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Kunal Dutta ∗ † Arijit Ghosh ∗ ‡ Nabil H. Mustafa §
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Abstract

The Khatri-Šidák lemma says that for any Gaussian measure µ ∈ Rn, given a convex set K
and a slab L, both symmetric about the origin, one has µ(K ∩ L) ≥ µ(K) · µ(L). We state and
prove a new asymmetric version of the Khatri-Šidák lemma when K is a symmetric convex body
and L is a slab (not necessarily symmetric about the barycenter of K). Our result also extends
that of Szarek and Werner (1999), in a special case.

Keywords. Convex bodies, Gaussian measure, correlation inequalities, logarithmically con-
cave functions

1 Introduction

Let Nn(a, σ2), a ∈ Rn to indicate the n-dimensional Gaussian distribution centered at a, with
variance σ2. Let γn denote the corresponding measure, i.e. the measure on Rn having density

1
(2π)n/2 exp

(
− ||x||

2

2

)
. The Gaussian measure of a Borel set B ⊂ Rn is the probability that a vector

in Rn drawn according to the distribution Nn(0, 1), lies inside B.
A central problem in convex geometry and probability theory, which “has been the subject of

intense efforts of many probabilists over the last thirty years” [Lat02] is the Gaussian correlation
inequality (GCI), which states that the Gaussian measures of any two symmetric, convex bodies in
Rn are positively correlated, that is, given two symmetric, convex sets K,L ⊂ Rn,

γn(K ∩ L) ≥ γn(K) · γn(L). (1)

This was first proposed by Das Gupta et al. [DGEO+72] in 1972, though special cases had been asked
as open problems as early as 1955 (see e.g. [DGEO+72], [SSZ98], for more details and references).
After many partial results by several authors, e.g. [Pit77, Bor81, SSZ98, Har99, Sha03], in a very
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recent breakthrough [Roy14], Royen has proved the Gaussian correlation inequality (see also Latala
and Matlak’s recent draft [LM15] for a discussion on Royen’s proof [Roy14]).

An important special case of the inequality, when one of the bodies is a symmetric slab (i.e.,
the set {x ∈ Rn : |〈x, û〉| ≤ b} for some unit vector û ∈ Rn and b ∈ R+), was proved independently
by Khatri [Kha67], and Šidák [Sid68]:

Lemma 1 (Khatri-Šidák (1967-68)) Let K ⊂ Rn be a symmetric convex body, and L ⊂ Rn be
a symmetric slab. Then

γn(K ∩ L) ≥ γn(K) · γn(L).

A related, but somewhat different extension of the Khatri-Šidák lemma was proved by Szarek
and Werner [SW99], who proved that positive correlation holds between a convex (not necessarily
symmetric) set K and a slab L, as long as the barycenters (with respect to the Gaussian density)
of K and L coincide, i.e. they have the same projection on the normal vector û of L.

The Khatri-Šidák lemma, in particular, has proved to be extremely useful in a number of
applications in probability and statistics (where it originally arose), as well as convex geometry -
where it gives a lower bound on the Gaussian measure of symmetric convex sets (since any such
set is the intersection of symmetric slabs), as well as small ball probabilities. A recent algorithmic
application was given by Rothvoss [Rot14], who used the lemma to obtain an efficient algorithm for
low-discrepancy colorings for finite set-systems.

Our contribution

In this paper we give a new asymmetric correlation inequality for the Gaussian measure. To do
this, we look at the relation of Brownian motion inside a convex set with the Gaussian measure of
that set, in a non-symmetric setting. There are several results (see e.g. [Mar]), which show that
the expected time for a Brownian motion starting at x0 to exit from a set (for the first time) gives
“some sort of measure of that set” [Mar]. Our result is another step along this direction.

Specifically, by the Bachelier formula, the spatial distribution of a Brownian motion starting
at x0, at time t, is the normal distribution Nn(x0, t). Suppose now that we want to consider
the Gaussian measure from a point x0 other than the origin, then by the previous intuition, this
corresponds to a Brownian motion with starting point x0, and the variance of the Gaussian measure
should correspond to the exit time of the corresponding Brownian motion. Applying this to the
context of the Gaussian correlation problem, suggests the formulation of Theorem 2.

