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Introduction

Let N n (a, σ 2 ), a ∈ R n to indicate the n-dimensional Gaussian distribution centered at a, with variance σ 2 . Let γ n denote the corresponding measure, i.e. the measure on R n having density

1 (2π) n/2 exp -||x|| 2 2
. The Gaussian measure of a Borel set B ⊂ R n is the probability that a vector in R n drawn according to the distribution N n (0, 1), lies inside B.

A central problem in convex geometry and probability theory, which "has been the subject of intense efforts of many probabilists over the last thirty years" [START_REF] Latala | On some inequalities for Gaussian measures[END_REF] is the Gaussian correlation inequality (GCI), which states that the Gaussian measures of any two symmetric, convex bodies in R n are positively correlated, that is, given two symmetric, convex sets K, L ⊂ R n ,

γ n (K ∩ L) ≥ γ n (K) • γ n (L).
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recent breakthrough [START_REF] Royen | A simple proof of the Gaussian correlation conjecture extended to multivariate gamma distributions[END_REF], Royen has proved the Gaussian correlation inequality (see also Latala and Matlak's recent draft [START_REF] Latala | Royen's proof of the Gaussian correlation inequality[END_REF] for a discussion on Royen's proof [START_REF] Royen | A simple proof of the Gaussian correlation conjecture extended to multivariate gamma distributions[END_REF]).

An important special case of the inequality, when one of the bodies is a symmetric slab (i.e., the set {x ∈ R n : | x, û | ≤ b} for some unit vector û ∈ R n and b ∈ R + ), was proved independently by Khatri [Kha67], and Šidák [START_REF] Sidak | On Multivariate Normal Probabilities of Rectangles: Their Dependence on Correlations[END_REF]:

Lemma 1 (Khatri-Šidák (1967-68)) Let K ⊂ R n be a symmetric convex body, and L ⊂ R n be a symmetric slab. Then

γ n (K ∩ L) ≥ γ n (K) • γ n (L).
A related, but somewhat different extension of the Khatri-Šidák lemma was proved by Szarek and Werner [START_REF] Szarek | A Nonsymmetric Correlation Inequality for Gaussian Measure[END_REF], who proved that positive correlation holds between a convex (not necessarily symmetric) set K and a slab L, as long as the barycenters (with respect to the Gaussian density) of K and L coincide, i.e. they have the same projection on the normal vector û of L.

The Khatri-Šidák lemma, in particular, has proved to be extremely useful in a number of applications in probability and statistics (where it originally arose), as well as convex geometrywhere it gives a lower bound on the Gaussian measure of symmetric convex sets (since any such set is the intersection of symmetric slabs), as well as small ball probabilities. A recent algorithmic application was given by Rothvoss [START_REF] Rothvoß | Constructive Discrepancy Minimization for Convex Sets[END_REF], who used the lemma to obtain an efficient algorithm for low-discrepancy colorings for finite set-systems.

Our contribution

In this paper we give a new asymmetric correlation inequality for the Gaussian measure. To do this, we look at the relation of Brownian motion inside a convex set with the Gaussian measure of that set, in a non-symmetric setting. There are several results (see e.g. [Mar]), which show that the expected time for a Brownian motion starting at x 0 to exit from a set (for the first time) gives "some sort of measure of that set" [Mar]. Our result is another step along this direction.

Specifically, by the Bachelier formula, the spatial distribution of a Brownian motion starting at x 0 , at time t, is the normal distribution N n (x 0 , t). Suppose now that we want to consider the Gaussian measure from a point x 0 other than the origin, then by the previous intuition, this corresponds to a Brownian motion with starting point x 0 , and the variance of the Gaussian measure should correspond to the exit time of the corresponding Brownian motion. Applying this to the context of the Gaussian correlation problem, suggests the formulation of Theorem 2.

Theorem 2 Let K be a convex body, symmetric about x 0 ∈ R n . Let L be a slab symmetric about the origin, i.e.

L := {x ∈ R n : | x, û | ≤ b}, where b ∈ R + . If | x 0 , û |< b, then γ (K ∩ L) ≥ γ (K)γ (L),
where γ is the Gaussian measure centered at x 0 with variance

σ 2 = 1 - x 0 , û 2 b 2 ,
and covariance matrix σ 2 I.

Note that for small enough variance, one could have positive correlation for any class of convex bodies containing the origin. The contribution of the above theorem is therefore, determining the unique variance (with the help of the intuition discussed previously) which makes positive correlation hold for the case of symmetric convex bodies and asymmetric slabs.

