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PURPOSE: Effective representation of the diffusion signal’s dependence on diffusion time is a sought-after, yet still

unsolved challenge in diffusion MRI (dMRI). We propose a functional basis approach that is specifically designed to represent
the dMRI signal in this four-dimensional space – varying over gradient strength, direction and diffusion time – that we call
the multi-spherical space. In particular, we provide regularization tools imposing signal sparsity and signal smoothness to
drastically reduce the number of measurements we need to probe the properties of this multi-spherical space.

METHODS: We represent the multi-spherical signal attenuation E(q, τ) = S(q, τ)/S0 at diffusion encoding position q
and diffusion time τ using an orthogonal basis that allows to (1) represent any multi-spherical signal with a limited number
of parameters c, (2) impose smoothness in the signal space, (3) impose sparsity in the parameter space of the basis, and (4)
respect the boundary conditions of the signal such that E(0, τ) = 1. As we assume an infinitely short gradient pulse (δ → 0),
we follow Callaghan et al.’s description of time-dependent diffusion in pores and assume separability in the dependence of the
dMRI signal to q and τ [1]. We represent the fitted signal attenuation using the cross-product between the spatial Fourier

basis Φi(q) [2] and temporal basis Tk(τ) [3] such that we fit Ê(q, τ ; c) =
∑Nq

i

∑Nτ

k cik Φi(q)Tk(τ) with basis coefficients c
and Nq and Nτ the number of spatial or temporal basis functions, respectively. The voxel-wise optimization is as follows:

argminc

(1)DataFidelity︷ ︸︸ ︷∫∫ [
E(q, τ)− Ê(q, τ ; c)

]2
dqdτ +

(2) Smoothness︷ ︸︸ ︷∫∫ [
∇2Ê(q, τ ; c)

]2
dqdτ +

(3) Sparsity︷︸︸︷
‖c‖1 , subject to

(4) Signal Boundary︷ ︸︸ ︷
Ê(0, τ ; c) = 1 .

Once the coefficients c are known, we can directly estimate features of the multi-spherical diffusion propagator P̂ (R, τ ; c)
through our spatial basis’ Fourier properties [2]. We illustrate this by computing the time-dependent indices for the Return-
To-Origin Probability (RTOP) and Mean Squared Displacement (MSD). We apply our method to an in-vivo spin-echo
acquisition from a C57Bl6 wild-type mouse on an 11.7 Tesla Bruker scanner. An illustration of this scheme is given in the
figure below, on the left. We acquire 35 different “shells” with one b0 each and a total of 400 DWIs using pulse duration
δ = 5ms. Over these shells, we measure five equispaced “τ -shells” ∆ = {10.8, 13.1, 15.4, 17.7, 20}ms and seven approximately
equispaced “gradient shells” between {50 − 490}mT/m. The voxels are of size 100 × 100 × 500µm. We manually created
a brain mask and corrected the data from eddy currents and motion artifacts using FSL’s eddy correct, drew a region of
interest consisting of 173 voxels in the middle two slices in the corpus callosum and fitted our model.
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RESULTS: Right next to the ROI image, we show representations of RTOP and MSD for three equispaced times points.
Note that the times are not the measured ones but are interpolated from our fitted representation. As expected, we find a
decrease in RTOP and an increase in MSD as time increases. Below, we show the effect of random subsampling between
using 400 samples (blue) and 100 samples (red) on the fitting error (MSE), MSD and RTOP. We see that MSE is stable
down to 200 samples, then suddenly increases at 100 samples. MSD is fairly stable under subsampling and RTOP becomes
smaller, but remains positive as the number of samples reduces.

DISCUSSION: The MSE results show that our approach is able to effectively represent the multi-spherical diffusion
signal of anisotropic white matter using only 200 random samples. The MSD increase and RTOP decrease over time
corresponds to what we expect; as time increases, spins have more time to diffusive, covering more distance and reducing
their chance of being found at the origin. The progress of these indices over time may be related to the packing of the
underlying tissue [4]. When reducing samples MSD remains stable but RTOP becomes smaller, likely because the random
subsampling takes samples away from the restricted diffusion direction, perpendicular to the axon axis. The basis also
allows for extrapolation of Ê(q, τ ; c) before the shortest and after the longest measured τ , but the prediction will become
increasingly unreliable as the extrapolation is farther away from the measured space.

CONCLUSION: Our multi-spherical basis is the first of its kind in being specifically designed to represent the four-
dimensional EAP and analyzing its properties. Our proposed regularization allows us to significantly reduce the number of
measured samples, which may eventually bring multi-spherical diffusion MRI within the reach of clinical application.
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