Theorem 2 Let K be a convex body, symmetric about x0 ∈ Rn. Let L be a slab symmetric about
the origin, i.e.

L := {x ∈ Rn : |〈x, û〉| ≤ b},

where b ∈ R+. If | 〈x0, û〉 |< b, then

γ′(K ∩ L) ≥ γ′(K)γ′(L),

where γ′ is the Gaussian measure centered at x0 with variance

σ2 = 1− 〈x0, û〉
2

b2
,

and covariance matrix σ2I.
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Note that for small enough variance, one could have positive correlation for any class of convex
bodies containing the origin. The contribution of the above theorem is therefore, determining the
unique variance (with the help of the intuition discussed previously) which makes positive correlation
hold for the case of symmetric convex bodies and asymmetric slabs.

Theorem 2 also extends a special case of the result of Szarek and Werner [SW99]. In the
Szarek-Werner theorem, the barycenters of the body K and the slab L (with respect to γ) need
to coincide for positive correlation to hold, i.e. the hyperplane containing the barycenter of L and
perpendicular to its normal vector û, should contain the barycenter of K for positive correlation
to hold. However in our case, the barycenter of L lies on 〈x, û〉 = 0, whereas K’s barycenter lies
on the hyperplane 〈x, û〉 = 〈x0, û〉, where the RHS could be non-zero in general. Under the special
case that K is symmetric about x0, Theorem 2 shows that positive correlation is possible even in
this case, provided we decrease the variance, i.e. make the Gaussian more concentrated. The factor
by which the variance decreases, depends only on the distance between the barycenters of L and
K, projected on the the normal to L. Thus, Theorem 2 also provides a stability result for Gaussian
measure, showing how the Gaussian measure (with unit variance) decays as one of the convex bodies
is translated along an axis.

We provide some preliminary background in Section 2. In Section 3, we give the proof of
Theorem 2. We end with some remarks and open questions.

2 Preliminaries

A function f : Rn → R is logarithmically concave, or log-concave, if its domain is a convex set, and
for all 0 ≤ λ ≤ 1, and all x, y ∈ Rn, it satisfies the inequality

f(λx+ (1− λ)y) ≥ (f(x))λ(f(y))1−λ.

A deep result for log-concave measures was proved by Prékopa and Leindler:

Theorem 3 (Prékopa-Leindler [Pre73]) Let f : Rn × Rm → R be log-concave on Rn+m. Then
the function

h(x) =

∫
Rm

f(x, y)dy

is log-concave on Rn.

The following proposition follows easily from the definitions of log-concavity and symmetry.

Proposition 4 Let h : Rm → R be symmetric and log-concave on Rm. Then the level set

Ih(s) := {x ∈ Rm : h(x) ≥ s},

where s ∈ R+, is a symmetric convex set in Rm.

3 Gaussian correlation: asymmetric case

Our approach is based on an approach described in e.g. Giannopoulos [Gia97] and Schechtmann-
Schlumprecht-Zinn [SSZ98] for proving the Khatri-Šidák lemma. The idea there is to use the
Prékopa-Leindler theorem to go from the n-dimensional to the one-dimensional case, where the
Khatri-Šidák result follows trivially. In our case, the one-dimensional situation is not obvious, and
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we need to prove positive correlation. The n-dimensional case then follows via the Prékopa-Leindler
theorem.

Before describing the proof of Theorem 2, we shall need a few preparatory lemmas. In the
following, sgn(.) 1 is the sign function.

