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Multidimensional Harmonic Retrieval

by N-D ESPRIT: Algorithm,

Computations and Perturbation Analysis
Souleymen Sahnoun, Konstantin Usevich∗, Pierre Comon

Abstract—In this paper we present and analyze the perfor-
mance of multidimensional ESPRIT (N -D ESPRIT) method for
estimating parameters of N -D superimposed damped exponen-
tials. N -D ESPRIT algorithm is based on low-rank decomposition
of multilevel Hankel matrices formed by the N -D data. In order
to reduce the computational complexity for large signals, we
propose a fast N -D ESPRIT using truncated singular value
decomposition (SVD). Then, through a first-order perturbation
analysis, we derive simple expressions of the variance of the
estimates in N -D multiple-tones case. These expressions do not
involve the factors of the SVD. We also derive closed-form
expressions of the variances of the complex modes, frequencies
and damping factors estimates in the N -D single-tone case.
Computer results are presented to show effectiveness of the fast
version of N -D ESPRIT and verify theoretical expressions.

Index Terms—Frequency estimation, harmonic retrieval, mul-
tilevel Hankel matrix, 2-D ESPRIT, perturbation analysis, trun-
cated SVD.

EDICS: SSP-PARE, SSP-PERF, SSP-SPEC, SAM-DOAE

I. INTRODUCTION

Parameter estimation from bidimensional (2-D) and multi-

dimensional (N -D) signals finds many applications in signal

processing and communications such as magnetic resonance

(NMR) spectroscopy [1], wireless communication channel

estimation, antenna array processing and radar [2]. In these

applications, signals are modeled by a superposition of damped

or undamped N -D complex exponentials.

a) State of art: To deal with this problem, several

parametric methods have been proposed. They include linear

prediction-based methods such as 2-D TLS-Prony [3], and

subspace approaches such as matrix enhancement and matrix

pencil (MEMP) [4], 2-D ESPRIT [5], Shaped ESPRIT [6],

improved multidimensional folding (IMDF) [7], [8], Tensor-

ESPRIT [9], principal-singular-vector utilization for modal

analysis (PUMA) [10], [11] and the methods proposed in [12],

[13].

It is generally admitted that these methods yield accurate

estimates at high SNR and/or when the frequencies are well
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separated. Statistical performances of some of these methods

have been studied in the case of undamped sinusoids [7], [8].

Recently, analytical performances of tensor-based ESPRIT-

type algorithms have been assessed for undamped signals [14].

These analyses are based on the results published in [15].

Statistical performances of subspace 1-D estimation methods

have been extensively studied in the case of undamped sinu-

soids [15], [16], [17] and damped ones [18]. More recently,

a new study was presented for the case of 1-D damped

single-tone [19], resulting in new closed-from expressions. An

extension of the results of [19] to the 2-D ESPRIT case was

initiated in [20].

In this paper, we focus our attention on the 2-D ESPRIT

algorithm of [5]. Although in [5] it is mentioned that 2-D

ESPRIT can be extended to handle N -D signals, to our knowl-

edge, it has never been done explicitly in the literature. More-

over, no perturbation analysis of this extension has yet been

conducted. A related approach called IMDF was proposed in

[7], [8], but it is not a direct extension of the 2-D ESPRIT

of [5]. New approaches were presented recently to address

the N-D harmonic retrieval problem. The coupled Canonical

Polyadic Decomposition (CPD) formulation was investigated

in [21], [22] and an algorithm based on simultaneous matrix

diagonalization was applied. Also, the authors in [23] proposed

two methods based on multilevel Toeplitz matrices. The first

one (called MaPP) is similar to the MEMP algorithm [4], and

requires an extra step for pairing N-D modes. The second

algorithm of [23] (called RWTM) belongs to the class of sparse

recovery methods based on convex relaxations [24], [25], and

has a prohibitive computational complexity

b) Contributions: First, we give an explicit description

of the extension [5] of the 2-D ESPRIT algorithm to N -D

signals (we call this extension N -D ESPRIT). We use an

approach simpler than in [5] for describing the algorithm;

our description is close in spirit to the approach used in [7],

[8]. We discuss the difference between the N -D ESPRIT and

the IMDF method of [8]. We also give explicitly recovery

(identifiability) conditions for the N-D ESPRIT algorithm, that

are, up to our knowledge, absent in the literature.

