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Combinatorics of Set Systems with Small Shallow Cell

Complexity: Optimal Bounds via Packings

Kunal Dutta∗ Arijit Ghosh† Bruno Jartoux‡ Nabil H. Mustafa‡

June 22, 2016

Abstract

The packing lemma of Haussler states that given a set system (X,R) with bounded VC
dimension, if every pair of sets in R are ‘far apart’ (i.e., have large symmetric difference),
then R cannot contain too many sets. This has turned out to be the technical foundation for
many results in geometric discrepancy using the entropy method (see [Mat99] for a detailed
background) as well as recent work on set systems with bounded VC dimension [FPS+ar].
Recently it was generalized to the shallow packing lemma [DEG15, Mus16], applying to set
systems as a function of their shallow cell complexity. In this paper we present several new
results and applications related to packings:

1. an optimal lower bound for shallow packings, thus settling the open question in Ezra
(SODA 2016) and Dutta et al. (SoCG 2015).

2. improved bounds on Mnets, providing a combinatorial analogue to Macbeath regions
in convex geometry (Annals of Mathematics, 1952).

3. simplifying and generalizing the main technical tool in Fox et al. (J. of the EMS, 2016).

Besides using the packing lemma and a combinatorial construction, our proofs combine tools
from polynomial partitioning and the probabilistic method.

Keywords. Epsilon-nets, Haussler’s packing lemma, Mnets, shallow cell complexity, and
Shallow packing lemma.

1 Introduction

Given a set system (X,R) consisting of base elements X together with a set R of subsets of
X, a classical and influential way to capture its ‘complexity’ has been using the concept of VC
dimension. First define the projection of R onto a set Y ⊆ X to be the system

R|Y =
{
Y ∩R | R ∈ R

}
.

Also define R|Y,≤r to be the sets in R|Y of size at most r. The VC dimension of a set system
(X,R), henceforth denoted by VC-dim(R), is the size of largest subset Y ⊆ X for which
|R|Y | = 2|Y |; such a set Y is said to be shattered by R.

The importance of VC dimension derives from the fact that it is bounded for most natural
geometric set systems, where X is a set of geometric objects in Rd and R is defined by geometric
constraints. For example, consider the case when X is a set of points in Rd and the sets in R
are defined by containment by half-spaces, i.e., R =

{
H ∩ X | H is a half-space in Rd

}
. It is

not hard to see (via Radon’s lemma) that the VC dimension of this set system is d + 1. More
broadly, when X is a set of points and sets in R are defined by containment by members of

∗DataShape, INRIA Sophia Antipolis, Sophia Antipolis, France.
†ACM Unit, Indian Statistical Institute, Kolkata, India.
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a family of geometric objects O, we say that (X,R) is a primal set system induced by O. A
second way through which geometric set systems arise is when the base set X is a finite subset
of O, and R is defined to be

R =
{
Rp | p ∈ Rd

}
, where Rp =

{
O ∈ X| p ∈ O

}
is the set of objects containing p.

Then we say that (X,R) is a dual set system induced by O. For most natural families of geo-
metric objects, these primal and dual set systems can be shown to have bounded VC dimension
(we refer the reader to [Mat02, Section 10.3] for details).

The Packing Lemma

A set system (X,R) is said to be a δ-packing if for all distinct R,S ∈ R, |∆(R,S)| ≥ δ,
where ∆(R,S) = (R \ S) ∪ (S \ R) is the symmetric difference between R and S. In 1995
Haussler [Hau95] proved the following key statement.

Theorem A (Packing Lemma). Let (X,R) be a set system on n elements, with VC-dim(R) ≤
d. Let δ, 1 ≤ δ ≤ n be such that (X,R) is a δ-packing. Then

|R| = O

((n
δ

)d)
,

where the constant in the asymptotic notation depends on d.

It was further shown in [Hau95] that this bound is tight:

Theorem B (Optimality of Packing Lemma). Given any positive integers d, n and δ ∈ {1, . . . , n},
there exists a set system (X,R) such that |X| = n, VC-dim(R) ≤ d, R is a δ-packing and where

|R| = Ω

((n
δ

)d)
.

Haussler’s proof of Theorem A, later simplified by Chazelle [Cha92], is an elegant applica-
tion of the probabilistic method. The packing lemma has found several uses in discrete and
computational geometry. A weaker version was used by Matoušek et al. [MWW93] to obtain
bounds in discrepancy of set systems with bounded VC dimension. The above optimal version
was later used to prove asymptotically tight bounds in geometric discrepancy [Mat95].

Call a set system (X,R) an l-wise δ-packing if for all distinct A1, . . . , Al ∈ R, we have∣∣ (A1 ∪ · · · ∪Al)
∖

(A1 ∩ · · · ∩Al)
∣∣ ≥ δ.

Building on Chazelle’s [Cha92] proof of the packing lemma together with Turán’s theorem
on independent sets in graphs [PA95], Fox et al. [FPS+ar, Lemma 2.5] proved the following:

Theorem C (l-Wise δ-Packing Lemma). Let (X,R) be a set system such that |X| = n and
where for all Y ⊆ X we have |R|Y | = O(|Y |d). If R is an l-wise δ-packing, for a positive integer
l and δ ∈ {1, . . . , n}, then

|R| = O

((n
δ

)d)
,

where the constant in the asymptotic notation depends on l and d.
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Shallow Cell Complexity of Set Systems

It turns out that for nearly all results on set systems with bounded VC dimension, the key
technical property required is a consequence of bounded VC dimension, the primal shatter
lemma [Sau72, She72].

Theorem D (Primal shatter lemma). Let (X,R) be a set system with VC-dim(R) = d. Then
for any Y ⊆ X, we have |R|Y | = O

(
|Y |d

)
.