Theorem 2 also extends a special case of the result of Szarek and Werner [START_REF] Szarek | A Nonsymmetric Correlation Inequality for Gaussian Measure[END_REF]. In the Szarek-Werner theorem, the barycenters of the body K and the slab L (with respect to γ) need to coincide for positive correlation to hold, i.e. the hyperplane containing the barycenter of L and perpendicular to its normal vector û, should contain the barycenter of K for positive correlation to hold. However in our case, the barycenter of L lies on x, û = 0, whereas K's barycenter lies on the hyperplane x, û = x 0 , û , where the RHS could be non-zero in general. Under the special case that K is symmetric about x 0 , Theorem 2 shows that positive correlation is possible even in this case, provided we decrease the variance, i.e. make the Gaussian more concentrated. The factor by which the variance decreases, depends only on the distance between the barycenters of L and K, projected on the the normal to L. Thus, Theorem 2 also provides a stability result for Gaussian measure, showing how the Gaussian measure (with unit variance) decays as one of the convex bodies is translated along an axis.

We provide some preliminary background in Section 2. In Section 3, we give the proof of Theorem 2. We end with some remarks and open questions.

Preliminaries

A function f : R n → R is logarithmically concave, or log-concave, if its domain is a convex set, and for all 0 ≤ λ ≤ 1, and all x, y ∈ R n , it satisfies the inequality

f (λx + (1 -λ)y) ≥ (f (x)) λ (f (y)) 1-λ .
A deep result for log-concave measures was proved by Prékopa and Leindler:

Theorem 3 (Prékopa-Leindler [Pre73]) Let f : R n × R m → R be log-concave on R n+m . Then the function h(x) = R m f (x, y)dy is log-concave on R n .
The following proposition follows easily from the definitions of log-concavity and symmetry.

Proposition 4 Let h : R m → R be symmetric and log-concave on R m . Then the level set

I h (s) := {x ∈ R m : h(x) ≥ s}, where s ∈ R + , is a symmetric convex set in R m .

Gaussian correlation: asymmetric case

Our approach is based on an approach described in e.g. Giannopoulos [START_REF] Giannopoulos | On some vector balancing problems[END_REF] and Schechtmann-Schlumprecht-Zinn [START_REF] Schechtman | On the Gaussian measure of the intersection[END_REF] for proving the Khatri-Šidák lemma. The idea there is to use the Prékopa-Leindler theorem to go from the n-dimensional to the one-dimensional case, where the Khatri-Šidák result follows trivially. In our case, the one-dimensional situation is not obvious, and we need to prove positive correlation. The n-dimensional case then follows via the Prékopa-Leindler theorem.

Before describing the proof of Theorem 2, we shall need a few preparatory lemmas. In the following, sgn(.)1 is the sign function.

Proposition 5 Let f : R → R be a k-differentiable function, and a, b ∈ R, be such that the first (k -1)-order derivatives of f vanish at x = b, but the k-th order derivative does not, that is,

f 0 (b) = f 1 (b) = . . . = f k-1 (b) = 0 = f k (b), where f i (c) = d i f (x) dx i | x=c ; f (x) := f 0 (x).
Then, (i) if a < b, and if for all x, y ∈ (a, b] we have sgn (f k (x)) = sgn k (y)), then for all x ∈ (a, b),

for i = 0, 1, . . . , k: sgn(f i (x)) = (-1) k-i sgn(f k (b)).
(ii) if a > b, and if for all x, y ∈ [b, a) we have sgn

(f k (x)) = sgn (f k (y)), then for all x ∈ [b, a), i = 0, . . . , k. sgn(f i (x)) = f k (b)

Proof

For a < b, it is easy to see that for i ∈ {0, 1, . . . , k -1}, if for all x, y ∈ (a, b) we have sgn(f i+1 (x)) = sgn(f i+1 (y)), then

sgn(f i (x)) = sgn(f i (y)), ∀ x, y ∈ (a, b), and sgn(f i (x)) = (-1)sgn(f i+1 (x)), ∀ x ∈ (a, b),
since f i (x) must be a monotone function and f i (b) = 0. Since f k (x) does not change sign in (a, b], the previous statement indeed applies for i = k -1. By reverse induction on i, the first part of the proposition holds.

For a > b, let i = k -1. If sgn(f k (b)) = 1, then since f k-1 (b) = 0 and f k (x) > 0 for all x ∈ [b, a), we get f k-1 (x) > f k-1 (b) = 0, for all x ∈ (b, a), i.e. sgn(f k-1 (x)) = sgn(f k (b)). The case is similar when sgn(f k (b)) = -1. Again by reverse induction on i, the second statement of the proposition now follows for all i = 0, 1, . . . , k -1.

