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A Simulation Framework for Simultaneous Design and Control of
Passivity Based Walkers

Guilhem Saurel1, Justin Carpentier1, Nicolas Mansard1 and Jean-Paul Laumond1

Abstract—In this paper, we propose a simulation framework
which simultaneously computes both the design and the control
of bipedal walkers. The problem of computing a design and a
control is formulated as a single large-scale parametric optimal
control problem on hybrid dynamics with path constraints
(e.g. non sliding and non slipping contact constraints). Our
framework relies on state-of-the-art numerical optimal control
techniques and efficient computation of the multi-body rigid
dynamics. It allows to compute both the parametrized model
and the control of passive walkers on different scenarios, in
only few seconds on a standard computer. The framework is
illustrated by several examples which highlight the interest of
the approach.

I. INTRODUCTION

Passive walkers are bipedal robots essentially powered by
gravity. They exploit their natural dynamics to move forward,
but in the meanwhile they are unable to exhibit quasi-static
behaviors. Such mechanical systems show an excellent cost
of transport (CoT). They are effective platforms, both for
biomechanicians to better understand the essence of bipedal
walk, and for robot designers to build efficient humanoid
robots.

The purpose of this paper is to propose a generic dynamic
simulation framework for optimizing both the design and the
controller of such robots with respect to a given cost function.
An overview of the framework is given in Fig. 1.

A. Related Work

Starting with McGeer [1], many passive walkers have been
designed and crafted. A great introduction to this field
is given in Collins et al. [2]. A complete methodology to
build incrementally complex passive walkers is described
by Wisse et al. [3]. It starts from a simple compass-like
model and goes to Denise, a 3D dynamic walking robot
with a bisecting mechanism for the torso, two arms rigidly
coupled to the hip angle, knees that are unlocked during
the swing phase, and ankles engineered to steer in the
direction that prevents falling. Such incremental approach
reveals the critical issues in the design of walker with an
anthropomorphic shape. The first issue is the transition from
the simplest compass model evolving in the sagittal plane to
3D system [4], [5], [6]. A second issue is the extension of
the compass model to articulated legs [1], [4], [6], [7], [8].
The addition of ankles is addressed in [6], [9], arms in [4], [6]
and even neck and head in [10], [11]. The mass distribution
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Fig. 1: Overview of the simulation framework. The simulator
is described in Sec. II, and the solver is detailed in Sec. III.

for a given kinematic structure is also an important question
which is addressed in [12], [13].

Beyond those mechatronical contributions, the research
also focuses on the minimal energy cosumption [2], [14] and
on the stability properties of passive walkers [7], [10], [15],
[16], [17].

By opposition to non-passive preview control approaches
(e.g. Kajita [18], capture-point [19]) that require footstep
planning, the control of passive walkers aims at maintaining
at the best the natural steady gait that originates from the
mechanical design. Passive walkers do not compute their
footsteps in advance. Mechanical design and control are
deeply connected and the challenge is to consider both
simultaneously. The natural dynamics of passive walkers is
periodic. The mechanical design tends to create limit cycles
at the origin of the steady gait. The role of the controller
is to maintain the system around this limit cycle in spite of
environment perturbation.

In model-based optimization, the problem of finding a
good controller is expressed as a constrained numerical
optimization problem that benefits from solid theoretical
analysis of stability [20]. This general numerical framework
has been applied to passive bipedal walkers for the
optimization of mass distribution [12]. It has been also
instantiated to the study of passive quadrupeds [21] and then
to passive walkers for the creation and analysis of efficient
gaits [13]. In this last paper, the authors propose a dynamic
simulation package whose scope is illustrated by various
examples including passive walkers and running robots. Our
paper falls in the same framework.

B. Problem statement

In this paper, we want to simultaneously solve the two
following objectives:

1) for a given kinematic chain architecture, we want



to optimize the parameters of a robot (e.g. mass
distribution, body segments lengths, slope of the
ground, mean forward velocity, etc.),

2) for a given robot, we want to find the best controller
with respect to a cost function (e.g. the cost of
transport, the minimal time, etc.).