While most set systems derived from geometry have bounded VC dimension and thus satisfy
the primal shatter lemma, in fact they often satisfy a finer property – not only is the number
of sets in R|Y polynomially bounded, but also the number of sets in R|Y of any fixed size r is
bounded by an even smaller function. For example, let X be a set of n points in R2, and R the
primal set system induced by disks. Then it is well-known that for any set Y ⊆ X, the number
of sets in R|Y of size at most r is |R|Y,≤r| = O

(
|Y | · r2

)
. Note that for small values of r, this

contrasts sharply with the number of all sets in R|Y , which is O
(
|Y |3

)
.

This has motivated a finer classification of set systems. In [Ezr14, DEG15], a set system
(X,R) was denoted to have the (d, d1) CS property (short for Clarkson–Shor property) if for
any Y ⊆ X, the number of sets in R|Y of size r is O

(
|Y |d1rd−d1

)
. More generally, given (X,R),

define fR(m, r) as the maximum number of sets of cardinality at most r in the projection on
any set of m points:

∀m, r ∈ N, fR(m, r) = max
Y⊆X,|Y |=m

|R|Y,≤r|.

Define the shallow cell complexity, denoted ϕR(·, ·)1, of a set system (X,R) as:

ϕR(m, r) =
fR(m, r)

m
.

In earlier literature, sometimes the shallow cell complexity is defined simply as fR(m, r); how-
ever, as usually there is always at least a linear factor of m in the function fR(m, r), we prefer
to normalize by m, as this will make later results simpler to state. When the dependency
of ϕR(m, r) on r is less important, we say that (X,R) has shallow cell complexity ϕR(·) if
fR(m, r) = O

(
m · ϕR(m) · rcR

)
, where cR ≥ 0 is a fixed constant.

Note that the shallow cell complexity of set systems with (d, d1) CS property is ϕ(m, r) =
O
(
md1−1rd−d1

)
. For a family O of geometric objects2, define its union complexity κO(·) by

letting κO(m) to be the maximum number of faces of all dimensions in the union of any m of
its members. It can be shown via the Clarkson–Shor technique [CS89] that the dual set system

(O,R) induced by O has shallow cell complexity ϕO(m) = O
(κR(m)

m

)
.

Shallow Packing Lemma

Recent efforts have been devoted to finding generalizations of the packing lemma to these finer
classifications of set systems. For integers k and δ, call (X,R) a k-shallow δ-packing if R is
a δ-packing, and |S| ≤ k for all S ∈ R. After an earlier bound [Ezr14], the following shallow
packing lemma has been recently established in [DEG15, Mus16].

Theorem E (Shallow Packing Lemma). Let (X,R) be a set system on n elements, and let
d0, d, d1, k, δ > 0 be integers. Assume VC-dim(R) ≤ d0. If (X,R) is a k-shallow δ-packing,

(i) |R| = O

(
nd1kd−d1

δd

)
if R satisfies (d, d1) CS property.

1The subscript will dropped henceforth when it is clear from the context.
2These objects are usually semi-algebraic; see [APS08] for a discussion of the definition of faces and cells

induced by arrangements of geometric objects.
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(ii) More generally, |R| = O

(
n

δ
· ϕ
(

4d0n

δ
,
12d0k

δ

))
if R has shallow cell complexity ϕ(·, ·).

Note that the constant in the asymptotic notation depends on d0, d and d1.

Remark: Note that (ii) above implies (i).

2 Our Contributions

We present three main results: a tight lower bound for shallow packings, a construction of
Mnets using the shallow packing lemma, and generalization of shallow packing lemma to l-wise
packings.

2.1 Optimality of Shallow Packings (Proof in Section 3)

While Haussler [Hau95] gave a matching lower-bound to his packing lemma, the optimality of the
shallow packing lemma was an open question in previous work [Ezr14, MR14, DEG15, Mus16].
In earlier work [DEG15], a matching lower bound was presented for one particular case, when
ϕ(m) = m. We show that the shallow packing lemma is tight for the most common case of
shallow cell complexity set systems, when ϕ(m, r) = O

(
md1−1rd−d1

)
for all constants d, d1.

Theorem 1 (Optimality of Shallow Packings). For any positive integers d, d1 such that d ≥ d1

and for any positive integer n, there exists a set system (X,R) on n elements such that:

(i) (X,R) has shallow cell complexity ϕ(m, r) = md1−1rd−d1, and

(ii) for any k and δ such that δ ≤ k
4d , (X,R) has a k-shallow δ-packing of size Ω

(
nd1kd−d1

δd

)
.

Our proof is by an explicit construction of such a set system.

2.2 Mnets for Semialgebraic Set Systems (Proof in Section 4)

Given a convex object C in Rd with volume vol(C), the well-known theorem of Macbeath [Mac52]
states the existence of a partition of C into smaller convex regions {C1, . . . , Cl}, where l = O(1

ε ),
such that (i) vol(Ci) = Θ(ε vol(C)) for each i, and (ii) for any half-space H with vol(H ∩C) ≥
ε vol(C), there exists an index j such that Cj ⊆ H. Our second main result presents a com-
binatorial analogue for set systems, where the Lebesgue measure is replaced by the counting
measure.

Before we can state our new theorem, we need a few definitions. Given a set system (X,R)
on n elements and a parameter ε > 0, a collection M = {M1, . . . ,Ml} of subsets of X is an
ε-Mnet for R of size l if and only if

(i) |Mi| = Θ(εn) for each i, and

(ii) for any R ∈ R with |R| ≥ εn, there exists an index j such that Mj ⊆ R.

