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Multidimensional ESPRIT for Damped and
Undamped Signals: Algorithm,

Computations and Perturbation Analysis
Souleymen Sahnoun, Konstantin Usevich∗, Pierre Comon

Abstract—In this paper we present and analyze the perfor-
mance of multidimensional ESPRIT (N -D ESPRIT) method for
estimating parameters of N -D superimposed damped and/or
undamped exponentials. N -D ESPRIT algorithm is based on low-
rank decomposition of multilevel Hankel matrices formed by the
N -D data. In order to reduce the computational complexity for
large signals, we propose a fast N -D ESPRIT using truncated
singular value decomposition (SVD). Then, through a first-
order perturbation analysis, we derive simple expressions of
the variance of the estimates in N -D multiple-tones case. These
expressions do not involve the factors of the SVD. We also derive
closed-form expressions of the variances of the complex modes,
frequencies and damping factors estimates in the N -D single-tone
case. Computer results are presented to show effectiveness of the
fast version of N -D ESPRIT and verify theoretical expressions.

Index Terms—Frequency estimation, harmonic retrieval, mul-
tilevel Hankel matrix, 2-D ESPRIT, perturbation analysis, trun-
cated SVD.

EDICS: SSP-PARE, SSP-PERF, SSP-SPEC, SAM-DOAE

I. INTRODUCTION

Parameter estimation from bidimensional (2-D) and multi-
dimensional (N -D) signals finds many applications in signal
processing and communications such as magnetic resonance
(NMR) spectroscopy [1], wireless communication channel
estimation, antenna array processing and radar [2]. In these
applications, signals are modeled by a superposition of damped
or undamped N -D complex exponentials.

a) State of art: To deal with this problem, several
parametric methods have been proposed. They include lin-
ear prediction-based methods such as 2-D TLS-Prony [3],
and subspace approaches such as matrix enhancement and
matrix pencil (MEMP) [4], 2-D ESPRIT [5], R-D ESPRIT
[6], Shaped ESPRIT [7], improved multidimensional fold-
ing (IMDF) [8], [9], Tensor-ESPRIT [10], principal-singular-
vector utilization for modal analysis (PUMA) [11], [12] and
the methods proposed in [13], [14].

Other approaches were presented recently to address the
N -D harmonic retrieval problem. The coupled Canonical
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Polyadic Decomposition (CPD) formulation was investigated
in [15], [16] and an algorithm based on simultaneous matrix
diagonalization was applied. Also, the authors in [17] proposed
two methods based on multilevel Toeplitz matrices. The first
one (called MaPP) is similar to the MEMP algorithm [4], and
requires an extra step for pairing N -D modes. The second
algorithm of [17] (called RWTM) belongs to the class of sparse
recovery methods based on convex relaxations [18], [19], and
has a prohibitive computational complexity.

In this paper, we consider multidimensional ESPRIT meth-
ods that generalize the well-known ESPRIT [20] algorithm.
In [6] the multidimensional ESPRIT algorithm was proposed
for undamped signals in the context of antenna array process-
ing. In [5] the 2-D ESPRIT algorithm was proposed; it can
handle damped and/or undamped bi-dimensional signals and
works in presence of identical modes in all dimensions. The
methods of [6] and [5] employ different joint diagonalization
schemes for shift-invariance matrices: approximate simulta-
neous Schur decomposition in [6] versus diagonalization of
a linear combination of matrices in [5]. The difference also
is that [6] treats the case of several temporal samples (so-
called snapshots) of the signal (which is common in array
processing), whereas [5] treats a single temporal sample.
Therefore, in [5] an extended Hankel-block-Hankel matrix is
first constructed from data, which corresponds to so-called
spatial smoothing in antenna array processing literature.

It is generally admitted that ESPRIT-type (and, in general,
subspace-based methods) methods yield accurate estimates at
high SNR and/or when the frequencies are well separated.
Statistical performances of subspace 1-D estimation methods
have been extensively studied in the case of undamped si-
nusoids [21], [22], [23] and damped ones [24]. Analytical
performances of tensor-based ESPRIT-type algorithms have
been assessed for undamped signals [25] , and more recently,
for the case of spatial smoothing [26]. Statistical performance
of some related methods have been also studied, but only in
the case of undamped sinusoids [8], [9]. For damped signals,
a new study was presented for the case of 1-D damped
single-tone [27], resulting in new closed-from expressions. An
extension of the results of [27] to the case of 2-D ESPRIT was
initiated in [28] independently of [26].

Despite many advantages, multidimensional ESPRIT-type
algorithms, especially in the case of spatial smoothing, are
often considered as slow. This happens due to the fact that a
naive implementation often uses the full SVD, whose com-
plexity grows very fast with the size of the involved matrices.
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b) Contributions: In this paper, we focus on the 2-
D ESPRIT algorithm of [5] and its generalization to N
dimensions, since we are interested in possibly damped signals
and the case of single snapshot. First, we give an explicit
description of the extension [5] of the 2-D ESPRIT algorithm
to N -D signals (we call it N -D ESPRIT1. We use an approach
simpler than in [5] for describing the algorithm, using tensor
formalism and multilevel Hankel (MH) matrices, that is also
useful for deriving other results of the paper. We discuss the
difference between the N -D ESPRIT and the multidimensional
ESPRIT of [6], and other methods, such as IMDF [9] and
MEMP [4]. We also give explicitly recovery (identifiability)
conditions for the N -D ESPRIT algorithm, that are, up to our
knowledge, not discussed in [6], [26].

Next, we propose a fast version of the N -D ESPRIT
algorithm (which we call Fast N -D ESPRIT) that utilizes the
multilevel Hankel structure of the involved matrices and uses
the truncated SVD. It enjoys a low computational complexity
and allows handling large signals and large matrices.

One of the main contributions of our paper is the per-
turbation analysis of the N -D ESPRIT algorithm. Through
a first-order perturbation analysis, we derive expressions of
the variance of the complex modes, frequencies and damping
factors estimates in the N -D damped multiple tones case. Our
derivations of the first-order perturbations are self-contained
and are based on rigorous proofs. In particular, we base
our results on the recent full expressions for the first-order
perturbations of the SVD [29, Theorem 1], [30, Proposition
9], unlike the state-of-the-art papers [25], [26] (and earlier
papers [21], [31]) that neglect the term containing the change
of basis of the signal subspace. In our paper, we fill this gap
and provide a rigorous proof that the aforementioned term
does not influence the first-order perturbation of the modes
(similarly to 1-D ESPRIT as shown in [29], [30]). Moreover,
we propose a simplified formula for first-order perturbation
that does not involve the factors of the SVD, which allows for
easier analysis and interpretability. Finally, we derive closed-
form expressions for the variances of the perturbations in the
N -D damped and undamped single-tone case. For the single
tone case for undamped signals, we obtain the results as in
[26, Theorem 3]. However, our final formula is simpler than
the one of [26].

c) Organisation of the paper: In Section II, we introduce
notation and present the N -D modal retrieval problem. In
Section III, we describe construction of multilevel Hankel
matrices and their subspace properties are recalled. In Sec-
tion VI, the N -D ESPRIT algorithm is presented and recovery
conditions are discussed. Then a fast implementation of N -D
ESPRIT is proposed using truncated SVD of MH matrices and
the gain in computational complexity is shown. The difference
with related methods is also pointed out. In Section V, a first-
order perturbation analysis for N -D ESPRIT is performed and
simplified expressions are derived in the multiple tones case.
In Section IV, the single tone case is analyzed and closed form

1In our terminology, N -D ESPRIT stands for the algorithm of [5] and its
generalization (the case of single snapshot) and “multidimensional ESPRIT”
for the algorithm of [6].

expressions are derived. In Section VII, computer results are
presented to verify the theoretical expressions and to compare
N -D ESPRIT, fast N -D ESPRIT and IMDF algorithms.