Proposition 5 Let f : R → R be a k-differentiable function, and a, b ∈ R, be such that the first
(k − 1)-order derivatives of f vanish at x = b, but the k-th order derivative does not, that is,

f0(b) = f1(b) = . . . = fk−1(b) = 0 6= fk(b), where fi(c) = dif(x)
dxi
|x=c; f(x) := f0(x). Then,

(i) if a < b, and if for all x, y ∈ (a, b] we have sgn (fk(x)) = sgn (fk(y)), then for all x ∈ (a, b),
for i = 0, 1, . . . , k:

sgn(fi(x)) = (−1)k−isgn(fk(b)).

(ii) if a > b, and if for all x, y ∈ [b, a) we have sgn (fk(x)) = sgn (fk(y)), then for all x ∈ [b, a),
i = 0, . . . , k.

sgn(fi(x)) = fk(b)

Proof For a < b, it is easy to see that for i ∈ {0, 1, . . . , k − 1}, if for all x, y ∈ (a, b) we have
sgn(fi+1(x)) = sgn(fi+1(y)), then

sgn(fi(x)) = sgn(fi(y)), ∀x, y ∈ (a, b), and

sgn(fi(x)) = (−1)sgn(fi+1(x)), ∀x ∈ (a, b),

since fi(x) must be a monotone function and fi(b) = 0. Since fk(x) does not change sign in (a, b],
the previous statement indeed applies for i = k − 1. By reverse induction on i, the first part of the
proposition holds.

For a > b, let i = k−1. If sgn(fk(b)) = 1, then since fk−1(b) = 0 and fk(x) > 0 for all x ∈ [b, a),
we get fk−1(x) > fk−1(b) = 0, for all x ∈ (b, a), i.e. sgn(fk−1(x)) = sgn(fk(b)). The case is similar
when sgn(fk(b)) = −1. Again by reverse induction on i, the second statement of the proposition
now follows for all i = 0, 1, . . . , k − 1. �

Next, let f : [0, 1)→ [0, 1) be given by

f(z) :=
1√
2π

∫ √
1−z
1+z

−
√

1+z
1−z

exp (−y2/2)dy, (2)

and define

f1(z) :=
df(z)

dz
(3)

Proposition 6 f1(z) ≤ 0, for all z ∈ [0, 1).

1The sign function sgn : R \ {0} → {−1, +1} is given by sgn(x) := x
|x| .
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Proof Consider the derivative of f with respect to z:

f1(z) = − 1√
2π(1− z2)

exp
(
− 1−z

2(1+z)

)
1 + z

−
exp

(
− 1+z

2(1−z)

)
1− z

 .

At z = 0, f1(z) = 0. We shall show, that as z goes from zero to 1, f1(z) remains non-positive. To
see this, apply the substitution y = 1−z

1+z . Then z = 1−y
1+y , and when z ∈ [0, 1), y ∈ (0, 1]. We get

f1(z) =
−(1 + y)

2
√

2πy

[
(1 + y)

2 exp (y/2)
− (1 + y)

2y · exp (1/(2y))

]
=
−(1 + y)2

4
√

2πy

[
1

exp (y/2)
− 1

y · exp (1/(2y))

]
To show that the above expression is non-positive when y ∈ (0, 1], it suffices to compare the
denominators of the terms in the expression inside the square brackets. In particular, let

g(y) = y · exp

(
1

2y

)
− exp

(y
2

)
,

then we want to show that for y ∈ (0, 1], g(y) ≥ 0. Let us compute the derivatives of g:

g(y) = y · exp

(
1

2y

)
− exp

(y
2

)
g1(y) =

(
1− 1

2y

)
exp

(
1

2y

)
− 1

2
· exp

(y
2

)
g2(y) =

1

4y3
· exp

(
1

2y

)
− 1

4
· exp

(y
2

)
g3(y) = −

(
1

12y4
+

1

8y5

)
· exp

(
1

2y

)
− 1

8
· exp

(y
2

)
Observe that y = 1 is a point of inflection for the function g(y), i.e. g(1) = g1(1) = g2(1) = 0 6=

g3(1), and g3(y) ≤ 0 for all y ∈ (0, 1]. Therefore, g(y) satisfies the conditions for Proposition 5 to
apply, with k = 3, a = 0, b = 1 and sgn(g3(1)) = −1. Hence, the sign of g(y) is (−1)3sgn(g3(1))
for y ∈ (0, 1], i.e. g(y) ≥ 0 for y in the given range, which completes the proof. �

The following claim now discusses the one-dimensional situation:

Claim 7 Let K be a real interval, symmetric about a where |a| ∈ [0, 1), and let L := [−1, 1]. Then,

γ′(K ∩ L) ≥ γ′(K)γ′(L),

where γ′ ∼ N(a, 1− a2).