Next, we propose a fast version of the N -D ESPRIT

algorithm that uses the truncated SVD, which we call Fast

N-D ESPRIT. It enjoys a low computational complexity and

allows handling large signals and large matrices.

Finally, the main contribution of our paper is the pertur-

bation analysis of the N -D ESPRIT algorithm. Through a

first-order perturbation analysis, we derive expressions of the
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variance of the complex modes, frequencies and damping

factors estimates in the N -D damped multiple tones case. Our

derivations of the first-order perturbation are self-contained.

Moreover, we base our results on the recent corrected ex-

pressions for the first-order perturbations of the SVD [26,

Theorem 1], [27, Proposition 9], whereas the state-of-the-art

literature [14], [28] uses expressions from earlier papers [15],

[29], which are not entirely correct. Moreover, we propose

a simplified formula for first-order perturbation that does

not involve the factors of the SVD, which allows for easier

analysis and interpretability. Finally, we derive closed-form

expressions for the variances of the perturbations in the N -D

damped and undamped single-tone case.

We should note that the N-D ESPRIT algorithm discussed

in this paper corresponds to the multidimensional ESPRIT-

type algorithm proposed (independently and simultaneously)

in [28] in the context of antenna array processing, based

on the so-called spatial smoothing procedure. The case that

we consider corresponds to the case of “signal snapshot” in

the terminology of [28]. The work of [28] is different from

the present work, due to the following reasons. First, only

undamped signals are considered in [28]; recovery (identi-

fiability conditions) are not given. Second, the question of

computational complexity is not studied in [28]. Third, the

first-order perturbation analysis in [28] follows the earlier

works [14], and therefore does not contain the improvements

that our paper hopes to bring (simplified SVD-free formula

for first-order perturbations, usage of the correct formula for

perturbations of the SVD). Finally, there is a small overlap

with [28]: in [28, Theorem 3], as well as in our paper, a

closed-form expression for variances of the estimates is given

in the single tone case for undamped signals; however, our

final formula is simpler than the one of [28].

c) Organisation of the paper: In Section II, we introduce

notation and present the N-D modal retrieval problem. In

Section III, we describe construction of multilevel Hankel

matrices and their subspace properties are recalled. In Sec-

tion VI, the N-D ESPRIT algorithm is presented and recovery

conditions are discussed. Then a fast implementation of N-D

ESPRIT is proposed using partial SVD of multilevel Hankel

matrices and the gain in computational complexity is showed.

The difference between N-D ESPRIT and IMDF is also

pointed out. In Section V, a first-order perturbation analysis

for ND-ESPRIT is performed and simplified expressions are

derived in the multiple tones case. In Section IV, the single

tone case is analyzed and closed form expressions are derived

for damped and undamped signals. In Section VII, computer

results are presented to verify the theoretical expressions

and to compare N-D ESPRIT, fast N-D ESPRIT and IMDF

algorithms.

II. BACKGROUND AND PROBLEM STATEMENT

A. Notation

In this paper we use the following fonts: lowercase (a)

for scalars, boldface lowercase (a) for vectors, uppercase

boldface (A) for matrices, and calligraphic (A) for N-D arrays

(tensors). Vectors are, by convention, one-column matrices.

The elements of vectors/matrices/tensors are accessed as (a)i,
(A)i,j and (A)i1,...,iN respectively. We use MATLAB-like

notation for taking subarrays, i.e. (A)i1 :j1,...,iN :jN .

We denote by a∗, A∗ and A∗ elementwise conjugation of

vectors matrices and tensors. For a matrix A, we denote its

transpose, Hermitian transpose and Moore-Penrose pseudoin-

verse as AT, AH and A† respectively. The notation IM is

used for the M ×M identity matrix.

Given a collection of vectors a1 ∈ CI1 , . . . , aN ∈ CIN , the

outer product A = a1 ⊗ · · · ⊗ aN is the tensor

(A)i1,...,iN = (a1)i1(a2)i2 · · · (aN )iN .

We use the symbol ⊠ for the Kronecker product of matrices

in order to distinguish it from the outer product, and ⊙ for

the Khatri-Rao (column-wise Kronecker) product.

