
as substitutions with $. Note that the k-encoding of V with respect to P is not
defined when the length of V exceeds the length of P by more than k characters.
Indeed, there is no point in asking Lev(P, V) ≤ k in this case.

Example 3. 2-encodings with respect to the pattern BALLAD.

B A L L A D

S A L A D 00000 00100 00110 10010 00010 00011 00111 01111

B A L D 00100 00100 00110 00001 00001 00011 00111 01111

B A L L 00100 00100 00110 00110 00001 00011 00111 01111

B A L L A D S 00100 00100 00110 01100 00100 00100 00000 01111

Finally, we define Lev(P, k) as the set of bit vector sequences u in ({0, 1}2k+1)∗

such that there exists V in Lev(P, k) whose k-encoding wrt P is u.

Remark 4. In [4], the authors use a different encoding. They have bit vectors of
length 2k+ 2 bits, instead of 2k+ 1. The last bit is used to identify the transition
between non-accepting and accepting states. Here, we get rid of this additional
bit by adding $ symbols to the suffix of V . In Subsection 2.4, it will allow us to
obtain a smaller automaton.

2.3 Construction of the Nondeterministic Universal Levenshtein
Automaton

In [4], the authors directly build the Deterministic Universal Levenshtein Automa-
ton from the Levenshtein automaton for a fixed word. They consider a symbolic
triangular area of a state to simulate multiple active states. Here we take a
different approach, and introduce a Nondeterministic Universal Levenshtein
Automaton. We find this intermediate step useful to facilitate understanding.
Moreover it allows us to give an effective algorithm to build the Deterministic
Universal Levenshtein Automaton, which is not so easy to infer from [4]1.

Let us come back to the table in Figure 2. An edit script between P and
V can be seen as a path in the white and grey grid. The portions of the path
that stay in the same lane, correspond to a series of identity and substitution
operations. In this context, traversing a white cell costs one error. Everytime you
change lanes, you have to pay either for an insertion (moving to the left) or a

1 The authors write: ”We describe only the basic idea.”

The Neighbourhood of a Word for the Levenshtein Distance 5

deletion (moving to the right). To capture this idea, we introduce states of the
form (x, y), meaning ”I am in the lane y, and have made x errors so far”.

We now examine which are the outgoing transitions for the state (x, y). If we
prefer not to have ε-transitions, the automaton should read a bit vector from
its input sequence at each time step. So each transition should consume exactly
one symbol v of V . In a first approach, an edit script can be decomposed into
a series of one the two following basic events: an insertion of v, or a series of `
deletions in P (0 ≤ ` ≤ k − x), followed by either a substitution or an identity
with v. In this decomposition, we make the usual hypothesis that a deletion is
not followed by an insertion. To reduce the nondeterminism, we add another
local condition: a deletion is not followed by a substitution. Indeed, it is always
possible to intervert the two operations, and to apply the substitution before the
deletion. Doing so, we obtain three types of edit events.

– ins: insertion of v,
– sub: substitution of v,
– ` del+id: ` deletions in P (0 ≤ ` ≤ k), followed by an identity with v.

ins makes the automaton transits from (x, y) to (x + 1, y − 1), sub from (x, y)
to (x+ 1, y) and ` del+id from (x, y) to (x+ `, y + `). Figure 3 shows all these
transitions.

−01−
−0−−0−

−001−

2 del+id

3 del+id

0 del+id

−0001−

−1−

1 del+idsub

x, y

x + 1,
y

x + 2,

y − 1

x + 3,

y + 3

y + 2

x + 1,

ins

y + 1
x + 1,

Fig. 3. Outgoing transitions for the state (x, y), k = 3. For each bit vector, the bit in
position k + y + 1 corresponding to the lane y is framed, and − is used to denote any
sequence of bits.

We are now ready to formally define NULA(k), the Nondeterministic Universal
Levenshtein Automaton for k errors.

Definition 5. Let k be a positive number. The Nondeterministic Universal Lev-
enshtein Automaton for k, denoted NULA(k), is the NFA represented as follows.