In short, for a given kinematic structure, we propose a
generic approach to design all robot parameters together with
the controller that optimizes a given cost function.

C. Contribution

The first originality of this approach is its ability to deal
with complex architectures like human-like walkers, both in
2D and 3D. We do not restrict the motion to only lie in
the sagittal plane. Moreover and contrary to similar works
on this topic, our framework automatically computes the
full dynamics. Therefore, there is no need of writing down
the complex dynamic equations of polyarticulated systems.
Hence, many passive walkers can be efficiently designed,
optimized and compared.

Secondly, control can be chosen to be active or passive.
We also handle periodic as well as non-periodic gaits.

Finally, we can optimize various parameters of a given
walker (slope, lengths, masses, speeds, etc.) with respect to
a given cost function. Fig. 1 illustrates the global architecture
of our framework.

D. Outline of the paper

In Sec. II, we first introduce the dynamic contact simulator
at the root of the framework. We highlight how the various
problem parameters are distributed either in the mechanical
model or in the controller. In Sec. III, we set up the generic
optimal control formulation which allows the computation
of both design and control parameters. Finally, the setup is
introduced in Sec. IV and experimental results are presented
in Sec. V.

II. DYNAMIC CONTACT SIMULATION

Passive walkers are intrinsically hybrid systems. They are
submitted to a continuous dynamics when the stance leg is in
contact with the ground, and they are also subject to impacts
when the swing foot hits the ground. In addition to this
hybrid dynamics, some contact constraints must be satisfied
to ensure the feasibility of the entire motion.

In the following of this section, we expose the notations,
the parametric model of the walkers and the contact
formulation used inside the framework.

A. Notations

In this paper, we assimilate a passive walker to a
free-floating base system. We denote by q ∈ SE(3) × Rn

its configuration vector, with SE(3) the special Euclidian
group of dimension 3 encoding the placement of the robot
base and n the number of degrees of freedom (DoF). The
tangent velocity and acceleration of the configuration vector
are denoted by q̇ and q̈ respectively and live in R6+n. Finally,
the torque applied at each joint is denoted by τ ∈ Rn.

B. The parametric model

A passive walker is primarily a kinematic tree, i.e. a
tree of joints where each joint has its own topology (e.g.
revolute, free-flyer, spherical, etc.) and a particular placement
regarding to its parent joint. The joints are the nodes of
the tree. In addition, each joint supports a body, which is
defined by its mass, its center of mass (CoM) and its inertia
matrix. All the bodies together define the mass distribution
of the model. The tree structure with the mass distribution
correspond to the structural parameters of the system. The
model of the passive walker is then parametrized by those
two sets of parameters:

model(tree,mass_distribution)

C. The parametric controller

A gait is characterized by its controller which is
represented by a set of real parameters. For instance, a
controller may be a set of splines which encode the torque
trajectories or just the PID gains (stiffness and damping of
the spring attached to the joint) in the case of pure passive
controller.

controller(control_parameters)

D. Continuous contact dynamics

For the continuous dynamics, we make the hypothesis
of punctual rigid contact with Coulomb friction cone.
The dynamic equation of the polyarticulated system with
constraints can be stated as:

M(q)q̈ + b(q, q̇) = S>τ + Jc(q)
>fc (1)

Jc(q)q̈ + J̇c(q, q̇)q̇ = 0 (2)

where M(q) is the joint space inertia matrix, b(q, q̇)
corresponds to the Coriolis, centrifugal and gravitational
effects, S is a selection matrix encoding the underactutation,
Jc(q) is the contact Jacobian with fc the contact forces and
.> denotes the transpose operator.

A necessary and sufficient condition for non-sliding and
non-slipping of the contact is described by the constraint
that fc must remain inside the Coulomb friction cone Kc.
This cone reflects the fact that the normal component of the
contact force is positive (the ground cannot pull), the norm of
its tangential components and the normal torque are limited
by the normal component.