II. BACKGROUND AND PROBLEM STATEMENT

A. Notation
In this paper we use the following fonts: lowercase (a)

for scalars, boldface lowercase (a) for vectors, uppercase
boldface (A) for matrices, and calligraphic (A) for N -D arrays
(tensors). Vectors are, by convention, one-column matrices.
The elements of vectors/matrices/tensors are accessed as (a)i,
(A)i,j and (A)i1,...,iN respectively. We use MATLAB-like
notation for taking subarrays, i.e. (A)i1:j1,...,iN :jN .

We denote by a∗, A∗ and A∗ elementwise conjugation of
vectors matrices and tensors. For a matrix A, we denote its
transpose, Hermitian transpose and Moore-Penrose pseudoin-
verse as AT, AH and A† respectively. The notation IM is
used for the M ×M identity matrix.

Given a collection of vectors a1 ∈ CI1 , . . . ,aN ∈ CIN , the
outer product A = a1 ⊗ · · · ⊗ aN is the tensor

(A)i1,...,iN = (a1)i1(a2)i2 · · · (aN )iN .

We use the symbol � for the Kronecker product of matrices
in order to distinguish it from the outer product, and � for
the Khatri-Rao (column-wise Kronecker) product.

For a tensor (or matrix) A ∈ CI1×···×IN we denote by
vecr{A} its “row-major” vectorization, i.e.

vecr{A}
def
= [(A)1,...,1, (A)1,...,2, · · · , (A)1,...,1,IN

(A)1,...,2,1, · · · , (A)I1,...,IN ]
T
.

The row-major vectorization is used because it is compatible
with the Kronecker product [32], i.e.

vecr{a1 ⊗ · · · ⊗ aN} = a1 � · · ·� aN . (1)

Unlike in [32], we use a special notation for row-major
vectorisation in order to distinguish it from the conventional
column-major vectorisation.

Given a scalar a and a natural number M we will use the
notation a(M) for the Vandermonde-structured vector

a(M) def
=
[
1 a a2 · · · a(M−1)

]T
. (2)

For a vector v ∈ CM we denote by Diag(v) the M ×M
diagonal matrix with the elements of v on the diagonal; for
a matrix A ∈ CM×M , diag(A) stands for the vector of the
elements on its main diagonal.

B. Signal model
Denote N the number of dimensions and Mn, n =

1, . . . , N , the size of the sampling grid in each dimension.
We consider the model below, for mn = 0, . . . ,Mn − 1:

ỹ(m1, . . . ,mN ) = y(m1, . . . ,mN ) + ε(m1, . . . ,mN ), (3)

where ε(·) is random noise (we leave the assumptions on
the noise for later), and the signal y(m1, . . . ,mN ) is a
superposition of R N -D damped complex sinusoids:

y(m1, . . . ,mN ) =

R∑
r=1

cr

N∏
n=1

(ar,n)mn , (4)
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where
• cr are complex amplitudes,
• ar,n = e−αr,n+ωr,n are modes in the n-th dimension,
• {αr,n}R,Nr=1,n=1 are real damping factors2 (not necessary

positive),
• {ωr,n = 2πνr,n}R,Nr=1,n=1 are angular frequencies.

The problem is to estimate {ar,n}Rr=1 and {cr}Rr=1 from noisy
observations ỹ(m1, . . . ,mN ).

C. Tensor formulation

It is often convenient to rewrite the signal model in tensor
notation. The tensor representation is particularly useful in the
proofs contained in Appendices B and C. Let the tensor Y ∈
CM1×···×MN be given as3

(Y)i1,...,iN = y(i1 − 1, . . . , iN − 1).

We also define similarly the tensors Ỹ, E ∈ CM1×···×MN .
Then (3) can be compactly written as Ỹ = Y + E , and (4)
is the canonical polyadic (CP) tensor decomposition

Y =

R∑
r=1

cr a
(M1)
r,1 ⊗ · · · ⊗ a

(MN )
r,N (5)

where a
(Mn)
r,n are Vandermonde-structured vectors for ar,n

defined in (2).
By the properties of CP decomposition, eqn. (5) after

vectorization can be rewritten with the help of Khatri-Rao
products:

vecr{Y} =
(
A

(M1)
1 �A

(M2)
2 � · · · �A

(MN )
N

)
c, (6)

where c =
[
c1 · · · cR

]T
is the vector of amplitudes, and

A
(Mn)
n defines the Vandermonde matrix of the modes in the

n-th dimension

A(Mn)
n

def
=
[
a
(Mn)
1,n · · ·a(Mn)

R,n

]
∈ CMn×R.

III. MULTILEVEL HANKEL MATRICES AND THEIR
SUBSPACES

A. Definition and factorization

In this section, we describe the construction of the mul-
tilevel Hankel matrix, which is used in many subspace-
based methods. Assume that (Ln)Nn=1 is chosen such that
1 ≤ Ln ≤ Mn and define Kn

def
= Mn − Ln + 1. Define

by y(i1,...,iN ) ∈ CL1×···×LN the vectorized subarray

y(i1,...,iN ) def
= vecr{(Y)i1:i1+L1−1,...,iN :iN+LN−1}.

Then the multilevel Hankel (MH) matrix4 H ∈
C(L1···LN )×(K1···KN ) is defined by stacking the vectorized

2The damping factors are important in a number of applications, including
NMR spectroscopy [1].

3The subtraction is needed because the indices in the tensor start from 1.
4The definition of the MH matrix corresponds in some other works to

the spatial smoothing operation [10], to “smoothed data matrix” [9] or to
“enhanced matrix” [4].

subarrays in the vectorization order

H
def
=
[
y(1,...,1) y(1,...,1,2) · · · y(1,...,1,KN )

y(1,...,1,2,1) · · ·

· · ·y(K1,K2,...,KN−1) y(K1,K2,...,KN )
]
.

(7)

By H̃ we denote the noisy version of the signal constructed
upon noisy observations ỹ.

Remark 1: The matrix (7) has nested structure of Hankel
blocks inside each other, as shown in Appendix A. Such ma-
trices are conventionally called “multilevel Hankel matrices”
in the linear algebra literature [33].

It can be verified that in the absence of noise, MH matrix
(7) admits a factorization of the form

H = P diag(c)QT, (8)

where

P = A
(L1)
1 �A

(L2)
2 � · · · �A

(LN )
N ,

Q = A
(K1)
1 �A

(K2)
2 � · · · �A

(KN )
N .

The factorization (8) directly follows from (6). The proof
can be also found in [8].