6 H. Touzet

– the input alphabet is {0, 1}2k+1,
– the set of states Qk is {(x, y) ∈ IN× ZZ; 0 ≤ x ≤ k,−x ≤ y ≤ x},
– the transition function ∆k : Qk × {0, 1}2k+1 → P (Qk) is constituted of three

types of transitions.

insertion transitions: (x+ 1, y − 1) ∈ ∆k((x, y), u) for all states (x, y) ∈ Qk
such that x < k and all u ∈ {0, 1}k+y0{0, 1}k−y

substitution transitions: (x+ 1, y) ∈ ∆k((x, y), u) for all states (x, y) ∈ Qk,
such that x < k and all u ∈ {0, 1}k+y0{0, 1}k−y

deletion+identity transitions: (x + `, y + `) ∈ ∆k((x, y), u) for all states
(x, y) ∈ Qk, all ` such that 0 ≤ ` ≤ k−x and all u ∈ {0, 1}k+y0`1{0, 1}k−y−`

– the start state is (0, 0),
– all states are accepting.

Figure 4 shows NULA(2). The automaton is very regular and easy to construct.
The reader can check that all 2-encodings of Example 3 are accepted. In general,
NULA(k) can be seen as an extension of NULA(k − 1): just add 2k + 1 new
states of the form (k, y) and incoming transitions. Thus NULA(k) has (k + 1)2

states.

◦1◦◦◦1◦◦◦◦ ◦◦◦◦1

◦◦001◦◦0◦◦

◦◦01◦
◦◦◦0◦◦◦0◦◦

◦◦01◦

◦◦1◦◦

◦1◦◦◦ ◦◦1◦◦ ◦◦◦1◦

◦◦◦1◦

◦01◦◦
◦0◦◦◦

◦0◦◦◦ ◦◦0◦◦

◦◦0◦◦

◦◦◦0◦

1,0

0,0

2,-2 2,-1 2,0 2,2

1,-1

2,1

◦◦◦01

1,1

◦◦1◦◦

Fig. 4. NULA(2), the Nondeterministic Universal Levenshtein Automaton for k = 2
errors. All states on the same horizontal level carry the same number of errors x, and
all states in same same column correspond to the same phase y in the pattern. Each
looping arrow is an identity transition, each vertical arrow a substitution transition,
each north-east arrow a deletion transition, and each north-west arrow an insertion
transition. For the sake of readability, the symbol ◦ in a bit vector is either 0 or 1. (0, 0)
is the start site and all states are accepting.

We prove that NULA(k) effectively recognizes the expected language. Recall that
the right language of a state q ∈ Qk, denoted L(q), is the set of all sequences of
bit vectors u such that NULA(k) when started in q will accept u.

The Neighbourhood of a Word for the Levenshtein Distance 7

Proposition 6. Let (x, y) ∈ Qk. Given P ∈ Σm and V ∈ Σn, we have

– when y = 0: u ∈ L(x, y) if, and only if, Lev(P, V) ≤ k − x,
– when y > 0: u ∈ L(x, y) if, and only if, Lev(P [1 + y..m], V) ≤ k − x,
– when y < 0: u ∈ L(x, y) if, and only if, Lev(P, V [1− y..n]) ≤ k − x,

where u is the k-encoding of V with respect to P .

Proof. The proof is by induction on the length of u.

Corollary 7. Let P ∈ Σ∗, V ∈ Σ∗. Lev(P, V) ≤ k, if, and only if, the k-
encoding of V with respect to P is accepted by NULA(k).

2.4 Construction of the Deterministic Universal Levenshtein
Automaton

We now explain how to build the Deterministic Universal Levenshtein Automaton
from the NFA introduced in the preceding section. The principle is to use
the standard powerset construction that converts a NFA into a DFA. In this
construction, we show that it is possible to reduce the number of states by
defining subsumed states. This notion is already present in [7], where it is defined
for the Levenshtein automaton for a fixed word. Here, we adapt it to the states
of NULA(k).

Definition 8. Let (x, y) and (x′, y′) be two states of Qk. We say that (x, y)
subsumes (x′, y′), denoted (x′, y′) @ (x, y), if x < x′ and y+x−x′ ≤ y′ ≤ y+x′−x.

It is clear from the definition that the relation @ is a well-founded partial order.

Proposition 9. Let q ∈ Qk, q′ ∈ Qk, such that q′ @ q. Then L(q′) ⊆ L(q).

Proof. Consequence of Proposition 6. ut

This proposition implies that all subsumed states can be removed from a subset
of Qk without modifying its right language. In other words, for any subset Q′

of Qk, Q′ and Reduced(Q′) cannot be distinguished, where Reduced(Q′) is
defined as the largest subset of Q′ such that no two elements of Reduced(Q′) are
subsumed. It allows us to prune the set of states considered during the construction
of DULA(k). Figure 1 gives the corresponding algorithm and Definition 10 the
formal definition of DULA(k).