We make the choice to solve (1)-(2) together, and to add
the conic constraint inside the optimal control problem to
enforce the Coulomb contact model [22]. This implies that
we have to impose contact phases where (1)-(2) are enforced.
Other approaches have tried to get rid of this extra hypothesis
[23], [22] leading to difficult and still incompletely solved
problems for trajectory optimisation [24], [25]. In the context
of this paper, selecting in advance the contact phases is not
a limitation.



The joint acceleration and contact force vectors are then
given by:

q̈ = M−1(In − J t
cΛ

−1
c JcM

−1)(S>τ − b) (3)

−M−1J>
c Λ−1

c J̇cq̇

fc = Λ−1
c

(
JcM

−1(b− Stτ )− J̇cq̇
)

(4)

with Λc
def
= JcM

−1J>
c the so-called operational-space inertia

matrix and In the identity matrix of dimension n. The
dependences on q and q̇ have been omitted for simplicity
of notation.

E. Impact dynamics

Passive walkers are also subject to impacts. Here, we make
the assumption of instantaneous inelastic impacts with a
restitution coefficient sets to zero, i.e. the post-impact velocity
of the contact point is null. The impact dynamics then leads to
a discontinuity in the joint velocity space, which is described
by the two following equations:

q̇+ = (In −M−1J>
c Λ−1

c Jc)q̇
− (5)

λc = Λ−1
c Jcq̇

− (6)

with q̇−, q̇+ the pre-impact and post-impact generalized
velocities and λc is the impulse resulting from the
impact [22]. Other impact model (e.g.elastic) could also be
introduced without loss of generality.

This impact model is frequently used in the litterature [26],
even though it is contested for its physical consistency [27].

F. Efficient rigid-body dynamic computation

The optimal control solver must evaluate thousands of
times the multi-body dynamics either inside the numerical
integration procedure or for the evaluation of the dynamic
sensitivities regarding to the model and control parameters.
For that purpose, we used Pinocchio [28], a whole new,
open-source and efficient C++ library to model and compute
the forward and the inverse dynamics of polyarticulated
systems in contact. Pinocchio is written on top of the
efficient Eigen C++ library [29] for Linear Algebra. It is
based on Featherstone’s algorithms [30] but they have been
implemented in a way to take profit of branch prediction and
cache mechanisms of modern processors [31].

III. OPTIMAL CONTROL APPROACH FOR DESIGN AND
CONTROL

Optimal control is a powerful and generic mathematical
tool which allows the exhibition of a particular solution
among an infinite number of candidates. While geometric
results only exist for a very limited class of systems, the
past few years have seen the emergence of efficient and
reliable numerical optimal control frameworks working on
high dimensional and complex systems [32], [33].

In our framework, the simultaneous search of model and
control parameters is set up as an optimal control problem
with a prescribed cost function. This cost function reflects the
objective of the gait and can be any real value function. Some
examples of cost functions in the context of passive walkers

are the cost of transport or even the minimal time. In addition,
we add the possibility to set the duration of the motion as a
free parameter of the problem. Other free variables, like the
gait stride length for example or the slope of the ground, can
be stacked to the list of parameters.

A. Notations

We denote by x
def
= (q, q̇) the state of the systems, u is the

control vector and p is the vector of parameters, composed
of both the model parameters and the aforementioned free
variables.State and control trajectories are denoted by x and
u respectively. The cost function and dynamics of the system
are then written as `(t,x,u,p) and dx

dt = f(t,x,u,p)
respectively. Here, we use a slight abuse of notations to
denote with the same notation both the continuous and the
impact dynamics. Finally, g(t,x,u,p) corresponds to the
inequality constraints that must be satisfied along the path
(equality constraint can be also considered without loss of
generality). As mentioned in Sec. II-D, the function g is first
and foremost composed of the Coulomb conic constraints.

B. The Optimal Control Problem formulation

The hybrid dynamics of passive walkers can be seen as
a multi-phase system, each stage corresponding either to
the single, double support or impact phases. Thereafter, the
integer s refers to the index of the sth stage.