Next, let f : [0, 1) → [0, 1) be given by

f (z) := 1 √ 2π 1-z 1+z -1+z 1-z exp (-y 2 /2)dy, (2) 
and define

f 1 (z) := df (z) dz (3)
Proposition 6 f 1 (z) ≤ 0, for all z ∈ [0, 1).

Proof

Consider the derivative of f with respect to z:

f 1 (z) = - 1 2π(1 -z 2 )   exp -1-z 2(1+z) 1 + z - exp -1+z 2(1-z) 1 -z   .
At z = 0, f 1 (z) = 0. We shall show, that as z goes from zero to 1, f 1 (z) remains non-positive. To see this, apply the substitution y = 1-z 1+z . Then z = 1-y 1+y , and when z ∈ [0, 1), y ∈ (0, 1]. We get

f 1 (z) = -(1 + y) 2 √ 2πy (1 + y) 2 exp (y/2) - (1 + y) 2y • exp (1/(2y)) = -(1 + y) 2 4 √ 2πy 1 exp (y/2) - 1 y • exp (1/(2y))
To show that the above expression is non-positive when y ∈ (0, 1], it suffices to compare the denominators of the terms in the expression inside the square brackets. In particular, let

g(y) = y • exp 1 2y -exp y 2 ,
then we want to show that for y ∈ (0, 1], g(y) ≥ 0. Let us compute the derivatives of g:

g(y) = y • exp 1 2y -exp y 2 g 1 (y) = 1 - 1 2y exp 1 2y - 1 2 • exp y 2 g 2 (y) = 1 4y 3 • exp 1 2y - 1 4 • exp y 2 g 3 (y) = - 1 12y 4 + 1 8y 5 • exp 1 2y - 1 8 • exp y 2
Observe that y = 1 is a point of inflection for the function g(y), i.e. g(1) = g 1 (1) = g 2 (1) = 0 = g 3 (1), and g 3 (y) ≤ 0 for all y ∈ (0, 1]. Therefore, g(y) satisfies the conditions for Proposition 5 to apply, with k = 3, a = 0, b = 1 and sgn(g 3 (1)) = -1. Hence, the sign of g(y) is (-1) 3 sgn(g 3 (1)) for y ∈ (0, 1], i.e. g(y) ≥ 0 for y in the given range, which completes the proof.

The following claim now discusses the one-dimensional situation:

Claim 7 Let K be a real interval, symmetric about a where |a| ∈ [0, 1), and let

L := [-1, 1]. Then, γ (K ∩ L) ≥ γ (K)γ (L),
where γ ∼ N (a, 1 -a 2 ).

Proof

If K ⊆ L or L ⊆ K, then we are done (as in [START_REF] Giannopoulos | On some vector balancing problems[END_REF]), because then γ (K ∩ L) = min{γ (K), γ (L)} and γ is a probability measure. However, in general, K ⊂ L, and L ⊂ K. Since K = (K ∩ L) (K \ L), the lemma holds if and only if Let

γ (K)(1 -γ (L)) ≥ γ (K \ L).
P 1 := γ (K) = a+c a-c
dγ ,

P 2 := 1 -γ (L) = 1 - 1 -1 dγ , Q := γ (K \ L) = a+c 1 dγ .
We want to show that for all c ≥ 0 and a ∈ [0, 1), we have P 1 P 2 ≥ Q. Consider P 1 = P 1 (a, c), P 2 = P 2 (a, c), and Q = Q(a, c). At a = 0, we have P 1 P 2 ≥ Q, from the fact that K and L are both intervals, and γ is a probability measure. As a → 1, we have From the preceding discussion, T (0, c) ≥ 0, and further since P 1 , P 2 and Q are bounded for all a ∈ [0, 1), we have lim

lim a→1 P 1 2 -Q = lim
ε→1 - T (ε, c) = lim ε→1 - P 1 (ε, c) lim ε→1 - P 2 (ε, c) -lim ε→1 - Q(ε, c) = 0.
Hence it is clear that if ∂T ∂a ≤ 0 for all a ∈ [0, 1), then we would be done. Let us therefore look at ∂T ∂a . We have,

∂T ∂a = ∂P 1 ∂a P 2 + P 1 ∂P 2 ∂a - ∂Q ∂a . (4) 
Applying the transform y = x-a σ to the definitions of P 1 , P 2 , Q, with σ 2 = 1 -a 2 , we get:

P 1 = 1 √ 2π c/σ -c/σ
exp (-y 2 /2)dy,

P 2 = 1 - 1 √ 2π (1-a)/σ -(1+a)/σ exp (-y 2 /2)dy, Q = 1 √ 2π c/σ
(1-a)/σ exp (-y 2 /2)dy.