For a tensor (or matrix) A ∈ CI1×···×IN we denote by

vecr{A} its “row-major” vectorization, i.e.

vecr{A}
def
= [(A)1,...,1, (A)1,...,2, · · · , (A)1,...,1,IN

(A)1,...,2,1, · · · , (A)I1,...,IN ]
T
.

The row-major vectorization is used because it is compatible

with the Kronecker product [30], i.e.

vecr{a1 ⊗ · · · ⊗ aN} = a1 ⊠ · · ·⊠ aN . (1)

Unlike in [30], we use a special notation for row-major

vectorisation in order to distinguish it from the conventional

column-major vectorisation.

Given a scalar a and a natural number M we will use the

notation a(M) for the Vandermonde-structured vector

a(M) def
=

[
1 a a2 · · · a(M−1)

]T
. (2)

For a vector v ∈ CM we denote by Diag(v) the M ×M

diagonal matrix with the elements of v on the diagonal; for

a matrix A ∈ CM×M , diag(A) stands for the vector of the

elements on its main diagonal.

B. Signal model

Denote N the number of dimensions and Mn, n =
1, . . . , N , the size of the sampling grid in each dimension.

We consider the model below, for mn = 0, . . . ,Mn − 1:

ỹ(m1, . . . ,mN ) = y(m1, . . . ,mN ) + ε(m1, . . . ,mN), (3)

where ε(·) is random noise (we leave the assumptions on

the noise for later), and the signal y(m1, . . . ,mN ) is a

superposition of R N -D damped complex sinusoids:

y(m1, . . . ,mN) =

R∑

r=1

cr

N∏

n=1

(ar,n)
mn , (4)

where

• cr are complex amplitudes,

• ar,n = e−αr,n+ωr,n are modes in the n-th dimension,

• {αr,n}
R,N
r=1,n=1 are real damping factors1 (not necessary

positive),

• {ωr,n = 2πνr,n}
R,N
r=1,n=1 are angular frequencies.

The problem is to estimate {ar,n}
R
r=1 and {cr}

R
r=1 from noisy

observations ỹ(m1, . . . ,mN ).

1The damping factors are important in a number of applications, including
NMR spectroscopy [1].



3

C. Tensor formulation

It is often convenient to rewrite the signal in tensor notation.

Let the tensor Y ∈ C
M1×···×MN be given as2

(Y)i1,...,iN = y(i1 − 1, . . . , iN − 1).

We also define similarly the tensors Ỹ, E ∈ CM1×···×MN .

Then (3) can be compactly written as Ỹ = Y + E , and (4)

is the canonical polyadic (CP) tensor decomposition

Y =

R∑

r=1

cr a
(M1)
r,1 ⊗ · · · ⊗ a

(MN )
r,N (5)

where a
(Mn)
r,n are Vandermonde-structured vectors for ar,n

defined in (2).

By the properties of CP decomposition, eqn. (5) after

vectorization can be rewritten with the help of Khatri-Rao

products:

vecr{Y} =
(
A

(M1)
1 ⊙A

(M2)
2 ⊙ · · · ⊙A

(MN )
N

)
c, (6)

where c =
[
c1 · · · cR

]T
is the vector of amplitudes, and

A
(Mn)
n defines the Vandermonde matrix of the modes in the

n-th dimension

A(Mn)
n

def
=

[
a
(Mn)
1,n · · · a

(Mn)
R,n

]
∈ C

Mn×R.

III. MULTILEVEL HANKEL MATRICES AND THEIR

SUBSPACES

A. Definition and factorization

In this section, we describe the construction of the mul-

tilevel Hankel matrix, which is used in many subspace-

based methods. Assume that (Ln)
N
n=1 is chosen such that

1 ≤ Ln ≤ Mn and define Kn
def
= Mn − Ln + 1. Define

by y(i1,...,iN ) ∈ CL1×···×LN the vectorized subarray

y(i1,...,iN ) def
= vecr{(Y)i1 :i1+L1−1,...,iN :iN+LN−1}.

Then the multilevel Hankel (MH) matrix3 H ∈
C(L1···LN )×(K1···KN ) is defined by stacking the vectorized

subarrays in the vectorization order

H
def
=

[
y(1,...,1) y(1,...,1,2) · · · y(1,...,1,KN )

y(1,...,1,2,1) · · ·

· · ·y(K1,K2,...,KN−1) y(K1,K2,...,KN )
]
.