Semialgebraic sets are subsets of Rd obtained by taking Boolean operations such as unions,
intersections, and complements of sets of the form {x ∈ Rd | g(x) ≥ 0}, where g is a d-variate
polynomial in R [x1, . . . , xd]. Denote by Γd,∆,s the family of all semialgebraic sets in Rd obtained
by taking Boolean operations on at most s polynomial inequalities, each of degree at most ∆.
In this paper d, ∆, s are all regarded as constants and therefore the sets in Γd,∆,s have constant
description complexity3. For a set X of points in Rd and a set system R on X, we say that
(X,R) is a semialgebraic set system generated by Γd,∆,s if for all S ∈ R there exists a γ ∈ Γd,∆,s
such that S = X ∩ γ.

3For a detailed introduction to this topic, see [BPR03].

4



Set System Primal/Dual Size of ε-Mnets

Objects with union complexity κ(·) D O(κ(1
ε ))

α-fat triangles D O(1
ε log∗ 1

ε )

Locally γ-fat objects D 1
ε · 2O(log∗ 1

ε
)

Triangles of approximately same size D O(1
ε )

α-fat triangles P O(1
ε log2 1

ε )

Rectangles in R2 P O(1
ε log 1

ε )

Lines in R2 P O( 1
ε2

)

Strips in R2 P O( 1
ε2

)

Cones in R2 P O( 1
ε2

)

Pseudo-disks in R2 P/D O(1
ε )

Half-spaces in Rd P/D O( 1
εbd/2c

)

Table 1: All known results as well as several new results on ε-Mnets follow immediately from
Theorem 2 via their shallow cell complexity.

Theorem 2 (Mnets). Let d, D, d0, ∆, s and δ be integers and (X,R) a semialgebraic set
system generated by Γd,∆,s with |X| = n and VC-dim(R) ≤ d0. Assume also that X is in D-
general position4. If R has shallow cell complexity ϕ(·, ·), with ϕ(·, ·) a non-decreasing function
in the first argument, then (X,R) has an ε-Mnet Mε = {M1, . . . , Ml} of size

l = O

(
d0

ε
· ϕ
(

8d0

ε
, 48d0

))
.

In particular, if (X,R) has shallow cell complexity ϕ(·), then

l = O

(
1

ε
· ϕ
(

1

ε

))
.

The constants in the asymptotic notation depend on m, ∆, d0 and s.

The proof of Theorem 2 uses the packing lemma, as well as recent techniques in discrete geom-
etry: the polynomial partitioning method of Guth and Katz [GK15]. These will be discussed in
detail in Section 4.
Theorem 2 unifies, improves and generalizes a number of previous statements. In [MR14], a
collection of results on Mnets were presented using different techniques: for the dual set system
induced by regions of union complexity κ(·) using cuttings, for rectangles using divide-and-
conquer constructions, and for triangles using ε-nets. All these and more results follow, with
polylogarithmic improvements, as immediate corollaries of Theorem 2.

Corollary 3 (See Table 1). There exist ε-Mnets of size

(i) O
(
κ(1

ε )
)

for the dual set system induced by objects in R2 with union complexity κ(·). In

particular, O
(

log∗ 1
ε

ε

)
for the dual set systems induced by α-fat triangles5, O

(
2O(log∗ 1

ε )

ε

)
4A set X ⊆ Rd is said to be in D-general position, for an integer D ≥ 1, if no

(
D+d
d

)
points of X are contained

in the zero set of a nonzero d-variate polynomial of degree at most D.
5 For a fixed parameter α with 0 < α ≤ π/3, a triangle is α-fat if all three of its angles are at least α.
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for the dual set system induced by locally γ-fat objects6 in the plane, and O
(

1
ε

)
for the

dual set systems induced by triangles of approximately same size [MPS+94].

(ii) O
(

log2 1
ε

ε

)
for the primal set system induced by α-fat triangles.

(iii) O
(

log 1
ε

ε

)
for the primal set system induced by rectangles in the plane.

(iv) O(1
ε ) for the primal system induced by lines, strips and cones in the plane, improving the

previous-best results by polylogarithmic factors. They were O(1
ε log2 1

ε ), O(1
ε log3 1

ε ) and
O(1

ε log4 1
ε ) for lines, strips and cones respectively.

The main open question in [MR14] was the following interesting pattern that was observed:
for all the cases studied, if a set system had an ε-net of size O

(
1
ε logϕ(1

ε )
)
, then it had Mnets of

size O
(

1
εϕ(1

ε )
)
. Theorem 2 now shows that this was not a coincidence. It is known that a set

system with shallow cell complexity ϕ(·) has ε-nets of size O
(

1
ε logϕ(1

ε )
)

[CGKS12]. And now,

from Theorem 2, it follows that it has Mnets of size O
(
d0
ε · ϕ(8d

ε , 48d0)
)

= O
(

1
εϕ(1

ε )
)
.

As any transversal of an ε-Mnet is an ε-net, Theorem 2 also implies all known linear-sized
bounds on ε-nets.

Corollary 4. There exist ε-nets of size O
(

1
ε

)
for

(i) the dual set system induced by pseudo-disks in R2,

(ii) the primal set system induced by pseudo-disks in R2, and

(iii) the primal set systems induced by half-spaces in R2 and R3.

2.3 l-Wise k-Shallow δ-Packings (Proof in Section 5)

A set system (X,R) is an l-wise k-shallow δ-packing if it is an l-wise δ-packing and furthermore,
|S| ≤ k, ∀S ∈ R. Building on the proof in [Mat99] and [Mus16], we prove the following,
which simultaneously generalizes three theorems: that of Haussler [Hau95] (Theorem A), Fox
et al. [FPS+ar] (Theorem C) and Ezra et al. [DEG15] (Theorem E).

Theorem 5 (l-Wise k-Shallow δ-Packing Lemma). Let (X,R) be a set system with |X| = n.
Let d, k, l, δ > 0 be four integers such that VC-dim(R) ≤ d, and R is an l-wise k-shallow
δ-packing. If R has shallow cell complexity ϕ(·, ·), then

|R| = O

(
l3n

δ
· ϕ
(
s, 4l · ks

n

))
,

where s = 8l(l − 1)dn/δ − 1.