Proof If K ⊆ L or L ⊆ K, then we are done (as in [Gia97]), because then γ′(K ∩ L) =
min{γ′(K), γ′(L)} and γ′ is a probability measure. However, in general, K 6⊂ L, and L 6⊂ K.
Since K = (K ∩ L) t (K \ L), the lemma holds if and only if

γ′(K)(1− γ′(L)) ≥ γ′(K \ L).
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-1 0 1

a+ca-c aK

L

Figure 1: K, L (separated)

Let K := [a − c, a + c]. We shall analyse the case when a ≥ 0. The complementary case follows
analogously. As K = [a− c, a+ c], we have −1 ≤ a− c ≤ 1. Otherwise either K ⊆ L or L ⊆ K.

Let

P1 := γ′(K) =

∫ a+c

a−c
dγ′,

P2 := 1− γ′(L) = 1−
∫ 1

−1
dγ′,

Q := γ′(K \ L) =

∫ a+c

1
dγ′.

We want to show that for all c ≥ 0 and a ∈ [0, 1), we have P1P2 ≥ Q. Consider P1 = P1(a, c),
P2 = P2(a, c), and Q = Q(a, c). At a = 0, we have P1P2 ≥ Q, from the fact that K and L are both
intervals, and γ′ is a probability measure. As a→ 1, we have

lim
a→1

(
P1

2
−Q

)
= lim

a→1

(∫ a+c

a
dγ′ −

∫ a+c

1
dγ′
)

= 0,

while

lim
a→1

P2 = lim
a→1

(
1− γ′(L)

)
= 1−

∫ 0

−∞
dγ =

1

2
.

Let
T := T (a, c) = P1P2 −Q.

From the preceding discussion, T (0, c) ≥ 0, and further since P1, P2 and Q are bounded for all
a ∈ [0, 1), we have

lim
ε→1−

T (ε, c) =

(
lim
ε→1−

P1(ε, c)

)(
lim
ε→1−

P2(ε, c)

)
−
(

lim
ε→1−

Q(ε, c)

)
= 0.

Hence it is clear that if ∂T
∂a ≤ 0 for all a ∈ [0, 1), then we would be done. Let us therefore look at

∂T
∂a . We have,

∂T

∂a
=

∂P1

∂a
P2 + P1

∂P2

∂a
− ∂Q

∂a
. (4)

Applying the transform y = x−a
σ to the definitions of P1, P2, Q, with σ2 = 1− a2, we get:

P1 =
1√
2π

∫ c/σ

−c/σ
exp (−y2/2)dy,

P2 = 1− 1√
2π

∫ (1−a)/σ

−(1+a)/σ
exp (−y2/2)dy,

Q =
1√
2π

∫ c/σ

(1−a)/σ
exp (−y2/2)dy.
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By Proposition 6, we have that P2 increases as a goes from zero to one, since ∂P2
∂a = −f1(a). See

the definitions of f and f1 from Equations (2) and (3).
Now,

∂P1

∂a
P2 = P2 ·

2√
2π
· exp

(
−c2

2(1− a2)

)
.

ca

(1− a2)3/2
,

∂P2

∂a
P1 = −P1f1(a)

=
P1√

2π(1− a2)

[
exp

(
−(1− a)

2(1 + a)

)
· 1

(1 + a)
− exp

(
−(1 + a)

2(1− a)

)
· 1

(1− a)

]
,

∂Q

∂a
=

1√
2π(1− a2)

[
ca

(1− a2)
· exp

(
−c2

2(1− a2)

)
+ exp

(
−(1− a)

2(1 + a)

)
· 1

1 + a

]
.