Definition 10. Let k be a positive number. The Deterministic Universal Leven-
shtein Automaton for k, denoted DULA(k), is the DFA represented as follows.

– the input alphabet is {0, 1}2k+1,
– the set of states is the set of reduced subsets of Qk,
– the transition function δ is given by Algorithm of Figure 1,
– the start site is {(0, 0)},
– all states are accepting.

8 H. Touzet

Add {(0, 0)} to DULA(k) as an unmarked state;
while DULA(k) contains an unmarked state do

Let T be that unmarked state;
Mark T ;

for each bit vector u ∈ {0, 1}2k+1 do
S = {q′ ∈ Qk; ∃q ∈ T q′ ∈ ∆(q, u)};
S′ = Reduced(S);
Define δ(T, u) = S′;
if S′ is not in DULA(k) already then

Add S′ to DULA(k) as an unmarked state;
end

end

end

Algorithm 1: Construction of DULA(k) from NULA(k)

Figure 5 shows DULA(1), that has 8 states. DULA(2), the automaton obtained
from NULA(2) visible on Figure 4, has 50 states, and is not represented here.
For each value of k, the number of states of DULA(k) is computed with R(k).

Rk(x, y) =
∑

(x′,y′)∈Qk,y<y′,(x,y)6@(x′,y′),(x′,y′) 6@(x,y)Rk(x′, y′)

R(k) =
∑

(x,y)∈Qk
Rk(x, y)

Rk(x, y) is the number of reduced subsets of Qk such that the state (x, y) is the
element with the smallest y in the subset. The total number of reduced subsets
for Qk, R(k) is obtained by summing over all possible states of Qk. For k ranging
from 1 to 10, R equals 8, 50, 322, 2187, 15510, 113633, 853466, 6536381, 50852018,
400763222. We conjecture that R(k) is in O(7k).

◦11

100

11◦

01
1

101

110

010

◦00

111◦1◦ 1◦1 ◦1◦

◦◦1

1◦◦

◦01

◦10

10◦

1◦0

0◦
1

01
◦

◦01

00
1

1

5

6

74

3

2

0

0 no error (0,0)

1 sub ins del
(1,-1) (1,0) (1,1)

2 sub del (1,0) (1,1)

3 ins del (1,-1) (1,1)

4 sub ins (1,-1) (1,0)

5 del (1,1)

6 sub (1,0)

7 ins (-1,1)

Fig. 5. DULA(1), Deterministic Universal Levenshtein Automaton for k = 1. It has 8
states, numbered from 0 to 7, that are all accepting. In the table, we report the subset
of Q1 corresponding to each state, as well as the semantics of the state.

The Neighbourhood of a Word for the Levenshtein Distance 9

3 Application to the Neighbourhood Counting Problem

We now turn to the problem of computing the cardinality of Lev(P, k). This
value depends on the length of the word, the input alphabet and the internal
structure of the word. Consider for example the three-letter alphabet {A,B,L}.
Lev(AAA,1) = { AAA, AA, AAB, AAL, ABA, ALA, BAA, LAA, AAAA, BAAA,

LAAA, ABAA, ALAA, AABA, AALA, AAAB, AAAL}
Lev(LAB,1) = { LAB, LA, AB, LB, AAB, BAB, LBB, LLB, LAA, LAL, ALAB,

BLAB, LLAB, LAAB, LBAB, LALB, LABA, LABB, LABL}
In the first case, the neighbourhood has 17 elements, and in the latter case 19
elements. The combinatorics is even more complex for greater values of k.

We show how to solve this problem efficiently with the help of DULA(k).
Indeed, it is enough to intersect DULA(k) with the set of all sequences of bit
vectors that are a valid encoding for some string V with respect to P . We
designate by Encod(P, k) this latter language.

3.1 A DFA for Encod(P, k)

Definition 11. Let P be a string of Σ∗. Encod(P, k) is the set
{u ∈ ({0, 1}2k+1)∗;∃V ∈ Σ∗ s.t. u is the k-encoding of V wrt to P}.
From Definition 2, we know that the elements of Encod(P, k) are strings of k+m
bit vectors.