B. Shift properties of subspaces

Let us define the selection matrices

I
n — def

= IL1
� IL2

� · · ·� ILn � · · ·� ILN (9)

= I∏n−1
i=1 Li

� ILn � I∏N
i=n+1 Li

, (10)

In —
def
= IL1 � IL2 � · · ·� ILn � · · ·� ILN (11)
= I∏n−1

i=1 Li
� ILn � I∏N

i=n+1 Li
, (12)

where X (resp. X) represents X without the last (resp. first)
row.

Next, for a matrix X we define X
n —

= I
n —

X and Xn — = In —X.
Then the shifted versions of P satisfy the following equation:

Pn —Ψn = P
n —
, (13)

where Ψn = diag(a(n)), a(n) = [a1,n, . . . , aR,n]T.
Now consider Us the matrix of the leading R left singular

vectors of the noiseless matrix H. Since the ranges of Us and
P coincide, they are linked by a nonsingular transformation:

P = UsT.

Hence, the matrix Fn
def
= TΨnT−1 satisfies the equation

Usn —
Fn = Us

n —
, (14)

If the matrix Usn —
is full-column rank, then the matrix Fn

satisfies the following equation:

Fn =
(

In —Us

)† (
I

n —
Us

)
:=
(
Usn —

)† (
U
n —

s

)
(15)

Hence, the matrices Fn can be computed from the signal
subspace Us, and the modes of each dimension n can be
estimated by the eigenvalues of Fn.

Remark 2: Instead of Us, any basis of the signal subspace
can be used.
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IV. N-D ESPRIT FOR MULTILEVEL HANKEL MATRICES

A. N-D ESPRIT algorithm

We formulate the N -D ESPRIT algorithm as an extension of
the 2-D ESPRIT algorithm of [5]. The N -D ESPRIT algorithm
consists of the following steps:

1) Choose L1, . . . , LN and set Kn=Mn−Ln+1.
2) Construct the MH matrix H̃ from the noisy signal, in the

same format as (7).
3) Perform the SVD of H̃, and form the matrix Ũs ∈

C(L1···LN )×R of the R dominant singular vectors.
4) Compute the matrices F̃n

F̃n :=
(
Ũsn —

)† (
Ũ
n —

s

)
. (16)

5) Compute a linear combination of matrices, where
β1, . . . , βn are given parameters.

K̃ =

N∑
n=1

βnF̃n (17)

6) Compute a diagonalizing matrix T of K̃ (from its eigen-
value decomposition):

K̃ = T Diag(η)T−1. (18)

7) Apply the transformation T to Fn:

D̃n = T−1F̃nT, for n = 1, . . . , N (19)

8) Extract {[â1,n, . . . , âR,n]}Nn=1 from diag(D̃n), n =
1, . . . , N

Note that in N -D ESPRIT there is no separate step of pairing
of the modes. The modes are paired automatically because the
same diagonalizing transformation T is used. Note that, by
proper choice of βn, the N -D ESPRIT algorithm can handle
the case of identical modes in one or several dimensions. The
conditions for the correct recovery of modes depend on Mn,
Ln and βn, and are described in Section IV-C.

B. Variants and related algorithms

First, there are several variants of N -D ESPRIT.
• There is a well-known multidimensional ESPRIT algo-

rithm5 proposed in [6] and [26]. In fact, the algorithm
described in Section IV-A corresponds to the version of
the algorithm of [6], [26] with spatial smoothing (because
only a single snapshot is available). The main difference
is in steps 5–8. The matrices in [6], [26] F̃n are jointly
triangularized using simultaneous Schur decomposition
[6] and the modes ar,n are extracted from the diagonals
of the triangular matrices.

• In [5], in addition to 2D-ESPRIT, an algorithm under the
name “2D-MEMP with improved pairing step” was pro-
posed. The difference is only in steps 7–8: the modes ar,n
are extracted from individual eigenvalue decompositions
of matrices F̃n and the matrix T is used just to perform
the pairing of the modes.

5Note that in the original paper of [6] only the unitary version of N -D
ESPRIT was considered that is not applicable to damped signals.

As we will see, our first-order perturbation analysis also
applies to these two variants.

Second, the algorithm IMDF of [9] is related to N -D
ESPRIT, but it is not an extension of 2-D ESPRIT. The
first difference is that the selection matrices (analogues of I

n —

and In — ) are defined in a slightly different way. The second
difference is that in [9] modes are estimated from Pn — . However,
in the N -D ESPRIT algorithm defined in Section IV-A, the
modes are estimated from (19).

C. Recovery conditions

There are some essential assumptions which guarantee that
in the noiseless case the N -D ESPRIT algorithm recovers the
modes correctly. These are not the recovery conditions for the
multidimensional harmonic retrieval problem [34], but they
give the limits of applicability of N -D ESPRIT.

Assumption 1: For every n, the matrices Pn — and Q are full
column rank (their rank is equal to R).

Assumption 2: The coefficients βn, n = 1, . . . , N should
satisfy the condition that all the numbers ηr defined as

ηr =

N∑
n=1

βnar,n

are distinct.
Remark 3: The conditions can be explained as follows:

1) The first assumption is to guarantee that (16) gives the
unique solution to (14). Thus the matrices Fn = F̃n, i.e.
the matrices Fn are recovered correctly.

2) The ηr are exactly the eigenvalues of K =
∑N
n=1 βnFn.

Thus the eigenvalue decomposition of K is unique (up
to permutation of columns), and therefore the step of the
algorithm retrieves the correct T.

Now we establish some results on when these assumptions
are satisfied. We start from Assumption 2.

Lemma 1: For any set of modes, a generic (random) choice
of βk satisfies the Assumption 2 almost surely.

Proof Since a projection of R points in CN on a random line
separates the points, the lemma holds true. �

The following lemma establishes conditions for generic
identifiability.

Lemma 2: Let the number of modes satisfy

R ≤ min
n

{
(Ln − 1)

N∏
i=1
i 6=n

Li,

N∏
i=1

Ki

}
.

Then for a generic choice of modes, rank Pn — = rank Q = R

Proof The proof follows from [34, Proposition 4]. �

D. Fast N-D ESPRIT

Let us define L = L1 · · ·LN and K = K1 · · ·KN (the sizes
of the MH matrix) and M = M1 · · ·MN . The main bottleneck
of N -D ESPRIT (and, in general, all subspace-based methods
for multidimensional harmonic retrieval) is the SVD of the
multilevel Hankel matrix, which can be very large. The classic
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Golub-Reinsch algorithm [35, Ch. 8] for the full SVD requires
O(L2K) flops [35] (in the case L ≤ K), and also the matrix
itself needs to be stored in memory.

In this paper, we propose to compute the truncated SVD
(TSVD), i.e., to find only the R leading singular val-
ues/vectors. Let TA be the number of flops needed to compute
the matrix-vector products Av and AHu for given vectors
u and v. Then the leading R singular values/vectors of a
matrix A can be found using, for example, Lanczos bidiag-
onalization [35, Ch. 9] with partial reorthogonalization [36]
is O(RTA + R2(L + K)) (see [37, §3] for an overview of
Lanczos-based methods).

The Lanczos-based methods were first used for 1-D ESPRIT
in [38], [39]. However, in [38], [39], just the original Lanczos
iterations [35, Ch. 9] are used, which may have poor perfor-
mance due to loss of orthogonality and/or slow convergence
of the iterations. This can be remedied by using partial
reorthogonalization and/or restarting schemes [36], [40], [41],
which yield accurate computations for singular values and
vectors and have a stable and efficient implementation [42].