The generic optimal control problem for simultaneously
computing model and control parameters with multi-phase
dynamics can be written as:

min
x,u,p

S∑
s=1

∫ ts+∆ts

ts

`s(t,x,u,p) dt (7a)

s.t. ẋ = fs(t,x,u,p),∀t ∈ [ts, ts +∆ts] (7b)
gs(t,x,u,p) ≥ 0,∀t ∈ [ts, ts +∆ts] (7c)
π(x,u,p) ≥ 0 (7d)

where π in (7d) is a function which acts both on the state
and control trajectories to enforce periodicity constraints. ∆ts
is the duration of the phase s, and T =

∑
∆ts is the total

duration of the motion. In case of impacts, the phase duration
is reduced to 0.

C. Solving the Optimal Control Problem

Two major directions exist to solve the infinite dimensional
problem (7). The first direction belongs to the so-called
indirect methods. It consists in exploiting the necessary
conditions for optimality, namely the Pontryagin’s maximum
principle [34], which transforms the problem (7) into a
boundary value problem working on ordinary differential
equations. However, such methods are currently unable to
track path constraints.

The second direction corresponds to direct methods. Direct
methods first discretize the original problem into a finite
dimensional nonlinear programming problem (NLP), which
is then solved with standard NLP strategies. Among NLP
strategies, three of them are now popular: (i) single shooting,
(ii) collocation and (iii) multiple shooting. In what follows,



we briefly survey these three methods. For further details, we
refer the reader to the general overview on numerical optimal
control methods written by Diehl et al. [35].

1) Single shooting: discretizes the control and constraints
according to a temporal grid. The state trajectory is recovered
by integration of the discrete control trajectory along this
grid. As single shooting method reduces the NLP to the
search of a control trajectory, the optimization problem is
of low dimension. However, the solver is hard to initialize if
only an initial guess on the state trajectory is available or it
may not converge at all in the context of unstable systems.

2) Collocation: disctrizes both the control and the state
trajectories according to a temporal grid. In addition to the
classic discritized constraints, the state trajectory is enforce
to match the dynamics equation (7b) at each grid node. The
problem can then be easily initialized from a given state
trajectory and collocation handles well unstable dynamics.
However, a very fine grid is required to make the state
trajectory closer to the true dynamics of the system.

3) Multiple shooting: takes profit of both previous
methods. It works on a coarser time grid, which are called
multiple shooting intervals. On each interval, the control
is discretized as well as the initial state value. The final
state value on the interval is then obtained by integration
of the system dynamics (7b). In this way, each interval is
set independent from its neighbours. And the dependencies
between successive intervals is shifted as equality constraints
of the NLP. The NLP remains a low dimensional problem and
can be easily warm-started with an initial guess on the state
trajectory. Furthermore, multiple shooting is really suited for
multi-phase dynamics, as each phase is set independent to
the others.

Multiple shooting has been successfully applied for
the modelling of human running [26]. Following several
advantages listed in Sec. III-C3, we chose this strategy to
solve the problem (7).

D. Efficient optimal control solver

Our framework relies on the 20 years old optimization
package MUSCOD-II [32], a multiple shooting solver for
highly nonlinear systems submitted to path equality and
inequality constraints, developed inside the Optimization
and Simulation group at the University of Heidelberg.
MUSCOD-II handles multi-phase systems with discontinue
dynamics and periodic constraints with efficiency. While
MUSCOD-II is a closed-source framework, one can depend
on ACADO [33] which implements similar features.

IV. EXPERIMENTAL SETUP

The generality of our simulation framework is illustrated
by various examples depicted in Tab. I. Those examples
include different kinematic structures and different control
schemes. Doing so, we may compare different polyarticulated
topologies and, for a same topology, different control
schemes, including either active or passive actuators.

Once a topology is chosen, we show that it is possible
to replace the active actuation by a passive spring damper
system. The motions of the first five robots are constrained
to lie in the sagittal plane. Such restriction is removed for
the robot with arms which is in 3D.