Definition 12. Let V ∈ (Σ ∪ {$})∗. Define B(V) = {χ(s, V); s ∈ Σ}.
B(V) is the set of all bit vectors u of length |V | that satisfies the three following
properties.
– If Vi = Vj , then ui = uj .
– If ui = 1 and uj = 1, then Vi = Vj .
– If Vi = $, then ui = 0.

Example 13. B(ABL)={000, 001, 010, 100}, B(ABB)={000, 011, 100},
B(AA$)= {000, 110}.
Encod(P, k) is recognized by the following DFA.

– the input alphabet is ({0, 1}2k+1)∗,
– the set of states is {0, . . . ,m+ k} ∪ {$m−k+1, . . . , $m+k},
– the transition function γ is defined by

γ(i− 1, u)=i, 1 ≤ i ≤ m+ k, u ∈ B(P ′[i− k..i+ k])
γ(i− 1, 0k+1+m−i1i+k−m)=$i, m− k + 1 ≤ i ≤ m+ k
γ($i−1, 0

k+1+m−i1i+k−m)=$i, m− k + 1 < i ≤ m+ k
– the start state is 0,
– there are two accepting states: m+ k and $m+k.

Each state i recognizes the encodings of strings of Σ+ of length i, and each state
$i recognizes the encodings of strings of Σ+$+ of length i. The transition from
i− 1 to $i corresponds to the first occurrence of $ in the string. Figure 6 shows
the DFAs obtained for AAA, LAB and k = 1. We also give the DFA for BALLAD

and k = 2, for which several encodings were provided in Example 3.

10 H. Touzet

$4011

000
110

000
100

000
111

000
011

AAA
001 011

0 1 2 3 4

$3 $4011

000
001
010

000
001
010
100

000
010

000
100

100

LAB
001 011

0 1 2 3 4

$3

$8

00001
01100
10010

00000
00110
01001
10000

00000
00011
00100
01000

00000
00001
00010
00100

00000
00010
00100
11000

00000
00100
01000
10000

00000
01000
10000

10000
00000

00011

00011

00001

00111

00111

01111

01111

BALLAD

0 1 2 3 4 5 6 7 8

$5 $6 $7

00000

Fig. 6. DFAs for Encod(AAA, 1), Encod(LAB, 1) and Encod(BALLAD, 2)

3.2 Back to the counting problem

Considering that Lev(P, k) = DULA(k)∩Encod(P, k), we will exploit the product
automaton of DULA(k) and Encod(P, k). This product automaton needs not to
be constructed explicitely. It will serve us to design the recurrence formula to
compute the size of Lev(P, k).

From the product automaton, we can deduce what is the size of the language
recognized by Lev(P, k). This is simply the total number of distinct paths leading
from the start state to an accepting state. What we still have to do is to
bring the problem back to the initial alphabet Σ. For that, we need a function
α : {0, 1}2k+1 ×Σ2k+1 → IN that computes the number of symbols s of Σ such
that χ(s, V) = u, for each bit vector u and each word V over Σ.

α(u, V) = 1, whenever at least one bit of u is 1
α(u, V) = |Σ| − |V |Σ otherwise (in this case, u = 00 · · · 00)

α is used to assign a multiplicity to each transition of the product automaton.
In this context, the total number of underlying strings of Σ∗ is the sum of all
multiplicities of all distinct paths. Define S as follows.

S : Reduced(Qk)× ({0, . . . ,m+ k} ∪ {$m−k+1, . . . , $m+k})→ IN

S(0, 0) = 1

S(q′, i+ 1) =
∑
u,q,q′=δk(q,u)

α(u, P ′[i− k..i+ k])× S(q, i), 0 ≤ i < m+ k

S(q′, $m−k) =
∑
u,q,q′=δk(q,u)

S(q,m− k − 1)

S(q′, $i+1) =
∑
u,q,q′=δk(q,u)

S(q, i− 1) + S(q, $i), m− k ≤ i < m+ k

m is the length of P . S(q, i) is the number of distinct paths leading from the
start site to the state (q, i) in the product automaton. The final result is obtained
by summing over the accepting states.

