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A Simple Proof of Optimal Epsilon Nets

Nabil H. Mustafa∗ Kunal Dutta† Arijit Ghosh‡

Abstract

Showing the existence of small-sized ε-nets has been the subject of investigation for almost 30
years, starting from the breakthrough of Haussler and Welzl (1987). Following a long line of successive
improvements, recent results have settled the question of the size of the smallest ε-nets for set systems
as a function of their so-called shallow cell complexity.

In this paper we give a short proof of this theorem in the space of a few elementary paragraphs.
This immediately implies all known cases of results on unweighted ε-nets studied for the past 28
years, starting from the result of Matousek, Seidel and Welzl (SoCG 1990) to that of Clarkson and
Varadajan (DCG 2007) to that of Varadarajan (STOC 2010) and Chan et al. (SODA 2012) for the
unweighted case, as well as the technical and intricate paper of Aronov et al. (SIAM Journal on
Computing, 2010).

We find it quite surprising that such a simple elementary approach was missed in all earlier work,
as all ingredients were already known in 1991.

1 Introduction

ε-nets are fundamental combinatorial structures that have found countless uses in approximation algo-
rithms, sub-linear time algorithms, discrete and combinatorial geometry, computational geometry, mesh-
ing, discrepancy theory, learning theory and many other areas. We refer the reader to the books [18, 23,
6, 17] for a sample of their uses.

A set system (X,R) consists of a base set of elements X together with a set R of subsets of X. Given
(X,R) and a parameter ε > 0, an ε-net for R is a set Y ⊆ X such that Y ∩R 6= ∅ for all ‘large’ R, i.e.,
for all R ∈ R with |R| ≥ ε|X|. Given (X,R) and any set Y ⊆ X, define the projection of R onto Y as
the set system:

R|Y =
{
R ∩ Y | R ∈ R

}
The VC dimension of R is the size of the largest subset Y for which R|Y = 2Y . The primal shatter
lemma of Sauer [26] and Shelah [27] states that given a set system (X,R) with VC dimension d, for any
set Y ⊆ X, we have |R|Y | = O(|Y |d).

ε-nets

The use of ε-nets was initiated by a beautiful result of Haussler and Welzl [13], who showed that there exist
small sized ε-nets for set systems as a function of their VC dimension. Together with an improvement [14],
it can be stated as follows.

Theorem A (ε-net theorem). Let (X,R) be a set system with VC dimension at most d, and ε > 0 a given
parameter. Let Y ⊆ X be a random sample constructed by picking each element of X independently with
probability cd

ε|X| log 1
ε , where c is some fixed constant. Then Y fails to be an ε-net for R with probability

at most 1/2. In particular, for any integer t, if Y is a random sample where each point is picked
independently with probability t · cd

ε|X| log 1
ε , then Y fails to be an ε-net with probability at most 1/2t.
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The key and surprising feature of this theorem is that the size of the ε-net is independent of |X| or
|R|. The usefulness of the ε-net theorem in geometry follows from the fact that in many applications,
the set systems derived from geometric configurations have bounded VC dimension. Generally such set
systems can be classified as one of two types. Let O be some family of geometric objects in Rd; e.g., the
set of all halfspaces, set of all balls and so on. Then call (X,R) a primal set system if the base elements
in X are points in Rd, and the sets in R are defined by containment by geometric objects from O; i.e.,
R ∈ R if and only if there exists an object O ∈ O with R = O ∩ X. In such a case, we say that R is
a primal set system induced by O. For example, when X is a set of points and O a set of halfspaces in
Rd, then R is the set of all subsets of X induced by halfspaces. By Radon’s theorem, it is known that
the VC dimension of R is d+ 1, and hence R has an ε-net of size O

(
d
ε log 1

ε

)
.

On the other hand, call (S,R), S ⊆ O, a dual set system if the base set S is a finite set of geometric
objects, and the sets in R are defined by points; i.e., R ∈ R if and only if there exists a point p ∈ Rd
with R = {R′ ∈ R | p ∈ R′}. In this case we say that R is the dual set system induced by S. For
example, the VC dimension of the dual set system induced by a set S of axis-parallel rectangles in the
plane is known to be 4, and so it has an ε-net of size O

(
1
ε log 1

ε

)
.