Corollary 6. Theorems A and C.

Proof. Set k = n, and apply Theorem 5 using the fact that set systems with VC-dim(R) ≤ d
have shallow cell complexity ϕ(n, r) = O(nd−1) by Theorem D. Theorem A is the special case
when l = 2.

Corollary 7. Theorem E.

Proof. For a set system with shallow cell complexity ϕ(·, ·), apply Theorem 5 with l = 2.

6 For a fixed parameter γ with 0 < γ ≤ 1/4, a planar object o is called locally γ-fat if, for any disk D centered
in o and that does not fully contain o in its interior, we have area(D u o) ≥ γ · area(D), where D u o is the
connected component of D ∩ o that contains the center of D. We will assume that the object o has a constant
algebraic description complexity, i.e., the object o can be described by a Boolean formula constructed from at
most s algebraic inequalities in variables x and y of degree at most c, where s and c are constants.
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3 Proof of Theorem 1.

In this section we will build set systems with the desired shallow cell complexity and then show
that some subset of this set system has a large shallow packing.

Proof of Theorem 1. Without loss of generality we assume that n is an integer multiple of d.
The desired set X will be a subset of N × N. For each 1 ≤ i ≤ d1, set Xi = {i} × {1, . . . , nd}.
Note that here we are simply considering d1 disjoint copies of {1, . . . , nd}. The singleton {i} is
here to distinguish Xi from Xj .

(i, 1) (i, 2) (i, n
d
)

Define the following set system Pi on each Xi:

Pi =
{{
i
}
×
{

2αβ + 1, . . . , 2α(β + 1)
} ∣∣∣ 0 ≤ α ≤ log2

(n
d

)
, 0 ≤ β < 2−α

n

d

}
.

Intuitively, consider a balanced binary tree Ti on Xi, with its leaves labeled
{

(i, 1), . . . , (i, nd )
}

(see figure). Then for each node v ∈ Ti, Pi contains a set consisting of the leaves of the
subtree rooted at v. Here α is the height of the node (so 2α is the number of elements in the
corresponding subset), while β identifies one of the nodes of that height (among the 2log(n

d
)−α =

2−α · nd choices).

Claim 7.1. For any index i, set Y ⊆ Xi and r ∈ N, |Pi|Y,≤r| = O(|Y |)7. Specifically,
fPi(m, r) ≤ 2m.

Proof. For any Y ⊆ Xi, the sets in Pi|Y are in a one-to-one correspondence with the nodes of
Ti whose left and right subtrees, if they exist, both contain leaves labeled by Y . It is easy to see
that if the nodes of Ti corresponding to Y form a connected sub-tree, then these nodes define a
new binary tree whose leaves are still labeled by Y , and thus their number is at most 2|Y | − 1.
Otherwise, the statement holds by induction on the number of connected components of Y in
Ti.

Next, for each d1 + 1 ≤ i ≤ d, let Yi = {i}×{1, . . . , nd}. For each Yi, define the following set
system:

Qi =
{{
i
}
×
{

1, . . . , γ
} ∣∣ 1 ≤ γ ≤ n

d
, γ ∈ N

}
.

This set system can be seen as prefix sets of the sequence
〈
(i, 1), . . . , (i, nd )

〉
.

Claim 7.2. For any Y ⊆ Yi and l ∈ N, |Qi|Y,≤l| = O(l). Specifically, fQi(m, l) ≤ l.

Proof. The number of ranges of size at most l in Qi|Y , is |Qi|Y,≤l| = min
{
l, |Y |

}
≤ l.

7Crucially, the bound is independent of r.
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Finally, the required base set X will be:

X =

(
d1⋃
i=1

Xi

)
∪
(

d⋃
i=d1+1

Yi

)
.

Note that |X| = d1 · nd + (d− d1) · nd = n. The set system R0 is defined on X by taking d-wise
union of the sets in Pi’s and Qi’s:

R0 =
{
r1 ∪ r2 · · · ∪ rd

∣∣∣ (r1, r2, · · · , rd) ∈ P1 × · · · × Pd1 ×Qd1+1 × · · · × Qd
}
.

We will bound the shallow cell complexity of R0 before constructing a subset of R0 which is a
large packing.

Claim 7.3.
∀Y ⊆ X,∀l ∈ N, |R0|Y,≤l| = O

(
|Y |d1 ld−d1

)
.

In particular,
fR0(m, l) ≤ (2m)d1 ld−d1 .

Proof. Let Y ⊆ X, |Y | = m. Recall that R0|Y,≤l denotes the sets in R0|Y of size at most l.
Any set S ∈ R0|Y,≤l can be uniquely written as the disjoint union

S = P1 ∪ · · · ∪ Pd1 ∪Qd1+1 ∪ · · · ∪Qd,

where Pi ∈ Pi|Y ∩Xi,≤l and Qi ∈ Qi|Y ∩Yi,≤l. This yields an injection

R0|Y,≤l 7→

 ∏
1≤i≤d1

Pi|Y ∩Xi,≤l

×
 ∏
d1+1≤i≤d

Qi|Y ∩Yi,≤l

 .

By the above injection and Claims 7.1 and 7.2, we have:

fR0(m, l) = max
Y⊆X,|Y |=m

|R0|Y,≤l|

≤
(
fP1(m, l)

)d1 ·
(
fQ1(m, l)

)d−d1

≤ (2m)d1 ld−d1 .