A. Inputs and Outputs

Fig. 1 shows the general inputs and outputs of our
framework. In the experiments of Tab. I, the inputs of
the system are the kinematic structure of the robot with
the anthropometric parameters of the body segments (see
Sec. IV-E), and the cost function, constraints and actuation
type (see resp. Sections IV-B to IV-D).

In those experiments, we choose to set at a fixed value
both the step duration (0.8 s) and the slope (0.05 rad) for each
scenario, and let the solver optimize the step length. We limit
the step length to the bounds [0.4; 1.] m.

The outputs of the system are the optimal cost of transport,
together with the associated step length of the gait and the
state and control trajectories of the joints during one step.

We also collect the number of iterations needed by the
solver to converge and the total computation time for each
experiment.

B. Cost function

We use the same cost function in each scenario. This cost
function corresponds to the classic cost of transport (CoT).
The CoT is a non-dimensional quantity which reflects the
energy efficiency of a locomotion pattern. By definition, the
CoT is the ratio between the energy consumed by the system
(E) and its weight (mg) multiplied by the traveled distance
(d):

CoT def
=

E

mgd
(8)

with g the gravity field value and m the mass of the system.
The energy (E) consumed by the system is the sum of the
potential energy mgh (with h the variation in altitude of
the center of mass) with the integral of the power input∫ T

t=0
‖q̇+ − q̇−‖Mδ + τ · q̇dt. In this last formula, δ is the

Dirac impulsion corresponding to the impact instant, · is the
dot product operator and ‖x‖M

def
=

√
x>Mx. Finally, on a

slope with angle α, the CoT is given by:

CoT = sinα+

∫ T

t=0
‖q̇+ − q̇−‖Mδ + τ · q̇dt

mgd
(9)

This cost function is only used as an example for the
different case studies in Sec. V; in real life examples, the
choice of a better suited cost function is still an open problem.
Moreover, the CoT we give are not meant to be compared
with examples outside of this paper.

C. Constraints

To reduce the dimension of the NLP, we compute a
solution only for a half-step due to the periodicity and the
symmetry between right and left segments. We then constrain
the swing leg to be in contact with the ground only at the
beginning and the end of the simulation. Then, the cyclicality



INPUTS

Model reference MA MB MC MD ME

Model description Compass MA with
knees

MA with torso MC with neck MC with
arms

Total mass 33.1 kg 33.1 kg 60.3 kg 60.3 kg 60.3 kg 65.9 kg
Actuation type active active active passive active active

OUTPUTS

CoT 0.1007 0.0544 0.0618 0.2796 0.0621 0.0651
Step length 0.56 m 0.85 m 0.40 m 0.40 m 0.40 m 0.41 m
Iterations 56 40 76 9 66 108
Time 2.8 s 2.9 s 2.6 s 1.2 s 4.1 s 7.6 s

TABLE I: Cases studies are based on six walkers models to measure the impact of the knees, torso, neck, arms and
actuation type. For each example, the considered output are the cost of transport and the step length. The two last lines give
the performance of the algorithm. In all examples the duration of a step is fixed (0.8s) as well as the slope of the ground
(0.05rad).

and the symmetry of the motion is enforced by periodic
constraints on both the initial and final configuration, velocity
and torque of each joint trajectory.

D. Actuation

In a first stage, we propose an active actuation. The torque
trajectory of each joint is modelized by piecewise cubic
polynomials. An hardware implementation would then need
an external source of power for the system, as a battery or an
air canister, and an intelligent controller to deliver the desired
torque.

In a second stage, we compare this active actuation with a
passive one, which is simply a proportional derivative (PD)
controller. In this case, we apply the torque τj to the joint j:

τj = −Kpj
(qj − q0j )−Kdj

q̇j (10)

where qj is the position of the joint and q̇j its velocity. Kpj

is the spring constant, q0j the free length of the spring,
and Kdj

the damping coefficient. Those three parameters

are optimized by the solver. From those spring-damper
parameters, one may craft a purely passive walker. In this
case, the single source of power is the gravity field. Of course,
another constraint for the numerical solver is to use the same
spring and damper for each symmetrical joint.