While the ε-net theorem guarantees the existence of an ε-net for many geometric set systems of
size O

(
1
ε log 1

ε

)
, the past 26 years have seen a steady series of results showing the existence of even

smaller sized nets for several systems. For the primal set system induced by halfspaces in R2, Pach and
Woeginger [24] showed the existence of ε-nets of size 2

ε − 1. This was extended to O(1/ε)-sized nets for
the primal system induced by halfspaces in R3 by Matousek et al. [19]. They also showed the existence
of O(1/ε) sized nets for the primal system induced by disks in the plane. A simpler proof was given by
Matousek [20]. Constants in the ε-nets are important, so there has been considerable work in improving
constants in the sizes of these nets [3, 16, 2].

The next substantial step was taken by Clarkson and Varadarajan [9, 8], who made the connection
of the size of ε-nets for dual set systems for a family O with the union complexity of O. The union
complexity of a family of objects O is the maximum number of faces of all dimensions that the union of
any n members of O can have; we say O has union complexity ϕ(·) if any set of n objects of O has union
complexity nϕ(n). Clarkson and Varadarajan showed that if O has union complexity ϕ(·), then the dual
set system induced by O has ε-nets of size O

(
1
εϕ( 1

ε )
)
. For the case where O is a family of pseudodisks

in the plane, Ray and Pyrga [25] showed that both the primal and the dual set systems induced by O
have ε-nets of size O(1/ε). Next, Aronov et al. [1] improved the result of Clarkson and Varadarajan to
show the existence of O

(
1
ε logϕ(1/ε)

)
sized nets for the dual set system induced by objects with union

complexity ϕ(·). They also showed that the primal set system induced by axis-parallel rectangles in the
plane has an ε-net of size O

(
1
ε log log 1

ε

)
. Independently, Varadarajan [28] showed the same result for

dual set systems for a more restricted set of objects O for which ϕ(n) = Ω(log(k) n), where k is any

constant and log(k) is the iterated log function.
All these results pointed to the fact that the VC dimension of a set system was not fine enough to

capture the subtleties of the sizes of ε-nets. It turns out that a more precise characterization is via the
shallow cell complexity of a set system. A set system (X,R) has shallow-cell complexity ϕ(·, ·) if for
any Y ⊆ X, we have that the number of subsets in R|Y of size l is O

(
|Y | · ϕ(|Y |, l)

)
. Often when the

dependency of ϕ(n, l) on l is less important, we say that (X,R) has shallow-cell complexity ϕ(·) if for
any Y ⊆ X, the number of sets in R|Y of size l is O

(
|Y | · ϕ(|Y |) · lcR

)
for some constant cR. Using the

Clarkson-Shor probabilistic technique [7], it follows that if a family of objects O have union complexity
ϕ(·), then the dual set system induced by O has shallow cell complexity ϕ(·).

Improving on an earlier result of Varadarajan [29] that stated a slightly weaker result for the specific
case of the dual set systems induced by geometric objects, Chan et al. [4] showed the following very
general result which is the current state-of-the-art (and was shown to be tight recently [15]).

Theorem B. Let (X,R) be a set system with shallow cell complexity ϕ(·), where ϕ(n) = O(nd) for
some constant d. Then there exists a randomized procedure that adds each p ∈ X to Y with probability
O
(

1
εn logϕ(1/ε)

)
, such that Y is an ε-net. In particular, there exists an ε-net of size O

(
1
ε logϕ(1/ε)

)
.

The key in the above theorem (originating in the elegant work of Varadarajan [29]) is that while the
points are added to Y probabilistically, they are not added independently. The theorem implies the same
bound for weighted ε-nets, where each point has a weight, and the goal is to minimize the total weight
of the picked net, and not simply its cardinality.
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Packing Lemma.

In 1991 Haussler [12] proved the following interesting theorem.

Theorem C (Packing lemma [12]). Let (X,P) be a set-system on n elements, and with VC-dimension
at most d. Let δ be an integer, 1 ≤ δ ≤ n, such that |∆(R,S)| ≥ δ for every R,S ∈ P, where
∆(R,S) = (R \ S) ∪ (S \ R) is the symmetric difference between R and S. Then |P| = O

(
(n/δ)d

)
.