By Proposition 6, we have that P 2 increases as a goes from zero to one, since ∂P 2 ∂a = -f 1 (a). See the definitions of f and f 1 from Equations (2) and (3). Now,

∂P 1 ∂a P 2 = P 2 • 2 √ 2π • exp -c 2 2(1 -a 2 ) . ca (1 -a 2 ) 3/2 , ∂P 2 ∂a P 1 = -P 1 f 1 (a) = P 1 2π(1 -a 2 ) exp -(1 -a) 2(1 + a) • 1 (1 + a) -exp -(1 + a) 2(1 -a) • 1 (1 -a) , ∂Q ∂a = 1 2π(1 -a 2 ) ca (1 -a 2 ) • exp -c 2 2(1 -a 2 ) + exp -(1 -a) 2(1 + a) • 1 1 + a .
Substituting in equation ( 4) and collecting the terms having the same exponent, we get

∂T ∂a = (2P 2 -1) • exp -c 2 2(1 -a 2 ) • ca √ 2π(1 -a 2 ) 3/2 -(1 -P 1 ) • exp -(1 -a) 2(1 + a) • 1 √ 2π(1 + a)(1 -a 2 ) 1/2 -P 1 • exp -(1 + a) 2(1 -a) • 1 √ 2π(1 -a)(1 -a 2 ) 1/2 .
This is the sum of three terms, each of which are negative, as follows: The second and third terms are clearly negative. The first term is negative since

P 2 (a = 0) = 1 -γ([-1, 1]) < 1/2, lim a→1 - P 2 = 1/2, and 
∂P 2 ∂a = -f 1 (a) ≥ 0, ∀ a ∈ [0, 1),
and hence P 2 (a) ≤ 1/2 for all a ∈ [0, 1). So 2P 2 -1 ≤ 0 for a ∈ [0, 1). Now we can give the proof of Theorem 2.

Proof of Theorem 2 By the rotational symmetry of the Gaussian measure, we can assume û to be the coordinate axis ê1 . Let a := x 0 , ê1 , and σ := √ 1 -a 2 . Given Claim 7, the proof of the theorem follows by using the idea described earlier. We shall assume the slab to be a unit slab, i.e. b = 1. The general case follows by a standard scaling argument. Let h(x) be the marginal of 1 K according to the distribution γ , along the direction û, that is,

∀x ∈ R : h(x) = 1 (2π) (n-1)/2 σ y∈R n : y,û =x 1 K • exp - ||y -x 0 -(x -a)û|| 2 2 2σ 2 dy.
Hence, By the Prékopa-Leindler inequality and the symmetry of K about x 0 , we have that h(a + σy) is a log-concave function of y, symmetric about a. Therefore, for all s ≥ 0, I h (s) is an interval, symmetric about a. We have

γ (K) = 1 σ √ 2π x∈R h(x) exp - ||x -a|| 2 2 2σ 2 dx = 1 √ 2π y∈R h(a + σy) exp - ||y|| 2 2 2 dy = R h(a + yσ)dγ,
γ (K ∩ L) = ∞ s=0 γ (I h (s) ∩ [-1, 1])ds ≥ ∞ s=0 γ (I h (s)) • γ ([-1, 1])ds = ∞ s=0 γ (I h (s))ds • γ ([-1, 1]) = R h(x)dγ • γ ([-1, 1]) = γ (K)γ (L).
where the inequality in the second step follows by Claim 7.

Conclusion

The Theorem (2) is tight, as can be seen when a → 1. It would be interesting to study other structural properties of the Gaussian measure of convex bodies, and the relation to algorithmic applications. We conjecture that Theorem 2 is part of a more general phenomenon:

Conjecture 8 Let K, L ∈ R n be convex bodies, with K symmetric about the origin, and L symmetric about x 0 ∈ R n . Then the following holds:

γ (K ∩ L) ≥ γ (K)γ (L),
where γ ∼ N (x 0 , τ ), with τ being the expected exit time of a standard Brownian motion starting at x 0 , from the region L.

Another interesting question that arises is, whether the symmetricity condition in our theorem can be relaxed to get a generalization of the result of Szarek and Werner.
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The sign function sgn : R \ {0} → {-1, +1} is given by sgn(x) := x |x| .
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