In the case of N -D ESPRIT, for MH matrices, the matrix-
vector product can be computed using the N -D Fast Fourier
Transform (FFT) in O(M log(M)) flops using the N -D FFT,
as we show in Appendix B. This fact was used in [38], [37]
for truncated SVD of Hankel matrices, and independently in
[43] and [44] for special cases of MH matrices. Although
the matrix-vector multiplication in the general MH case is
a straightforward extension of algorithms [43, eqn. (22)] and
[44, Lemma 2], we provide in Appendix B a description of
the algorithm for several reasons: in [43] Toeplitz matrices are
treated and in [44] only real Hankel-block-Hankel matrices are
treated (also, the proof of [44, Lemma 2] contains misprints).
As a result, when R is small compared with log(M), the cost
of the TSVD is O(RM log(M)) flops.

Therefore, we have the following flop counts for the N -D
ESPRIT algorithm:

1–3) O(RMlog(M)) flops;
4) O(RLN) flops (can be further reduced to O(rL) if the

selection matrices (10) and (12) are used);
5–6) O(R3) flops (computing eigenvalues up to required pre-

cision);
The total computational complexity is O(RM log(M))

(compared with O(L2K) when using the full SVD).

V. PERTURBATION ANALYSIS

A. Basic expressions

The SVD of the noiseless MH matrix H is given by:

H = UsΣsV
H
s + UnΣnVH

n (20)

where Σn = 0. The perturbed H̃ is expressed as

H̃ = H + ∆H.

In this section, we derive first-order perturbations with respect
to ∆H for the quantities in the N -D ESPRIT algorithm.
The first-order perturbations are equal to complex matrix
differentials (see [45] for a definition and a summary of
properties).

First, we recall the expression for the perturbation of Us.
Lemma 3 ([29, Theorem 1] and [30, Proposition 9]): Let

H̃ = ŨsΣ̃sṼ
H
s + ŨnΣ̃nṼH

n (21)

be the subspace decomposition of H̃. Then the first-order
approximation of the Ũs −Us is given by

∆Us = UnUH
n∆H VsΣ

−1
s + UsR, (22)

where R is an antihermitian matrix (i.e. RH = −R) that
depends on ∆H (the precise expression of the matrix R can
be found in [29, Theorem 1] or [30, Proposition 9]).

Remark 4: In earlier papers on perturbation analysis of the
SVD [21], [31], as well as in the state-of-the art literature
on perturbation analysis for multidimensional ESPRIT-type
algorithms [25] the term UsR was often neglected. In this
paper, we derive perturbations based on the full formula (22).
First, we give expressions first-order perturbations of the
matrices Fn.

Lemma 4: The first-order perturbation of Fn is given by

∆Fn = (Usn —
)†(∆U

n —

s −∆Usn —
Fn). (23)

Proof The proof can be found in Appendix C.

Next, let tr denote the eigenvectors of K (the columns of T)
and τT

r denote the rows of T−1:

T = [t1, . . . , tR], T−1 = [τ1, . . . , τR]T.

Then the following result holds true.
Lemma 5: The first-order perturbations of the modes given

by steps 7-8 of the N -D ESPRIT algorithm are given by

∆ar,n = τT
r ∆Fntr. (24)

Proof The proof can be found in Appendix C.

Remark 5: An immediate consequence of Lemma 5 is that
the first-order perturbation does not depend on the way the
matrix Fn is diagonalized (in particular it does not depend
on the coefficients βr). In fact, it depends only on the
perturbations of the matrices Fn. Hence, in particular, the
first-order perturbations for 2D-ESPRIT and 2D-MEMP with
improved pairing step coincide.

A substitution of (23) into (24) leads to the following
formula for the perturbation of the modes.

Corollary 1: The first order perturbation of the modes can
be given as

∆ar,n = τT
r (Usn —

)†( I
n —
− ar,n In —)∆H VsΣ

−1
s tr (25)

Proof The proof can be found in Appendix C.

Note that the term UsR from (22) does not affect the
expression (25).

B. A simplified formula for the perturbations

The expression of first order perturbation (25) is widely
used in the literature. It corresponds to the expressions given
in [25], which is the state-of-the-art perturbation analysis.
The main problem is that in (25) knowledge of the singular
value decomposition of the MH matrix H is needed. This
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complicates a further analysis, since for R ≥ 2 it becomes
difficult to obtain the components of the SVD analytically. In
what follows we give a simplified expression that does not
require knowledge of the SVD.

Proposition 1: Let the matrix H satisfy (8), where the matrix
P satisfies (13) for n = 1, . . . , N . Further, by br ∈ CR we
denote the r-th unit vector. Then the first order perturbation
of the modes obtained by N -D ESPRIT admits an expansion

∆ar,n =
1

cr
b>r Pn —

†( I
n —
− ar,n In —)∆H (QT)†br. (26)

Proof The proof can be found in Appendix C.

The main advantage of the formula (26) is that it allows for
an a priori perturbation analysis, i.e., we do not need the SVD
of the MH matrix to compute the perturbation. Yet another
advantage of (26) is that it clearly shows the perturbation of
the r-th tone (∆ar,n) does not depend on the amplitudes of
other tones (the coefficients ck, k 6= r), and depends only on
angles between the columns of matrices Pn — and Q. This is
a remarkable feature of N -D ESPRIT (a similar fact for 1D
ESPRIT can be found in [30, Proposition 12]).

Remark 6: The formula (26) can be extended to the case of
multiple snapshots and other subspace-based methods.

C. Computation of moments of the perturbation

First, we rewrite the perturbation (26) in the form

∆ar,n = vH
r,n∆Hx∗r , (27)

where

vH
r,n =

1

cr
bT
r Pn —

†( I
n —
− ar,n In —), x∗r = (QT)†br. (28)

Since the equation (27) is linear in ∆H, there is the following
alternative way to compute the perturbation.

Lemma 6: Let e = vecr{E} be the vectorization of the tensor
of the noise term in (3). Then the product (27) is equal to

∆ar,n = zHr,ne, (29)

where the vector zr,n is defined as

zr,n = vecr{X ? V},

where V ∈ CL1×···×LN and X ∈ CK1×···×KN are the
tensorizations of vr,n and xr, and X ? V ∈ CM1×···×MN is
the multidimensional convolution6 of tensors.

Proof The proof can be found in Appendix B.

From the representation (29) of the perturbation, it follows that
we can compute the moments of the perturbation as follows.

Corollary 2:
1) E {∆ar,n} = 0 if e is zero-mean.
2) E

{
∆a2r,n

}
= 0 if e is circular.

3) If e has covariance matrix Γ = E
{
eeH

}
,

E
{
|∆a|2r,n

}
= zHr,nΓzr,n.

6See Appendix B for a definition of multidimensional convolution.

In particular, if e is white with variance σ2
e , then

E
{
|∆a|2r,n

}
= σ2

e‖zr,n‖22.

4) If e is complex circular Gaussian,

var(∆ωn) = var(∆αn) =
E
{
|∆ar,n|2

}
2|ar,n|2

.