It remains to show that some subset of R0 is a large k-shallow δ-packing. For the given
parameters k, δ and for all 1 ≤ i ≤ d1 and d1 + 1 ≤ j ≤ d, define:

P(k,δ)
i =

{i}× {2αβ + 1, . . . , 2α(β + 1)
} ∣∣∣∣∣∣

α, β ∈ N
log2 δ ≤ α ≤ log2(kd )
0 ≤ β < 2−α(nd )

 ⊆ Pi,
Q(k,δ)
j =

{{
j
}
×
{

1, 2, . . . , γδ
} ∣∣ 1 ≤ γ ≤ k

dδ

}
⊆ Qj .

The intuition here is that we pick only the nodes in our binary trees Ti which have height
at least log2 δ (and thus a symmetric difference of at least δ elements). Similarly in Qj we only

pick every δ-th set. All these sets have size at most k
d . This is straightforward for Q(k,δ)

i ; on the

other hand, a set in P(k,δ)
i defined by the pair (α, β) has size 2α ≤ k

d .
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(i, 1) (i, 2) (i, nd)

height ≥ log2 δ

P(k,δ)
i

Those sets also are all integer intervals of the form
{
λδ + 1, . . . , µδ

}
for some λ, µ ∈ N and

thus pairwise δ-separated (for the P
(k,δ)
i , notice that 2α is a multiple of δ). Hence the following

subset of R0

R =
{
p1 ∪ · · · ∪ pd1 ∪ qd1+1 ∪ · · · ∪ qd

∣∣∣
(p1, . . . , pd1 , qd1+1, . . . , qd) ∈

∏
1≤i≤d1

P(k,δ)
i ×

∏
d1+1≤i≤d

Q(k,δ)
i

}
is a δ-packing which is k-shallow. It remains to bound its size:

|R| =

d1∏
i=1

∣∣∣P(k,δ)
i

∣∣∣ · d∏
i=d1+1

∣∣∣Q(k,δ)
i

∣∣∣
=

n
d

blog2( k
d

)c∑
α=dlog2 δe

2−α

d1 (
k

dδ

)d−d1

≥ d−d
(

21−dlog2 δe − 2blog2( k
d

)c
)d1

nd1

(
k

δ

)d−d1

≥ d−d
(

1

δ
− 2d

k

)d1

nd1

(
k

δ

)d−d1

≥ d−d(2δ)−d1nd1

(
k

δ

)d−d1

= Ω

(
nd1kd−d1

δd

)
.

4 Proof of Theorem 2, Corollary 3 and Corollary 4.

We first give a brief overview of a technical tool that is used in the proof: polynomial partition-
ing.

Preliminaries

For a polynomial f ∈ R[x1, . . . , xd], denote by Z(f) the zero set of f , the degree of f by Df ,
and the set of connected components ω1, . . . , ωt of Rd \ Z(f) by Ωf . The following lemma is a
special case of a theorem of Milnor and Thom [Mil64, Tho65] on the homology of real algebraic
varieties; it bounds the number of connected components of Rd \ Z(f) in terms of the degree
Df of f .

9



Lemma 8. Let f ∈ R[x1, . . . , xd] be a polynomial with degree Df . Then the number of connected
components of Rd \ Z(f) is upper-bounded by (2Df )d.

We will use the following polynomial partitioning result of Guth and Katz [GK15] (see also
Kaplan, Matoušek and Sharir’s beautiful exposition [KMS12]). Let P be a set of n points in
Rd. A polynomial f ∈ R[x1, . . . , xd] is an r-partitioning polynomial for P , if for any connected
component ω of Rd \ Z(f), we have |P ∩ ω| ≤ n

r .

Lemma 9 (Polynomial Partitioning). Let P be a set of n points in Rd, and r a given parameter.

Then there exists an r-partitioning polynomial f for P with Df ≤ Cd · r
1
d , where the constant

Cd > 1 depends only on d.

Let γ ∈ Γd,∆,s be a semialgebraic set, and ωi ∈ Rd/Z(f). We say γ crosses ωi if ωi ∩ γ /∈
{∅, ωi}. The crossing number, denoted cross(γ), of γ is the number of elements of Ωf crossed
by γ. Define the crossing number of Ωf w.r.t. Γd,∆,s to be the maximum crossing number of
any semialgebraic set:

crossΓd,∆,s(Ωf ) = max
γ∈Γd,∆,s

cross(γ).

We will also need the following fact [ST12].

Lemma 10. crossΓd,∆,s(Ωf ) ≤ C · s ·∆ · (Df )d−1, where C is a constant depending on d.

Proofs

Proof of Theorem 2. Note that if ε = O( 1
n), then the trivial collection of singleton sets M ={

{p} | p ∈ X
}

will be an ε-Mnet for (X,R), of size n = O(1
ε ). Therefore we may restrict

ourselves to ε >
4(D+d

d )
3n .

For i = 0, . . . , log 1
ε , let Ri ⊆ R be an inclusion-maximal

(
2i−1ε n

)
-packing, with the additional

constraint that each set in Ri has cardinality in [2iεn, 2i+1εn). From Theorem E, we have

|Ri| ≤
C ′

2iε
· ϕ
(

8d0

2iε
, 48d0

)
, (1)

where C ′ is a constant depending only on d0.
Let Ri =

{
Ri1, . . . , R

i
mi

}
, where mi = |Ri|. For a parameter r to be fixed later, let f ij be a

minimum degree r-partitioning polynomial for the set of points in Rij . Lemma 9 implies that

the degree of f ij is Df ij
= O(r

1
d ).

For each i = 0, . . . , log 1
ε and j = 0, . . . ,mi, let Ωf ij

= {ωij,1, . . .} be the set of |Ωf ij
| connected

components of Rd \ Z(f ij). From Lemma 8, we have

|Ωf ij
| =

(
2Df ij

)d
= O

(
(2r

1
d )d
)

= O(r), (2)

where the constant in the asymptotic notation depends on d.
The required ε-Mnet M will be the union of a number of set collections Mi’s. For each

i = 0, . . . , dlog 1
ε e, j = 0, . . . , |Ri|, and k = 0, . . . , |Ωf ij

|, do the following:

If |Rij ∩ ωij,k| ≥
2iεn

8|Ωf ij
| , then add the set Rij ∩ ωij,k to Mi.