Furthermore, this bound is tight.

Such a P, where |∆(R,S)| ≥ δ for every R,S ∈ P, is called a δ-packing. In fact, a careful examination
of the proof yields a stronger statement (this was later realized and formulated in [21]):

Theorem D. Let (X,P) be a set-system on n elements. Let d, δ be two integers such that the VC-
dimension of P is at most d, and |∆(S,R)| ≥ δ for all distinct S,R ∈ P. Then

|P| ≤ 2 · E
[∣∣P|A′

∣∣],where A′ is a random sample of size
4dn

δ
− 1.

Haussler’s proof, later simplified by Chazelle [5], is a short and stunning application of the probabilistic
method. Recently much effort has been devoted to finding generalizations of the packing lemma to set
systems satisfying shallow cell complexity conditions. After a series of partial bounds [11, 22], the
following statement, called shallow packings, has been recently established in [10]: let (X,P) be a set-
system on n elements, and let d0, d, d1, k, δ > 0 be integers. Assume the system has VC-dimension at
most d0. Further, assume that for any set Y ⊆ X the number of sets in P|Y of size at most k is at
most O(|Y |d1kd−d1). If |∆(R,S)| ≥ δ for every distinct R,S ∈ P and |S| ≤ k for all S ∈ P, then
|P| = O(nd1kd−d1/δd). Call such a P, where i) |S| ≤ k for all S ∈ P, and ii) |∆(S,R)| ≥ δ for all
distinct S,R ∈ P, a (k, δ)-packing.

Our Result

We show that the unweighted version of theorem B follows immediately from Haussler’s packing theorem
via shallow packings! Furthermore, the proof goes along the lines of the proof of the ε-net theorem [13]:

pick each point of X into a random sample R independently with probability Θ
( logϕ(1/ε)

εn

)
. There are

some ‘errors’ in the sampling but they are easily fixed:

Theorem 1. Let (X,R), |X| = n, be a set system with shallow cell complexity ϕ(·), and where ϕ(n) =
O(nd) for some constant d. Then there exists an ε-net for R of size O

(
1
ε logϕ(1/ε)

)
.

We find it quite surprising that such a simple approach was missed in all earlier work, especially as
the packing lemma of Haussler and Chazelle was already known in 1991 [5]!

In case the reader is wondering if perhaps all the ‘hard work’ is hidden in the proof of shallow packings,
we reproduce an elementary proof of a more general statement due to Mustafa [21], which shows that
shallow packings follow directly from packings (Theorem D).

Theorem E (Shallow Packing Lemma). Let (X,P = {S1, . . . , Sm}) be a set-system, and k, δ > 0 be
integers. Assume that |X| = n, the VC dimension of P is at most d, P has shallow cell complexity ϕ(·, ·),
and |∆(Si, Sj)| ≥ δ for every 1 ≤ i < j ≤ m. If |Si| ≤ k for all i, then |P| ≤ 24dn

δ · ϕ
(
4dn
δ , 12dkδ

)
.

Proof. Let A′ ⊆ X be a random sample of size 4dn
δ − 1. Let P1 = {S ∈ P s.t. |S ∩ A′| > 3 · 4dk/δ}.

Note that E[|S ∩ A′|] ≤ 4dk/δ as |S| ≤ k for all S ∈ P. By Markov’s inequality, for any S ∈ P,
Pr[S ∈ P1] = Pr[|S ∩A′| > 3 · 4dk/δ] ≤ 1/3. Thus

E[|P|A′ |] ≤ E[|P1|] +E[|(P \P1)|A′ |] ≤
∑
S∈P

Pr[S ∈ P1] + |A′| ·ϕ
(
|A′|, 12dk

δ

)
≤ |P|

3
+

4dn

δ
ϕ
(4dn

δ
,

12dk

δ

)
where the projection size of P\P1 to A′ is bounded by ϕ(·, ·). Now the bound follows from Theorem D.
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2 Proof of Main Theorem 1