(7)

By H̃ we denote the noisy version of the signal constructed

upon noisy observations ỹ.

Remark 1: The matrix (7) has nested structure of Hankel

blocks inside each other, as shown in Appendix A. Such ma-

trices are conventionally called “multilevel Hankel matrices”

in the linear algebra literature [31].

It can be verified that in the absence of noise, MH matrix

(7) admits a factorization of the form

H = Pdiag(c)QT, (8)

2The subtraction is needed because the indices in the tensor start from 1.
3The definition of the MH matrix corresponds in some other works to the

spatial smoothing operation [9], to “smoothed data matrix” [8] or to “enhanced
matrix” [4].

where

P = A
(L1)
1 ⊙A

(L2)
2 ⊙ · · · ⊙A

(LN )
N ,

Q = A
(K1)
1 ⊙A

(K2)
2 ⊙ · · · ⊙A

(KN )
N .

The factorization (8) directly follows from (6). The proof

can be also found in [7].

B. Shift properties of subspaces

Let us define the selection matrices

I
n — def

= IL1 ⊠ IL2 ⊠ · · ·⊠ ILn
⊠ · · ·⊠ ILN

(9)

= I∏n−1
i=1 Li

⊠ ILn
⊠ I∏N

i=n+1 Li
, (10)

I
n —

def
= IL1 ⊠ IL2 ⊠ · · ·⊠ ILn

⊠ · · ·⊠ ILN
(11)

= I∏n−1
i=1 Li

⊠ ILn
⊠ I∏N

i=n+1 Li
, (12)

where X (resp. X) represents X without the last (resp. first)

row.

Next, for a matrix X we define X
n —

= I
n —

X and X
n —

= I
n —

X.

Then the shifted versions of P satisfy the following equation:

P
n —

Ψn = P
n —

, (13)

where Ψn = diag(a(n)), a(n) = [a1,n, . . . , aR,n]
T.

Now consider Us the matrix of the leading R left singular

vectors of the noiseless matrix H. Since the ranges of Us and

P coincide, they are linked by a nonsingular transformation:

P = UsT.

Hence, the matrix Fn
def
= TΨnT

−1 satisfies the equation

Us
n —

Fn = Us

n —

, (14)

If the matrix Us
n —

is full-column rank, then the matrix Fn

satisfies the following equation:

Fn =
(
I

n —
Us

)† (
I

n —

Us

)
:=

(
Us
n —

)† (
U
n —

s

)
(15)

Hence, the matrices Fn can be computed from the signal

subspace Us, and the modes of each dimension n can be

estimated by the eigenvalues of Fn.

Remark 2: Instead of Us, any basis of the signal subspace

can be used.

IV. N-D ESPRIT FOR MULTILEVEL HANKEL MATRICES

A. N-D ESPRIT algorithm

The N-D ESPRIT algorithm can be summarized as an

extension of the 2-D ESPRIT algorithm of [5]. The N-D

ESPRIT algorithm consists of the following steps:

1) Choose L1, . . . , LN and set Kn=Mn−Ln+1.

2) Construct the MH matrix H̃ from the noisy signal, in the

same format as (7).

3) Perform the SVD of H̃, and form the matrix Ũs ∈
C(L1···LN )×R of the R dominant singular vectors.

4) Compute the matrices F̃n

F̃n :=
(
Ũs
n —

)†
(
Ũ

n —

s

)
. (16)
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5) Compute a linear combination of matrices, where

β1, . . . , βn are given parameters.

K̃ =
N∑

n=1

βnF̃n (17)

6) Compute a diagonalizing matrix T of K̃ (from its eigen-

value decomposition):

K̃ = TDiag(η)T−1. (18)

7) Apply the transformation T to Fn:

D̃n = T−1F̃nT, for n = 1, . . . , N (19)

8) Extract {[â1,n, . . . , âR,n]}
N
n=1 from diag(D̃n), n =

1, . . . , N

Note that in N-D ESPRIT there is no separate step of pairing

of the modes (i.e., the modes are paired automatically).