Finally let

M =

dlog 1
ε
e⋃

i=0

Mi.

It remains to show that M is the required ε-Mnet for an appropriate value of r. Namely,

10



(i) the required bound on |M| holds,

(ii) each set in M has size Ω(εn), and

(iii) for any R ∈ R with |R| ≥ εn, there exists a set Y ∈M where Y ⊆ R.

Set r to be a large enough constant satisfying

Cs∆Cd−1
d

r
1
d

<
1

16
; i.e., set r =

(
17Cs∆Cd−1

d

)d
. (3)

To see i), observe that by equation (2) and inequality (1),

|Mi| = O
(
|Ωf ij
| · |Ri|

)
= O

(
r · C

′

2iε
ϕ
(8d0

2iε
, 48d0

))
.

Thus

|M| =
dlog 1

ε
e∑

i=0

|Mi| = O

dlog 1
ε
e∑

i=0

rC ′

2iε
· ϕ
(

8d0

2iε
, 48d0

) .

As ϕ(·, ·) is a non-decreasing function in the first variable, we have

|M| = O

dlog 1
ε
e∑

i=0

rC ′

2iε
· ϕ
(

8d0

2iε
, 48d0

) = O

(
1

ε
· ϕ
(8d0

ε
, 48d0

))
.

To see ii), observe that each set added to M satisfies

∣∣Rij ∩ ωij,k∣∣ ≥ 2iεn

8|Ωf ij
| = Ω

(2iεn

8r

)
= Ω

(
εn
)
.

To see iii), let R ∈ R be any set such that |R| ≥ εn, and let i be the index such that
|R| ∈ [2iεn, 2i+1εn). There are two cases.

Case 1: R ∈ Ri. Say R = Rij , then R contains all the sets Rij ∩ ωij,k (for all values of k), and
it remains to argue that at least one was added to M. So assume that is not the case. Then,
using the fact that X is D-generic, we have

|Rij | =
∑
k

|Rij ∩ ωij,k|+ |Z
(
f ij
)
∩Rij |

≤ |Ωf ij
| · 2iεn

8|Ωf ij
| +

(
D + d

d

)
= 2i−3εn+

(
D + d

d

)
< 2iεn,

where the last inequality follows from the fact that ε >
4(D+d

d )
3n . We have reached a contradiction,

as by construction we had |Rij | ≥ 2iεn.

11



Case 2: R /∈ Ri. By the maximality of Ri, there exists an index j such that Rij ∈ Ri
and |R ∩ Rij | ≥ 2i−1εn. Note that the above bound on |R ∩ Rij | follows from the fact that

|R ∩ Rij | ≥ |Rij | − |R∆Rij |. If R contains a set Rij ∩ ωij,k included in Mi, then we are done. So
assume it does not. Then consider the contribution to the points in the set

R ∩Rij =

(⋃
k

(
R ∩Rij ∩ ωij,k

))
∪
(
R ∩Rij ∩ Z

(
f ij
))
.

1. All indices k such that |Rij ∩ ωij,k| < 2iεn
8|Ω

fi
j
| . The total number of points contained in R

from all such sets is at most |Ωf ij
| · 2iεn

8|Ω
fi
j
| = 2iεn

8 .

2. All k such that the semialgebraic set γ defining R crosses ωij,k. By Lemma 10, there are

at most Cs∆
(
Df ij

)d−1
such sets, and by the property of r-partitions, each such region

contains at most 2i+1εn
r points of X.

3. The points of X contained in the zero set Z(f ij).

Using the fact that X is D-generic and
Cs∆Cd−1

d

r
1
d

< 1
16 (Eq (3)), we get

|R ∩Rij | ≤ |Ωf ij
| · 2iεn

8|Ωf ij
| +

2i+1εn

r
· Cs∆

(
Cdr

1
d
)d−1

+

(
D + d

d

)
< 2i−2εn+

(
D + d

d

)
< 2i−1εn.

The last inequality follows from the fact that ε >
4(D+d

d )
3n . We get a contradiction to the fact

that |R ∩Rij | ≥ 2i−1εn, which completes the proof.

We will now prove Corollary 3 and Corollary 4.

Corollary 3 (See Table 1). There exist ε-Mnets of size

(i) O
(
κ(1

ε )
)

for the dual set system induced by objects in R2 with union complexity κ(·). In

particular, O
(

log∗ 1
ε

ε

)
for the dual set systems induced by α-fat triangles8, O

(
2O(log∗ 1

ε )

ε

)
for the dual set system induced by locally γ-fat objects9 in the plane, and O

(
1
ε

)
for the

dual set systems induced by triangles of approximately same size [MPS+94].

(ii) O
(

log2 1
ε

ε

)
for the primal set system induced by α-fat triangles.

(iii) O
(

log 1
ε

ε

)
for the primal set system induced by rectangles in the plane.

(iv) O(1
ε ) for the primal system induced by lines, strips and cones in the plane, improving the

previous-best results by polylogarithmic factors. They were O(1
ε log2 1

ε ), O(1
ε log3 1

ε ) and
O(1

ε log4 1
ε ) for lines, strips and cones respectively.

8 For a fixed parameter α with 0 < α ≤ π/3, a triangle is α-fat if all three of its angles are at least α.
9 For a fixed parameter γ with 0 < γ ≤ 1/4, a planar object o is called locally γ-fat if, for any disk D centered

in o and that does not fully contain o in its interior, we have area(D u o) ≥ γ · area(D), where D u o is the
connected component of D ∩ o that contains the center of D. We will assume that the object o has a constant
algebraic description complexity, i.e., the object o can be described by a Boolean formula constructed from at
most s algebraic inequalities in variables x and y of degree at most c, where s and c are constants.
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Proof.