Remark 7: As in the previous subsection, the new formula
for the variance E

{
|∆a|2r,n

}
allows for an a priori pertur-

bation analysis. It also shows a remarkable feature of N -D
ESPRIT: the variance of the perturbation of the r-th tone does
not depend on the amplitudes of other tones. In particular, it
depends on the partial SNR with respect to each tone.

Remark 8 (On computation of the vr,n, xr): The vectors
vr,n and xr do not require the computation of pseudo-inverses.
Indeed, xr can be obtained by the QR decomposition of Q,
followed by solving a triangular system. It is similar for vr,n.
Finally zr,n can be computed efficiently using FFT, as shown
in Appendix B.

VI. SINGLE-TONE CASE

In this section, we calculate the perturbations of the param-
eter estimates for the single-tone signal

y(m1, . . . ,mN ) = c

N∏
n=1

amnn .

As in [28], [26], we analyze the single-tone case in order to
gain more insight in the optimal choice of the parameters Ln.

A. Specialising the general formulas

Since a† = 1
‖a‖22

aH for any vector a, and the matrices F̃n
defined in (16) are just scalars, the steps 4–8 of N -D ESPRIT
are equivalent to defining the estimates ân as

ân = F̃n =
1

‖ ũn —‖22
( ũn —)H ũ

n —
,

where ũ is the leading left singular vector of H̃. For the
perturbations, the expression (26) can be also simplified. In
this case, the matrices P and Q consist of a single column,
which we denote by p and q, respectively:

p =
(
a
(L1)
1 � · · ·� a(Ln)

n � · · ·� a
(LN )
N

)
and

q =
(
a
(K1)
1 � · · ·� a(Kn)

n � · · ·� a
(KN )
N

)
. (30)

Hence (26), becomes to

∆an =
1

c‖ p
n —
‖22‖q‖22

p
n —

H( I
n —
− an In —)∆H q∗.

From Lemma 6, we get the following expression.
Lemma 7: The first-order perturbation is expressed as

∆an = zHne,
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where

zn =
1

c

{ (
a
(L1)
1 ? a

(K1)
1 )

‖a(L1)
1 ‖22‖a

(K1)
1 ‖22

� · · ·�
(
a
(Ln−1)
1 ? a

(Kn−1)
1 )

‖a(Ln−1)
n−1 ‖22‖a

(Kn−1)
n−1 ‖22

�

((
(ILn−a∗nILn)Ta

(Ln−1)
n

)
? a

(Kn)
1

)
‖a(Ln−1)

1 ‖22‖a
(Kn)
1 ‖22

�

(
a
(Ln+1)
1 ? a

(Kn+1)
1 )

‖a(Ln+1)
1 ‖22‖a

(Kn+1)
1 ‖22

� · · ·�
(
a
(LN )
1 ? a

(KN )
1 )

‖a(LN )
1 ‖22‖a

(KN )
1 ‖22

}
,

where ? denotes convolution of vectors.

Proof The proof can be found in Appendix C.

B. Expressions for the moments of the perturbations

Here we assume that e is zero-mean, and E
{
eeH

}
=

σ2
eI∏N

n=1Mn
. Then, by Lemma 7, the variance of ∆an can

be expressed as

E
{
|∆an|2

}
= σ2

e‖zn‖22 (31)

=
σ2
e

|c|2
f(Ln,Mn, an)

N∏
i=1
i 6=n

g(Li,Mi, ai), (32)

where the functions f(L,M, a) and g(L,M, a) are defined as

f(L,M, a) =

∥∥∥((IL−a∗IL)Ta(L−1)) ? a(K)
∥∥∥2

‖a(L−1)‖22‖a(K)‖42
,

g(L,M, a) =
‖a(L) ? a(K)‖2

‖a(L)‖4‖a(K)‖4
,

with K = M − L+ 1 and a(·) defined as in (2).

C. Closed form expressions

Here we provide expressions that can be also found in [28].
We also give the full proofs that are absent in [28].

First, we note that the formula for f(L,M, a) coincides with
the formula for the variance of the first-order perturbation of
the 1-D ESPRIT. Hence, the results from [46], [30], [27] can
be used.

Proposition 2 ([27, eqn. (26)], [46, eqn. (4.16)], [30,
Corollary 7] ): In the undamped case (|a| = 1), the function
f(L,M, a) has the form

f(L,M, a)=

{
2

K2(L−1) , if L− 1 ≤ M
2 and |a| = 1,

2
K(L−1)2 , if L− 1 ≥ M

2 and |a| = 1.
(33)

In the damped case (|a| 6= 1), we have that

f(L,M, a) = (1− |a|2)3×
1+|a|2K

(1−|a|2K)2(1−|a|2(L−1))
, if L− 1 ≤ M

2 and |a| 6= 1,

1+|a|2(L−1)

(1−|a|2K)(1−|a|2(L−1))
2 , if L− 1 ≥ M

2 and |a| 6= 1.
(34)

We note that the function f is symmetric with respect to L =
M
2 + 1.

Proposition 3: In the undamped case the expression is given
in (35).

g(L,M, a)=


1
K

(
1- L

2-1
3LK

)
, if L ≤ M+1

2 and |a| = 1,

1
L

(
1-K

2-1
3LK

)
, if L ≥ M+1

2 and |a| = 1.

(35)

In the damped case (|a| 6= 1), the function g(L,M, a) can be
found as Eq. (36)

Proof The proof can be found in Appendix C.

The behavior of f(L,M, a) and g(L,M, a) for typical
examples are shown in Figures 1 and 2. In Figure 3 and
Figure 4 the analytic variances var(∆ωa) and var(∆ωb) are
plotted. In Figure 5, total mean square error is plotted.

Remark 9: Based on Propositions 2–3, the optimal values
for Li can be obtained, in the same manner as it was shown
in [28] for the 2-D case.
• If one wishes to minimize an individual variance
E
{
|∆an|2

}
, then the optimal window sizes are chosen

as follows: take Lj , j 6= n as small as possible, and take
the optimal Ln as in 1-D ESPRIT [27]. For an = e−α+ω

and a white Gaussian noise it is given by

L(opt)
n =

{
Mn

3 + 1, α = 0,
Mn

2 + 1
α ln(tan π−arctan eαMn

3 ) + 1, α 6= 0.

• If one wishes to minimize the total MSE for all modes,
the optimal window sizes seem to be difficult to describe
analytically.

Note that the optimal Li depends on the type of noise, as in
the 1D case [47].

Remark 10: For the undamped case (|an| = 1), the ex-
pression of the variance similar to (32) was independently
and almost simultaneously obtained in [26, Theorem 3]. The
question of finding optimal Lr for the undamped case is also
discussed in [26]. Nevertheless, the expression for g(L,M, a)
given in (35) is much simpler than in [26, eqn. (40)].

L
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1
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lo
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[f
(L

,M
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)]

-45

-40

-35
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-25

-20

-15

-10

alpha = 0.1, M2 = 100
alpha = 0.01, M2 =100
alpha = 0.1, M2 = 30
alpha = 0.01, M2 =30

Fig. 1. Behavior of function f(L,M, a) as a function of L for different
values of M and damping factors.