B. Recovery conditions

There are some essential assumptions which guarantee

that in the noiseless case the algorithm recovers the modes

correctly. These are not the recovery conditions for the mul-

tidimensional harmonic retrieval problem [32], but they give

the limits of applicability of N-D ESPRIT.

Assumption 1: For every n, the matrices P
n —

and Q are full

column rank (their rank is equal to R).

Assumption 2: The coefficients βn, n = 1, . . . , N should

satisfy the condition that all the numbers ηr defined as

ηr =

N∑

n=1

βnar,n

are distinct.

Remark 3: The conditions can be explained as follows:

1) The first assumption is to guarantee that (16) gives the

unique solution to (14). Thus the matrices Fn = F̃n, i.e.

the matrices Fn are recovered correctly.

2) The ηr are exactly the eigenvalues of K =
∑N

n=1 βnFn.

Thus the eigenvalue decomposition of K is unique (up

to permutation of columns), and therefore the step of the

algorithm retrieves the correct T.

Now we establish some results on when these assumptions

are satisfied. We start from Assumption 2.

Lemma 1: For any set of modes, a generic (random) choice

of βk satisfies the Assumption 2 almost surely.

Proof Since a projection of R points in CN on a random line

separates the points, the lemma holds true. �

The following lemma establishes conditions for generic

identifiability.

Lemma 2: Let the number of modes satisfy

R ≤ min
n

{
(Ln − 1)

N∏

i=1
i6=n

Li,

N∏

i=1

Ki

}
.

Then for a generic choice of modes, rank P
n —

= rankQ = R

Proof The proof follows from [32, Proposition 4]. �

C. Variants and related algorithms

There are several related algorithms to N-D ESPRIT. First,

instead of steps 5–8 of the algorithm there are other ways to

extract the modes from matrices F̃n.

• In [5], in addition to 2D-ESPRIT, an algorithm under

the name “2D-MEMP with improved pairing step” was

proposed. The difference is that ar,n are extracted from

individual eigenvalue decompositions of matrices F̃n.

The matrix T is used to perform the pairing of the modes.

• The matrices F̃n can be jointly diagonalized using simul-

taneous Schur diagonalization [33].

As we will see, our first-order perturbation analysis also

applies to these two modifications.

Second, the algorithm IMDF of [8] is related to N-D

ESPRIT, but it is not an extension of 2-D ESPRIT. The

first difference is that the selection matrices (analogues of I
n —

and I
n —

) are defined in a slightly different way. The second

difference is that in [8] modes are estimated from P
n —

. However,

in the N-D ESPRIT algorithm defined in Section IV-A, the

modes are estimated from (19).

D. Fast N-D ESPRIT

Let us define L = L1 · · ·LN and K = K1 · · ·KN (the sizes

of the MH matrix) and M = M1 · · ·MN . The main bottleneck

of N-D ESPRIT (and, in general, all subspace-based methods

for multidimensional harmonic retrieval) is the SVD of the

multilevel Hankel matrix, which can be very large. The classic

Golub-Reinsch algorithm [34, Ch. 8] for the full SVD requires

O(L2K) flops [34] (in the case L ≤ K), and also the matrix

itself needs to be stored in memory.

In this paper, we propose to compute the truncated SVD

(TSVD), i.e., to find only the R leading singular val-

ues/vectors. Let TA be the number of flops needed to compute

the matrix-vector products Av and AHu for given vectors u

and v. Then the leading R singular values/vectors of a matrix

A using Lanczos bidiagonalization [34, Ch. 9] with partial

reorthogonalization [35] is O(RTA + R2(L + K)) (see [36,

§3] for an overview of Lanczos-based methods).

For MH matrices, the matrix-vector product can be com-

puted using the N-D Fast Fourier Transform (FFT) in

O(M log(M)) flops using the N-D FFT, as we show in

Appendix B. This fact was used in [36] for truncated SVD

of Hankel matrices, and independently in [37] and [38] for

special cases of MH matrices. Although the matrix-vector

multiplication in the general MH case is a straightforward

extension of algorithms [37, eqn. (22)] and [38, Lemma 2],

we provide in Appendix B a description of the algorithm for

several reasons: in [37] Toeplitz matrices are treated and in

[38] only real Hankel-block-Hankel matrices are treated (also,

the proof of [38, Lemma 2] contains misprints). As a result,

when R is small compared with log(M), the cost of the TSVD

is O(RM log(M)) flops.