(i) The shallow cell complexity of the dual set system induced by objects with union com-

plexity κ(·) is ϕ(m) = O(κ(m)
m ), which together with Theorem 2 implies the stated bound.

The remaining bounds then follow from the facts that the union complexity κ(m) for
triangles with approximately same size [MPS+94] is O(m), for α-fat triangles [EAS11] is
O(m log∗m) (where the constant of proportionality depends only on α), and for locally γ-
fat objects [AdBES14] is O(m2log∗m) (where the constant of proportionality in the linear
term depends only on γ).

(ii) Ene et al. [EHR12] proved the following result: Given a set X of n points in R2 and a
parameter r > 0, there exists a collection Or of O(r3n log n) regions, such that for every
α-fat triangle ∆, |∆∩X| ≤ r, there exists a subsetM⊆ Or of cardinality at most 9 such
that

(⋃
M∈MM

)
∩ X = ∆ ∩ X. This result together with Theorem 2 will give us the

bound.

(iii) Ene et al. [EHR12] using Aronov et al. [AES10] analysis proved the following: given a
set X of n points in the plane and a parameter r > 0, there exists a collection Or of
rectangles, with |Or| = O(r2n log n), such that for any rectangle R with |R∩X| ≤ r there
exists R1, R2 ∈ Ok such that (R1∪R2)∩X = R∩X. This result together with Theorem 2
will give us the bound.

(iv) Shallow cell complexity ϕ(m, r) for lines is O(m), for strips it is O(mr), and for cones it
is O(mr2) [MR14].

As any transveral of an ε-Mnet is an ε-net, the following corollary is immediate.

Corollary 4. There exist ε-nets of size O
(

1
ε

)
for

(i) the dual set system induced by pseudo-disks in R2,

(ii) the primal set system induced by pseudo-disks in R2, and

(iii) the primal set systems induced by half-spaces in R2 and R3.

Proof.

1. Since κ(m) = O(m) for the case of pseudo-disks in the plane[APS08], the dual set system
has ϕ(m) = O(1) and Theorem 2 implies the claimed bound for the dual set systems.

2. For primal set systems induced by pseudo-disks in the plane, Buzaglo, Pinchasi, and
Rote [BPR13] showed that ϕ(n, r) = O(r2). Using this fact together with Theorem 2
gives the O(1

ε ) bound for these set systems.

3. Again using Clarkson–Shor’s method [CS89], for set systems induced by subsets of half-
spaces in R2 and R3 it is known that ϕ(m, r) is O(r) and O(r2) respectively. Using
Theorem 2 implies the claimed bounds for both these systems.
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5 Proof of Theorem 5.

The proof of Theorem 5 will use the following technical lemma, combining the ideas in [Mat99,
Mus16, FPS+ar].

Lemma 11. Let (X,R) be a set system with |X| = n. Let d, l, δ be three integers such that
VC-dim(R) ≤ d, and R is an l-wise δ-packing. If A ⊆ X is a uniformly selected random sample

of size 8l(l−1)dn
δ − 1, then

|R| ≤ 2l · E [|R|A|] .

Proof. Pick a random sample R of size s = 8l(l−1)dn
δ from X. Let GR = (R|R, ER) be the unit

distance graph on R|R. Define the weight w(S′) of a set S′ ∈ R|R to be the number of sets of
R whose projection in R|R is S′, i.e.

w(S′) = |{r ∈ R | r ∩R = S′}|.

Define the weight w(S′i, S
′
j) of an edge {S′i, S′j} ∈ ER as w(S′i, S

′
j) = min{w(S′i), w(S′j)}. Let

W =
∑

e∈ER w(e).
We will use the following result from [Mat99, Chapter 5].

Claim 11.1. W ≤ 2d · |R|.
Pick R by first picking a set A of s − 1 elements and then selecting the remaining element

a uniformly from X \ A. Let W1 be the weight of the edges in GR where the element a is the
symmetric difference. By symmetry, we have

E[W ] = s · E[W1]. (4)

To compute E[W1], first fix a set Y of s − 1 vertices. Now conditioned on this fixed choice
of A, we show:

Claim 11.2.

E
[
W1|A = Y

]
≥ δ/n

2l(l − 1)

(
|R| − l |R|Y |

)
.

Proof. Consider a set Q ∈ R|Y , and let RQ be the sets of R whose projection is Q. Once the
choice of a has been made, Q will be split into two sets, those sets containing that choice of a –
say there are b1 of these, and those sets not containing a, say a number b2. From the definition
of weights, the expected contribution of sets of RQ to edge weight will be

E
[

min{b1, b2}
]
≥ E[b1b2]

b1 + b2
.

The above inequality follows from the fact

min{b1, b2} ≥
b1b2
b1 + b2

.

Observe that b1b2 is the number of ordered pairs (S1, S2) ∈ RQ ×RQ with a ∈ S1 and a 6∈ S2.
Therefore for each fixed pair of sets (S1, S2) ∈ RQ × RQ, the probability that the randomly

chosen last element a ∈ S1 \ S2 is |S1\S2|
n−s−1 . Therefore the contribution of (S1, S2) in RQ to b1b2

is |S1\S2|
n−s−1 . Noting that b = b1 + b2 is fixed independent of the choice of a, summing up over all
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pairs of sets in RQ, we get the expected contribution of the sets in RQ to the edge weight to
be at least

E
[

min{b1, b2}
]
≥ E[b1b2]

b1 + b2

≥ 1

b1 + b2

 ∑
(S1, S2)∈RQ×RQ

Pr [a ∈ S1 \ S2]


≥ 1

b1 + b2

 ∑
S1, S2 (6=S1)∈RQ

Pr [a ∈ S1 \ S2] + Pr [a ∈ S2 \ S1]


=

1

b1 + b2

 ∑
S1, S2 (6=S1)∈RQ

Pr [a ∈ S1∆S2]


=

1

b1 + b2

 ∑
S1, S2 (6=S1)∈RQ

|S1∆S2|
n− s+ 1

 .