The Neighbourhood of a Word for the Levenshtein Distance 11

Proposition 14.

|Lev(P, k)| =
∑

q∈Reduced(Qk)

S(q,m+ k) + S(q, $m+k)

A

1

1

1

1,$3

0,$4

AAA

1 1

2,$4

0,1

64,34,1 2 4 4,4 3

6,$4

1

6

111

110A111

011 $

$

011 110A
0,0

67,4

0,2

4,2

1 0,3

000
BL

001
$

000
BL

000
BL

BL

$

100 A

011

100A

011

000

A A

011

2

LAB

100 100
7,2

010

001

4

010

0,0 1 0,3 1

7,3

5,$3

7,4 6

6

001

1

14,2

1

26,2

1,2

6,$4

010 L 010A 010 011

$

B

AL

A

100
L

1,$3 1

B

100A

$

L

011

011

100

$

B

4,3 2

2

6,3 4

5,2

14,1

1,1 1

$

$

B

001A

000 B

001B 001

000 4,4 3

0,$4 10,1 1 10,2

25,$4

12,$4
$

100
000 LA

B

Fig. 7. Computation of S for AAA and LAB, Σ = {A,B, L} and k = 1. For each state
(q, i) or (q, $i) (left part of the box), we indicate the value of S (right part of the box).
The labels on the transitions are the bit vectors. For each bit vector, we also mention
the corresponding symbol(s) of Σ. The number of such symbols is α. The result is the
sum of S over the last column.

Figure 7 shows the developments of S for Lev(AAA, 1) and Lev(LAB, 1), which
were obtained from DULA(1) in Figure 5 on the one hand, and Encod(AAA,1),
Encod(LAB,1) in Figure 6 on the other hand. S can be implemented by dynamic
programming with a table of size R(k)× (m+ 3k). Each element of the table is
computed in constant time. So the algorithm has a time complexity of O(m). In
practice, for each possible word structure (e.g. AAA, AAB, ABL), the associated
transitions in DULA(k) can be extracted during a preprocessing step. As for the
space complexity, this is not necessary to store the full dynamic table. At any
instant, the algorithm only requires elements from the current row (i) and the
previous row (i− 1). Thus the space complexity is in O(1).

12 H. Touzet

Remark 15. In Section 2, we have put a lot of efforts into defining a universal
automaton that is able to process any pair of strings. In this Section, we have
specialized this automaton for a fixed pattern P and have obtained a DFA for
Lev(P, k). Alternatively, we could have directly used the DFA presented in [7].
The construction of this DFA is also in linear time, for a fixed value of k. How-
ever it requires a complex table-based preprocessing, that is dependent on each
pattern. In our approach, the computational burden is reported to the design
of DULA(k), which is performed only once. This is a new route to recover the
result established in [7].

4 Conclusion

We have shown how to count the number of strings present in the neighbourhood
of some fixed reference word P . The algorithm produces a product automaton,
which could also be used to generate the set of all strings in the neighbourhood
of P , or to sample it. This generic approach could extend to other target regular
languages, instead of the singleton language {P}. The downside of the method,
however, is that it requires the computation of the DFA DULA(k), whose size
increases exponentially with the number of errors k. It exceeds one million
states with k = 8. Another route is to construct the product automaton with
NULA(k), instead of DULA(k), and then determinize the resulting automaton
with an optimization similar to Proposition 9. This could lead to a lower memory
consumption for regular languages that do not need all transitions of DULA(k).

References

1. Baeza-yates, R., Navarro, G.: A faster algorithm for approximate string matching.
Algorithmica pp. 1–23 (1996)

2. Becerra-Bonache, L., de la Higuera, C., Janodet, J.C., Tantini, F.: Learning balls of
strings from edit corrections. J. Mach. Learn. Res. 9, 1841–1870 (2008)

3. Holub, J., Melichar, B.: Implementation of nondeterministic finite automata for
approximate pattern matching. In: Automata Implementation. Lecture Notes in
Computer Science, vol. 1660, pp. 92–99. Springer Berlin Heidelberg (1999)

4. Mihov, S., Schulz, K.: Fast approximate search in large dictionaries. Computational
Linguistics 30(4), 451–477 (2004)

5. Mitankin, P.: Universal Levenshtein automata. Building and properties. Master’s
thesis, University of Sofia (2005)

6. Myers, G.: What’s behind blast. In: Chauve, C., El-Mabrouk, N., Tannier, E. (eds.)
Models and Algorithms for Genome Evolution, Computational Biology, vol. 19, pp.
3–15. Springer London (2013)

7. Schulz, K., Mihov, S.: Fast string correction with levenshtein automata. International
Journal of Document Analysis and Recognition 5, 67–85 (2002)

8. Ukkonen, E.: Finding approximate patterns in strings. Journal of Algorithms 6(1),
132–137 (1985)

9. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1),
168–173 (1974)