VII. SIMULATIONS

Numerical simulations have been carried out to verify
theoretical expressions and compare the performances of N -
D ESPRIT and Fast N -D ESPRIT with the state-of the art
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g(L,M, a) = (1− |a|2)×


−2L(1−|a|2)(|a|2K+|a|2L)

(1−|a|2L)2(1−|a|2K)2
+ (1+|a|2K)(1+|a|2)

(1−|a|2L)(1−|a|2K)2
, if L ≤ M+1

2 and |a| 6= 1

−2K(1−|a|2)(|a|2L+|a|2K)
(1−|a|2L)2(1−|a|2K)2

+ (1+|a|2L)(1+|a|2)
(1−|a|2L)2(1−|a|2K)

, if L ≥ M+1
2 and |a| 6= 1

(36)

L
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0

lo
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)]
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alpha = 0.1, M2 = 100
alpha = 0.01, M2 =100
alpha = 0.1, M2 = 30
alpha = 0.01, M2 =30

Fig. 2. Behavior of function g(L,M, a) as a function of L for different
values of M and damping factors.
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Fig. 3. Variance of ∆ωa as a function of L1 and L2
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Fig. 4. Variance of ∆ωb as a function of L1 and L2

methods, such as IMDF7 [8], [9] and Tensor-ESPRIT [10], in
the presence of white Gaussian noise. The performances are
measured by the total mean square error (tMSE) on estimated
parameters and the computational time. The total MSE is de-
fined as tMSE = 1

RF Ep
{∑R

r=1

∑F
f=1(ξf,r − ξ̂f,r)2

}
where

ξ̂f,r is an estimate of ξf,r, and Ep is the average on p Monte-

7IMDF is an improved version of the multidimensional folding approach
initially proposed to maximize identifiability in [48].
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Fig. 5. tMSE as a function of L1 and L2
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Fig. 6. Theoretical and empirical MSEs for 2-D ESPRIT versus L, (L =
L1 = L2). (αa, ωa) = (0.1, 0.2π), (αb, ωb) = (0.1, 0.4π), (M1,M2) =
(30, 30), SNR = 40 dB.

Carlo trials. In our simulations, ξf,r can be either a frequency
or a damping factor.

A. N -D single-tone

In the first three experiments, we tend to verify the obtained
closed-form expressions in the case of N -D single tone. We
consider a 2-D damped single-tone signal with parameters
(αa, ωa) = (0.1, 0.2π) and (αb, ωb) = (0.1, 0.4π). The SNR
is fixed to 40 dB. Figure 6 shows the total MSE and its
theoretical value obtained from 200 Monte Carlo trials with
(M1,M2) = (30, 30). Since it is difficult to see the difference
between the two curves in a 3-D plot, we show only one
diagonal slice of the 3-D plot corresponding to L1 = L2.
We can observe that the theoretical tMSEs are close to the
estimated ones. In the second example, we repeat the same
experience with (M1,M2) = (100, 100) using the fast N -D
ESPRIT method. The obtained results are reported in Figure 7,
where it can bee seen that theoretical tMSEs are again close
to the estimated ones.

In the third example, the same parameters of the modes
are used but the SNR is varying. The parameters (L1, L2) are
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Fig. 7. Theoretical and empirical MSEs for 2-D ESPRIT (fast SVD) versus
L, (L = L1 = L2). (αa, ωa) = (0.1, 0.2π), (αb, ωb) = (0.1, 0.4π),
(M1,M2) = (100, 100), SNR = 40 dB.
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Fig. 8. Theoretical and empirical tMSEs for 2-D ESPRIT versus SNR.
(L1, L2) = (4, 4). (αa, ωa) = (0.1, 0.2π), (αb, ωb) = (0.1, 0.4π),
(M1,M2) = (10, 10).

set to (4, 4). The obtained results are depicted in Figure 8.
We observe that the theoretical results are almost equal to
empirical ones beyond a threshold, which is here -5 dB.

For a fast implementation of N -D ESPRIT (denoted as “Fast
N -D ESPRIT”), we use the implementation of the TSVD in
the PROPACK package [42] developed within the PhD thesis
[49]. We use the updated version of the PROPACK package
available as a part of the SVT software [50].

B. Multiple tones N -D modal signals

Experiments of this section verify theoretical expressions
of the variances in the multiple tones case, and compare them
with empirical results of N -D ESPRIT, Fast N -D ESPRIT,
IMDF and Tensor ESPRIT. CRB are also reported.

d) Experiment 4: In this experiment, we simulate a 2-D
signal of size 10×10 containing two modes whose parameters
are given by (α1,1, ω1,1) = (0.01, 0.2π), (α2,1, ω2,1) =
(0.01, 0.6π), (α1,2, ω1,2) = (0.01, 0.3π), (α2,2, ω2,2) =
(0.01, 0.8π), (M1,M2) = (10, 10). (L1, L2) are set to (4, 4).
Figure 9 shows the obtained results. We can see that N -D
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Fig. 9. Theoretical and empirical tMSEs versus SNR. 2-D damped signal
containing two tones. (L1, L2) = (4, 4). (α1,1, ω1,1) = (0.01, 0.2π),
(α2,1, ω2,1) = (0.01, 0.6π), (α1,2, ω1,2) = (0.01, 0.3π), (α2,2, ω2,2) =
(0.01, 0.8π), (M1,M2) = (10, 10).

ESPRIT and Fast N -D ESPRIT have the the same results,
which are almost equal to theoretical ones beyond 0 dB. We
can also remark that N -D ESPRIT outperforms slightly IMDF.

e) Experiment 5: a 3-D signal of size 10× 10× 10 con-
taining two modes is simulated with the parameters given in
table I. The results are shown on Figure 10. In this experiment,

TABLE I
3-D SIGNAL WITH TWO MODES

r ωr,1 αr,1 ωr,2 αr,2 ωr,3 αr,3 cr

1 0.2π 0.01 0.3π 0.01 0.26π 0.01 1
2 0.6π 0.01 0.8π 0.015 0.2π 0.01 1

N -D ESPRIT outperforms IMDF and and have almost similar
results as those obtained by theoretical expressions.

f) Experiment 6: Results on a 3-D signal of size 10×10×
10 containing three modes are given in Figure 11. Parameters
of the simulated modes are given in table II. Here we observe

TABLE II
3-D SIGNAL WITH THREE MODES

r ωr,1 αr,1 ωr,2 αr,2 ωr,3 αr,3 cr

1 0.2π 0.01 0.3π 0.01 0.26π 0.01 1
2 0.6π 0.01 0.8π 0.015 0.2π 0.01 1
3 0.4π 0.01 π 0.01 0.6π 0.01 1
4 0.5π 0.01 0.7π 0.01 0.8π 0.01 1
5 0.7π 0.01 0.9π 0.01 0.5π 0.01 1

that N -D ESPRIT outperforms IMDF and the gap between
them become bigger compared to the previous experiment
(experiment with two tones). As shown by the results in
Figure 11, the Tensor ESPRIT algorithm does not yield an
improvement in our case.

C. Computational time

Figure 12 shows the CPU time results of N -D ESPRIT,
FAST N -D ESPRIT and IMDF algorithms versus M1 for a
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Fig. 10. Theoretical and empirical tMSEs versus SNR. 3-D damped
signal containing two tones. (L1, L2, L3) = (4, 4, 4), (M1,M2,M3) =
(10, 10, 10).
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Fig. 11. Theoretical and empirical tMSEs versus SNR. 3-D damped signal
containing five tones. (L1, L2, L3) = (4, 4, 4), (M1,M2) = (10, 10, 10).