Substituting in equation (4) and collecting the terms having the same exponent, we get

∂T

∂a
= (2P2 − 1) · exp

(
−c2

2(1− a2)

)
· ca√

2π(1− a2)3/2

− (1− P1) · exp

(
−(1− a)

2(1 + a)

)
· 1√

2π(1 + a)(1− a2)1/2

− P1 · exp

(
−(1 + a)

2(1− a)

)
· 1√

2π(1− a)(1− a2)1/2
.

This is the sum of three terms, each of which are negative, as follows: The second and third terms
are clearly negative. The first term is negative since

P2(a = 0) = 1− γ([−1, 1]) < 1/2,

lim
a→1−

P2 = 1/2, and

∂P2

∂a
= −f1(a) ≥ 0, ∀ a ∈ [0, 1),

and hence P2(a) ≤ 1/2 for all a ∈ [0, 1). So 2P2 − 1 ≤ 0 for a ∈ [0, 1). �

Now we can give the proof of Theorem 2.

Proof of Theorem 2 By the rotational symmetry of the Gaussian measure, we can assume û to
be the coordinate axis ê1. Let a := 〈x0, ê1〉, and σ :=

√
1− a2. Given Claim 7, the proof of the

theorem follows by using the idea described earlier. We shall assume the slab to be a unit slab, i.e.
b = 1. The general case follows by a standard scaling argument. Let h(x) be the marginal of 1K
according to the distribution γ′, along the direction û, that is,

∀x ∈ R : h(x) =
1

(2π)(n−1)/2σ

∫
y∈Rn:〈y,û〉=x

1K · exp

(
−||y − x0 − (x− a)û||22

2σ2

)
dy.

Hence,

γ′(K) =
1

σ
√

2π

∫
x∈R

h(x) exp

(
−||x− a||

2
2

2σ2

)
dx

=
1√
2π

∫
y∈R

h(a+ σy) exp

(
−||y||

2
2

2

)
dy

=

∫
R
h(a+ yσ)dγ,
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and

γ′(K ∩ L) =
1

σ
√

2π

∫ 1

−1
h(x) exp

(
−||x− a||

2
2

2σ2

)
dx

=

∫ (1−a)/σ

−(1+a)/σ
h(a+ σy)dγ.

Let
Ih(s) := {x ∈ R : h(a+ σy) ≥ s} .

By the Prékopa-Leindler inequality and the symmetry of K about x0, we have that h(a + σy)
is a log-concave function of y, symmetric about a. Therefore, for all s ≥ 0, Ih(s) is an interval,
symmetric about a. We have

γ′(K ∩ L) =

∫ ∞
s=0

γ′(Ih(s) ∩ [−1, 1])ds

≥
∫ ∞
s=0

γ′(Ih(s)) · γ′([−1, 1])ds

=

(∫ ∞
s=0

γ′(Ih(s))ds

)
· γ′([−1, 1])

=

(∫
R
h(x)dγ′

)
· γ′([−1, 1])

= γ′(K)γ′(L).

where the inequality in the second step follows by Claim 7. �

4 Conclusion

The Theorem (2) is tight, as can be seen when a → 1. It would be interesting to study other
structural properties of the Gaussian measure of convex bodies, and the relation to algorithmic
applications. We conjecture that Theorem 2 is part of a more general phenomenon:

Conjecture 8 Let K,L ∈ Rn be convex bodies, with K symmetric about the origin, and L sym-
metric about x0 ∈ Rn. Then the following holds:

γ′(K ∩ L) ≥ γ′(K)γ′(L),

where γ′ ∼ N(x0, τ), with τ being the expected exit time of a standard Brownian motion starting at
x0, from the region L.

Another interesting question that arises is, whether the symmetricity condition in our theorem can
be relaxed to get a generalization of the result of Szarek and Werner.
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