Proof. For each integer i = 1 . . . log 1
ε , compute the sets Ni and Mi as follows: Set εi = 2iε, ki = εin,

δi = εin
10 , and Ri = {S ∈ R | εin2 ≤ |S| < εin}. Let Pi be any maximal (ki, δi)-packing of Ri. Construct

a random sample Ni by picking each point of X with probability c′ logϕ(1/εi)
εin

, where c′ is a large-enough

constant to be fixed later. For each set S′ ∈ Pi, if Ni is not a 1
10 -net for Ri|S′ , add a 1

10 -net for (S′,Ri|S′)
to Mi. The required ε-net is N =

⋃
i

(
Ni ∪Mi

)
. To see that N is an ε-net for (X,R), let S ∈ R with

|S| ≥ εn, and j such that S ∈ Rj . By the maximality of Pj , there exists S′ ∈ Pj such that |∆(S, S′)| ≤ δi,
i.e., |S ∩ S′| ≥ |S′| − δi ≥ 4|S′|

5 . Thus S is hit by the 1
10 -net for S′. It remains to bound the expected

size of N .
Fix an index j ∈ [1, log 1

ε ]. By Lemma E, we have |Pj | = O
(
4dn
δj
· ϕ
(
4dn
δj
,
4dkj
δj

))
= O

(
1
εj
ϕ( 1

εj
)
)
. By

Theorem A, for any fixed set S ∈ Pj and integer t, a random sample chosen by picking each element of

S independently with probability t · 20cd log 10
εjn

≥ t · cd log 10
(1/10)|S| is not a 1

10 -net for the set system (S,Rj |S)

with probability at most 1/2t. Setting c′ = 20cd log 10, we conclude that Nj fails to be a 1
10 -net for any

fixed (S ∈ Pj ,Rj |S) with probability at most 1/2logϕ(1/εj) = 1
ϕ(1/εj)

. This bounds the expected size of

Mj :

E
[
|Mj |

]
=
∑
S∈Pj

Pr
[
Nj is not a 1

10 -net for S
]
·
(

size of 1
10 -net for S

)
≤
∑
S∈Pj

1

ϕ(1/εj)
·O
(
1
)

= O
( 1

εj

)
Thus we can conclude:

E[|N |] =

log 1
ε∑

j=1

E
[
|Nj |+ |Mj |

]
=

log 1
ε∑

j=1

O
( logϕ(1/εj)

εj
+

1

εj

)
=

log 1
ε∑

j=1

O
( logϕ( 1

2jε )

2jε

)
= O

( logϕ(1/ε)

ε

)

3 Conclusions

We have shown that, starting from the 1991 packing lemma of Haussler (with its simplification by
Chazelle), one can derive in an elementary, short way the optimal bound on ε-nets. This in turn covers
all known results on unweighted ε-nets:

• O
(
1
ε

)
sized nets for primal set system induced by halfspaces in R2 and R3, as ϕ(n) = O(1) in this

case. This implies the results of [24, 19, 20].

• O
(
1
ε

)
sized nets for primal and dual set systems induced by pseudo-disks in the plane, as ϕ(n) =

O(1) in this case. This implies the results of [25].

• O( 1
ε logϕ(1/ε)

)
sized nets for the dual set system induced by objects in R2 of union complexity

ϕ(·). This implies the results in [9, 1].

• O
(
1
ε log log 1

ε

)
for the primal set system induced by axis parallel rectangles in the plane [1]. To

see this, consider the following system on a set of points X in the plane resulting from a binary
tree decomposition. Let l be a vertical line that divides X into two equal sized sets X1 and X2,
and add to R′ all possible ‘anchored’ rectangles with one edge lying on l. It is known that this
set system has ϕ(n) = O(1). Now recursively repeat on X1 and X2 to add further rectangles to
R′ till each set contains less than ε|X| elements. It is easy to see that the final set system (X,R′)
has ϕ(n) = log n, and that for any axis-parallel rectangle S in the plane, the highest level line l
intersected by S is unique, and so S contains at least ε|X|/2 points from one side of l. Thus a
ε/2-net for R′ is an ε-net for R, of size O( 1

ε logϕ(1/ε)) = O( 1
ε log log 1

ε ).
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