E. Body parameters

All the robots have an anthropometric mass distribution,
i.e. segment length, mass, center of mass position and
inertia tensor are scaled according to a reference height
and a reference mass. Those inertial parameters follow the
anthropometric table proposed in [36].

Our minimal model is composed of a pelvis, two thighs and
two legs. Ankles (and knees on the model MB) are actuated.
On top of that, in the models MC , MD and ME , we add a
torso and a head. This head is only actuated in the model
MD. At last, we add two arms and forearms in the model
ME with actuated shoulders. All actuated joints are revolute
along parallel axes.



V. EXPERIMENTAL RESULTS

In the following, all the experiments are composed of 9
nodes for the single support phase and 1 single node for the
impact phase.

A. Influence of the knees

The influence of the knees is highlighted by comparing
models MA and MB in Tab. I.

The experimental results show that adding knees to a
compass walker roughly divides by two the CoT while
increases the optimal step length. The computational cost of
adding knees is negligible.

B. Influence of the torso

Here, we study the impact of adding a fixed torso-head
segment attached to the pelvis. This situation corresponds
to the models MA and MC of Tab. I respectively, with a
non-passive actuation.

Then, adding a fixed torso on top of the pelvis leads to a 40
percent decrease of the CoT and also reduces the optimal step
length down to 40 cm, which is the lower bound we allowed.
In the meanwhile, the computation times remain the same.

C. Influence of the neck

We consider the influence of actuating the neck by
comparing the models MC and MD while keeping the
actuation type.

The experiments on those models show that the increase of
the CoT is lower than one percent even if we add an actuator.
However, the solver needs more time to converge.

D. Comparison of actuation type

This experiment considers the model MC only and study
the differences between active and passive controllers.

If we confront the results of the third and fourth columns
of Tab. I, it appears that the cost is higher for the passive
walker with respect to the choosen cost function, while
the computational time is lower in the passive case. This
can be explained by the dimensionality of the problems: in
the first case, the dimensionality of the joint actuation is
defined by four polynomial parameters times the number of
shooting nodes while it is defined by three scalar parameters
corresponding to the spring-damper model in the other case.

E. Beyond the 2D sagittal plane

Our simulation framework is general and it allows to
address 3D model. In order to let the robot keep its balance,
we add two actuated arms on the model ME .

In comparison to the 2D model without arms MC , the
CoT is a bit higher, but remains lower than the first compass
walker MA. We also notice that both the computation time
and the number of iterations are higher, but the solver still
converges in a similar time.

VI. DISCUSSIONS AND FUTURE WORKS

While our framework shares some common features with
the Matlab package developed by Remy et al. [13], its
differs on various aspects. The first difference lies at the
optimal control method level. In [13], the authors use either
collocation or shooting methods. Still, as mentioned in [35]
and recalls in Sec. III-C, the multiple shooting approach is the
most suited in the context of multi-phase dynamical systems
submitted to impacts and constraints. In addition, the choice
of the C++ programming language to write both our dynamic
simulation and optimal control problem is fundamental for
efficient and fast computation.

Currently, we do not check the stability of the resulting
motions, but only its balance at a dynamic level. As future
extension, we plan to implement an approach similar to [37]
to converge on optimal and stable open-loop motions.

An other extension of this framework can be achieved at
the level of contact modelling. Currently, punctual contacts
are the standard for passive walkers. They are easy to
simulate and to mechanically integrate as feet for passive
walkers. However, rolling contacts may lead to more efficient
gaits, as suggested by Kuo et al. [38]. We recently proposed
in [39] an analytical formulation of the rolling contact which
is compatible with our dynamic formulation presented in
Sec. II-D. The addition of this contact model inside our
framework can largely improve the quality of the generated
motions and enable us to deal with more complex scenarios.

Our framework is not restricted to passive walkers. On a
wider scale, it can evaluate some paradigms in the design
and the control of new humanoid robots [40], [41] and
exoskeletons [42]. In the near future, we will exploit this
framework to evaluate and design a bipedal robot inspired
from passive walkers.
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