2-D damped signal containing two modes with M2 = 10.
We observe that the FAST N -D ESPRIT involves a low
computational complexity compared to TPUMA and Tensor-
ESPRIT when M1 is large. This is due to the fast computation
of the truncated SVD (see Section IV-D).

VIII. CONCLUSION

The N -D ESPRIT algorithm is implemented by storing
the multidimensional data into a multilevel Hankel matrix.
A fast version of N -D ESPRIT based on partial SVD has
been proposed to handle efficiently large N -D signals. A first-
order perturbation analysis has been carried out, which led to:
i) simpler expressions that do not involve the SVD factors
ii) closed form expression of the variances of parameters
(damping factors and frequencies) in the single tone case. It
has then been shown that variables Ln, n = 1, . . . , N separate
in each of these variances.
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Fig. 12. Average CPU time for a single run under M2 = 10 and R = 2.
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APPENDIX

A. Properties of multilevel Hankel matrices
It is often convenient to use the selection matrices to

construct the HbH matrix.
Given Mn, n = 1, . . . , N, let us define a set of selection

matrices

JLnkn =
[
0Ln×(kn−1) ILn 0Ln×(Kn−kn)

]
(37)

Jk1,k2,...,kN = JL1

k1
� JL2

k2
� · · ·� JLNkN (38)

where JLnkn and Jk1,k2,...,kN are of sizes Ln ×Mn and∏N
n=1 Ln ×

∏N
n=1Mn, respectively; and Kn are defined as

previously. It is easy to verify that

Jk1,k2,...,kNy = y(k1,...,kN ),

where y = vecr{Y} and y(k1,...,kN ) is defined as in the
previous subsection.

The multilevel Hankel matrix has also the following multi-
level structure:

H =


H0 H1 ··· HK1−1

H1 H2 ··· HK1

...
...

...
HL1−1 HL1

··· HM1−1

, (39)

where for r = 1, . . . , N −1 the block matrices Hm1,...,mr are
defined recursively

Hm1,...,mr =
Hm1,...,mr,0 Hm1,...,mr,1 ··· Hm1,...,mr,Kr+1−1

Hm1,...,mr,1
Hm1,...,mr,2

··· Hm1,...,mr,Kr+1

...
...

...
Hm1,...,mr,Lr+1−1 Hm1,...,mr,Lr+1

··· Hm1,...,mr,Mr+1−1


(40)

and the blocks of the last level are just scalars

Hm1,...,mN = y(m1, . . . ,mN ).
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Algorithm 1: MH matrix-vector multiplication
input : An N-D signal Y , vector x ∈ CK1···KN .
output: Matrix-vector product w = Hx.

1) Construct the tensorization X ∈ CK1×···×KN of x.
2) Construct the element wise conjugate to X and padded by zeros

tensor X ′∗ ∈ CM1×···×MN , so that

X ′∗1:K1,1:K2,...,1:KN
= X ∗1:K1,1:K2,...,1:KN

and other elements are zeros.
3) Compute the N-D FFT of Y and X ′

X̂ ′∗ := X ′∗ •1 FM1
•2 FM1

· · · •N FMN
,

Ŷ := Y •1 FM1 •2 FM1 · · · •N FMN
,

4) Compute the following tensor

Ŵ ′ := (Ŷ � X̂ ′∗)∗,

where � is the elementwise (Hadamard) product.
5) Compute the inverse FFT of Ŵ ′:

W ′ := Ŵ ′ •1 FH
M1
•2 FH

M1
· · · •N FH

MN
.

6) Extract w by truncating and vectorizing W ′

w = vecr{(W ′)1:L1,1:L2,...,1:LN }.

B. Matrix-vector products for MH matrices

Let the MH matrix H be given in (7). Assume that x ∈
CK1···KN . Consider the matrix-vector product

w = Hx ∈ CL1···LN .

If we tensorize the vectors w and x to W ∈ CL1×···×LN

and X ∈ CK1×···×KN (such that x = vecr{X} and w =
vecr{W}), then we see that the tensor W is obtained via a
“filtering operation”, i.e.

(W)i1,...,iN =

K1,...,KN∑
j1,...,jN=1

(Y)i1+j1,...,iN+jN (X )j1,...,jN . (41)

Hence, the matrix-vector product can be computed using the
FFT. In what follows, we define by FM ∈ CM×M the matrix
of the Discrete Fourier Transfrom.

Algorithm 1 has the following advantages:
• It has computational complexity O(M logM) due to the

use of FFT.
• It does not require the storage of the matrix H, so the

storage complexity is minimal.
• The N-D FFT of Y can be precomputed, and can be used

for matrix-vector multiplication with different choice of
L1, . . . , LN .

• The matrices can be padded by zeros, so that the tensor
size can be adjusted for better performance of the FFT.

In a similar way we can compute the bilinear transform of
type (29), as shown by Lemma 6.

Proof of Lemma 6 Let x ∈ CK1···KN and v ∈ CL1···LN .
We need to show that for any vector y ∈ CM1···MN and the
corresponding matrix H given in (7), it holds that

vHHx∗ = zHy, (42)

Algorithm 2: MH bilinear transform
input : Vector x ∈ CK1···KN , v ∈ CL1···LN

output: The vector z in the bilinear operation (42).

1) Construct the tensorizations X ∈ CK1×···×KN and
V ∈ CL1×···×LN .

2) Construct the padded by zeros tensors X ′,V ′ ∈ CM1×···×MN

X ′1:K1,1:K2,...,1:KN
= X1:K1,1:K2,...,1:KN ,

V ′1:L1,1:L2,...,1:LN
= V1:L1,1:L2,...,1:LN ,

and other elements are zeros.
3) Compute the N-D FFT of V ′ and X ′

X̂ ′ := X ′ •1 FM1
•2 FM1

· · · •N FMN
,

V̂ ′ := V ′ •1 FM1
•2 FM1

· · · •N FMN
,

4) Compute the inverse FFT of the Hadamard product

Z := (V ′ ◦ X ′) •1 FH
M1
•2 FH

M1
· · · •N FH

MN
.

5) Extract w by vectorizing Z

z = vecr{Z}.

X , V are tensorizations of x, v, and z = vecr{Z}, where

Z := X ? V, i.e.

(Z)m1,...,mr :=

K1,...,KN∑
i1+j1=m1,...,iN+jN=mN

(X )i1,...,iN (V)j1,...,jN .

Indeed, from (41), we have that

vHHx∗ =
L1,...,LN∑
i1,...,iN=1

K1,...,KN∑
j1,...,jN=1

(Y)i1+j1,...,iN+jN (X )j1,...,jN (V)i1,...,iN ,

which completes the proof. �

Finally, using the relation with the convolution, the vector-
matrix-vector product (42) can be computed efficiently using
the FFT, as shown in Algorithm 2.

C. Proofs of lemmas and propositions

Proof of Lemma 4 For simplicity, we denote A = Usn —
and

B = U
n —

. By the rule of differentiation of the product,
∆(A†B) = A†∆B + ∆(A†)B. Next, since A is full column
rank, ∆(A†) can be expressed using [45, Proposition 1]:

∆(A†B) = A†∆B

+
(
−A†∆AA† + (AHA)−1∆AH(I−AA†)

)
B.