For all l sets S1, . . . , Sl ∈ RQ, we have⋃
2≤j≤l

S1∆Sj = (S1 ∪ · · · ∪ Sl) \ (S1 ∩ · · · ∩ Sl) .

And since R is an l-wise δ-packing we get∑
2≤j≤l

|S1∆Sj | ≥ |(S1 ∪ · · · ∪ Sl) \ (S1 ∩ · · · ∩ Sl)| ≥ δ.

So for every l tuple there exists one pair (S1, Sj) with |S1∆Sj | ≥ δ
l−1 . Define the graph

G [RQ] := (RQ, EQ), where {S1, S2} ∈ E if |S1∆S2| ≥ δ
l−1 . As RQ is an l-wise δ-packing we do

not have independent sets of size l in G [RQ]. From Turán’s theorem, see [PA95], we have

|EQ| ≥
b(b− l)

2l
.

Therefore

E
[

min{b1, b2}
]
≥ 1

b

 ∑
S1, S2 (6=S1)∈RQ

|S1∆S2|
n− s+ 1


≥ 1

b

 ∑
{S1, S2}∈EQ

|S1∆S2|
n− s+ 1


≥ |EQ|

b
· (δ/n)

l − 1

≥ (δ/n)

2l(l − 1)
· (|RQ| − l)

The last inequality follows from the facts |EQ| ≥ b(b−l)
2l and |RQ| = b.

Summing up over all sets of R|Y ,

E[W1|A = Y ] ≥ 1

2l(l − 1)

∑
Q∈R|Y

δ

n

(
|RQ| − l

)
=

δ/n

2l(l − 1)

(
|R| − l |R|Y |

)
.
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Now one can compute an upper-bound on E[W ]:

E[W ] = s · E[W1] (equation (4))

= s ·
∑
Y⊆X
|Y |=s−1

E[W1|A = Y ] · Pr[A = Y ]

≥ s ·
∑
Y⊆X
|Y |=s−1

δ

2l(l − 1)n

(
|R| − l · |R|Y |

)
· Pr[A = Y ] (by Lemma 11.2)

≥ 4d

(
|R|

∑
Y⊆X
|Y |=s−1

Pr[A = Y ]− l
∑
Y⊆X
|Y |=s−1

|R|Y | · Pr[A = Y ]

)

= 4d|R| − 4dl · E[|R|A|].

Combining Claim 11.1 and the above lower bound on E[W ], we get

2d|R| ≥ E[W ] ≥ 4d|R| − 4dl · E[|R|A|].

This implies
|R| ≤ 2l · E[|R|A|].

Proof of Theorem 5. Let A ⊆ X be a random sample of size s := 8l(l−1)dn
δ − 1. Let

R1 =

{
S ∈ R s.t. |S ∩A| ≥ 4l · ks

n

}
.

Each element x ∈ X belongs to A with probability at most s
n , and thus the expected number

of elements in A from a fixed set of t elements is at most ts
n . This implies that E[|S ∩A|] ≤ ks

n
as |S| ≤ k for all S ∈ R. Using Markov’s inequality then bounds the probability of a set of R
belonging to R1:

Pr[S ∈ R1] = Pr

[
|S ∩A| > 4l · ks

n

]
≤ 1

4l
.

Thus

E[|R|A|] ≤ E[|R1|] + E[|(R \R1)|A|]

≤
∑
S∈R

Pr[S ∈ R1] + s · ϕ
(
s, 4l · ks

n

)
≤ |R|

4l
+ s · ϕ

(
s, 4l · ks

n

)
,

where we used the fact that

|(R \R1)|A| = O
(
|A| · ϕ(|A|, t)

)
, where t = max

S∈R\R1

|S| ≤ 4l
ks

n
.

Now the bound follows from Lemma 11.
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6 Conclusion

We want to end with some discussions on the computational aspects of some of the results
proved in this paper.

The lower bound construction, given in the proof of Theorem 1, showing the optimality of
the Shallow Packing Lemma (Theorem E) is constructive, i.e., the set system constructed in
the proof of the theorem can be computed in time O(nd), where n is the size of the ground set
and the set system constructed has (d, d1) CS property.

Agarwal, Matoušek and Sharir [AMS13] proved the following constructive version of the
polynomial partitioning result (Lemma 9) of Guth and Katz [GK15].

Theorem 12 (Constructive Polynomial Partitioning). Given a set P of n points in Rd, for
some fixed d, and a parameter r ≤ n, an r-partitioning polynomial for P of degree O(r1/d) can
be computed in randomized expected time O(nr + r3).

Using the above result we get the following constructive version of Theorem 2.

Theorem 13 (Constructive Algorithm for Mnets). Let d, D, d0, ∆, s and δ be integers and
(X,R) a semialgebraic set system generated by Γd,∆,s with |X| = n and VC-dim(R) ≤ d0.
Assume also that X is in D-general position10. If R has shallow cell complexity ϕ(·, ·), with
ϕ(·, ·) a non-decreasing function in the first argument, then there exists a randomized algorithm
with expected time complexity poly

(
n, 1

ε

)
that can compute for the set system (X,R) an ε-Mnet

Mε = {M1, . . . , Ml} of size

l = O

(
d0

ε
· ϕ
(

8d0

ε
, 48d0

))
.

In particular, if (X,R) has shallow cell complexity ϕ(·), then

l = O

(
1

ε
· ϕ
(

1

ε

))
.

The constants in the asymptotic notation of time complexity and the bound on l depend on m,
∆, d0 and s.
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