(43)

Since A and B span the same column space, (I−AA†)B = 0,
and (43) becomes

∆(A†B) = A†(∆B−∆AA†B). (44)

Finally, since Fn = A†B, (44) can be simplified to (23). �

Proof of Lemma 5 First, from (19) and the rule of differen-
tiation of inverses ∆(T−1) = −T−1∆TT−1, we have that:

∆Dn = T−1∆FnT + T−1Fn∆T−T−1∆TT−1FnT

= T−1∆FnT + DnT−1∆T−T−1∆TDn.
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Next, we denote by br the r-th unit vector, and write

∆ar,n = bT
r∆Dnbr

= τT
r ∆Fntr + bT

rDnT−1∆Tbr − bT
rT−1∆TDnbr

(45)

Since bT
rDn = ar,nbT

r and Dnbr = ar,nbr, the last two
terms in (45) cancel, and eqn. (24) takes place. �

Proof of Corollary 1 Next, we combine (22) and (23). For
simplicity, denote C = ∆H VsΣ

−1
s . Then

∆Fn = (Usn —
)†( I

n —
∆Us − In —∆UsFn)

= (Usn —
)†( I

n —
(I−UsU

H
s )C− In —(I−UsU

H
s )CFn)

+ (Usn —
)†(Us

n —
R−Usn —

RFn).

By expanding the parentheses and using the identities

(Usn —
)†Us

n —
= Fn, (Usn —

)†Usn —
= I,

we get

∆Fn = (Usn —
)†( I

n —
C− In —CFn) + GFn − FnG, (46)

where G = (UH
sC−R). Next, we combine (46) and (24).

∆ar,n = τT
r (Usn —

)†( I
n —

C− In —CFn)tr

+ τT
r (GFn − FnG)tr.

(47)

Since Fntr = ar,ntr and τT
r Fn = ar,nτ

T
r , the last term in

(47) vanishes, and eqn. (47) is simplified to (25). �

Proof of Proposition 1 From equation between (13) and
(14), we have that

Us = PT−1, ΣsV
H
s = T Diag(c)QT.

where the matrices P and Q are defined in (8). Next, since

(ΣsV
H
s )† = VsΣ

−1
s ,

and from properties of the pseudoinverse, we have that

∆ar,n = τT
r (Usn —

)†( I
n —
− ar,n In —)∆H (ΣsV

H
s )†tr

= τT
r (Pn —T−1)†( I

n —
− ar,n In —)∆H (T Diag(c)QT)†tr

= τT
r TPn —

†( I
n —
− ar,n In —)∆H (QT)†Diag(c)−1T−1tr

=
1

cr
b>r Pn —

†( I
n —
− ar,n In —)∆H (QT)†br. �

Proof of Lemma 7 First, we remark that

p
n —

H( I
n —
−an In —) =

(
a
(L1)
1 � · · ·� b � · · ·� a

(LN )
N

)H
, (48)

where b = (ILn−a∗nILn)Ta
(Ln−1)
n . Next, the convolution of

two rank-one tensors is a rank-one tensor:

(x1⊗· · ·⊗xN )?(v1⊗· · ·⊗vN ) = (x1?v1)⊗· · ·⊗(xN ?vN ).

Hence, by applying (1) and Lemma 6 to (48) and (30), we get
the desired result. �

Proof of Proposition 3 We define L∗∗ = min(L,K) and
K∗∗ = max(L,K). Then the vector in the denominator can
be explicitly written as

a(L) ? a(K) =
[
1, 2a, . . . , L∗∗a

(L∗∗−1),

L∗∗a
(L∗∗), . . . , L∗∗a

(K∗∗−2),

L∗∗a
(K∗∗−1), . . . , 2a(M−1), a(M−1)

]
.

Next, we consider each case separately.

a) Undamped case: In this case,

‖a(L)‖4 = L2, ‖a(K)‖4 = K2, and

‖a(L) ? a(K)‖2 = L2
∗∗(M − 2L∗∗) + 2

L∗∗∑
k=1

k2

= L2
∗∗(K∗∗ − L∗∗ − 1) +

2L3
∗∗

3
+ L2

∗∗ +
L∗∗
3

= L2
∗∗K∗∗ −

L∗∗(L
2
∗∗ − 1)

3
.

By combining all these expressions together, we get eqn. (35).

b) Damped case: Then the squared norm of the convo-
lution is equal to

‖a(L) ? a(K)‖2 =

L∗∗∑
k=1

k2|a|2(k−1)

+ L2
∗∗

K∗∗−1∑
k=L∗∗+1

|a|2(k−1) +

M∑
k=K∗∗

(M − k + 1)2|a|2(k−1)

=

L∗∗∑
k=1

k2|a|2(k−1) + L2
∗∗

M−L∗∗∑
k=L∗∗+1

|a|2(k−1)

+ |a|2(M−1)
L∗∗∑
j=1

j2
1

|a|2(j−1)
.

In order to simplify the expression, we use the fact that for
ρ 6= 1

L∑
k=1

k2ρk−1 = L2 ρL

ρ− 1
− 2L

ρL

(ρ− 1)2
+

(ρL − 1)(ρ+ 1)

(ρ− 1)3
.

By subsituting ρ = |a|2 and get

L∗∗∑
k=1

k2|a|2(k−1) =

L2
∗∗
|a|2L∗∗

|a|2 − 1
− 2L∗∗

|a|2L∗∗

(|a|2 − 1)2
+

(|a|2L∗∗ − 1)(|a|2 + 1)

(|a|2 − 1)3
.
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Next we take ρ = |a|−2, and get

|a|2(M−1)
L∗∗∑
j=1

j2
(

1

|a|

)2(j−1)

=

= |a|2(M−1)
(
L2
∗∗
|a|−2L∗∗

|a|−2 − 1
− 2L∗∗

|a|−2L∗∗

(|a|−2 − 1)2

+
(|a|−2L∗∗ − 1)(|a|−2 + 1)

(|a|−2 − 1)3

)
= −L2

∗∗
|a|2(K∗∗−1)

|a|2 − 1
− 2L∗∗

|a|2K∗∗

(|a|2 − 1)2

+
|a|2K∗∗(|a|2L∗∗ − 1)(|a|2 + 1)

(|a|2 − 1)3
.

Next, due to the fact that

L2
∗∗

K∗∗−1∑
k=L∗∗+1

|a|2(k−1) = L2
∗∗
|a|2(K∗∗−1) − |a|2L∗∗

|a|2 − 1
,

after cancellations of some terms, we have

‖a(L) ? a(K)‖22 = −2L∗∗
|a|2K∗∗ + |a|2L∗∗

(|a|2 − 1)2

+
(|a|2K∗∗ + 1)(|a|2L∗∗ − 1)(|a|2 + 1)

(|a|2 − 1)3
.

(49)

Finally, combining (49) with

‖a(L∗∗)‖22 =
|a|2L∗∗ − 1

|a|2 − 1
, ‖a(K∗∗)‖22 =

|a|2K∗∗ − 1

|a|2 − 1
,

yields eqn. (36).
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