Therefore, we have the following flop counts for the N-D

ESPRIT algorithm:

1–3) O(RMlog(M)) flops;

4) O(RLN) flops (can be further reduced to O(rL) if the

selection matrices (10) and (12) are used);
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5–6) O(R3) flops (computing eigenvalues up to required pre-

cision);

The total computational complexity is O(rM log(M))
(compared with the complexity O(L2K) when using the full

SVD).

V. PERTURBATION ANALYSIS

A. Basic expressions

The SVD of the noiseless MH matrix H is given by:

H = UsΣsV
H

s +UnΣnV
H

n (20)

where Σn = 0. The perturbed H̃ is expressed as

H̃ = H+∆H.

In this section, we derive first-order perturbations with respect

to ∆H for the quantities in the N-D ESPRIT algorithm.

The first-order perturbations are equal to complex matrix

differentials (see [39] for a definition and a summary of

properties).

First, we recall the expression for the perturbation of Us.

Lemma 3 ([26, Theorem 1] and [27, Proposition 9]): Let

H̃ = ŨsΣ̃sṼ
H

s + ŨnΣ̃nṼ
H

n (21)

be the subspace decomposition of H̃. Then the first-order

approximation of the Ũs −Us is given by

∆Us = UnU
H

n∆HVsΣ
−1
s +UsR, (22)

where R is an antihermitian matrix (i.e. RH = −R) that

depends on ∆H (the precise expression of the matrix R can

be found in [26, Theorem 1] or [27, Proposition 9]).

Remark 4: In earlier papers on perturbation analysis of the

SVD [15], [29], as well as in the state-of-the art literature

on perturbation analysis for multidimensional ESPRIT-type

algorithms [14] the term UsR was often neglected. In this

paper, we derive perturbations based on the full formula (22).

First, we give expressions first-order perturbations of the

matrices Fn.

Lemma 4: The first-order perturbation of Fn is given by

∆Fn = (Us
n —

)†(∆U
n —

s −∆Us
n —

Fn). (23)

Proof The proof can be found in Appendix C.

Next, let tr denote the eigenvectors of K (the columns of T)

and τ
T

r denote the rows of T−1:

T = [t1, . . . , tR], T−1 = [τ1, . . . , τR]
T.

Then the following result holds true.

Lemma 5: The first-order perturbations of the modes given

by steps 7-8 of the N-D ESPRIT algorithm are given by

∆ar,n = τ
T

r ∆Fntr. (24)

Proof The proof can be found in Appendix C.

Remark 5: An immediate consequence of Lemma 5 is that

the first-order perturbation does not depend on the way the

matrix Fn is diagonalized (in particular it does not depend

on the coefficients βr). In fact, it depends only on the

perturbations of the matrices Fn. Hence, in particular, the

first-order perturbations for 2D-ESPRIT and 2D-MEMP with

improved pairing step coincide.

A substitution of (23) into (24) leads to the following

formula for the perturbation of the modes.

Corollary 1: The first order perturbation of the modes can

be given as

∆ar,n = τ
T

r (Us
n —

)†( I
n —

− ar,n I
n —

)∆HVsΣ
−1
s tr (25)

Proof The proof can be found in Appendix C.

Note that the term UsR from (22) does not affect the

expression (25).

B. A simplified formula for the perturbations

The expression of first order perturbation (25) is widely

used in the literature. It corresponds to the expressions given

in [14], which is the state-of-the-art perturbation analysis.

The main problem is that in (25) knowledge of the singular

value decomposition of the MH matrix H is needed. This

complicates a further analysis, since for R ≥ 2 it becomes

difficult to obtain the components of the SVD analytically. In

what follows we give a simplified expression that does not

require knowledge of the SVD.

Proposition 1: Let the matrix H satisfy (8), where the matrix

P satisfies (13) for n = 1, . . . , N . Further, by br ∈ CR we

denote the r-th unit vector. Then the first order perturbation

of the modes obtained by N -D ESPRIT admits an expansion

∆ar,n =
1

cr
b⊤
r P

n —

†( I
n —

− ar,n I
n —

)∆H (QT)†br. (26)

Proof The proof can be found in Appendix C.

The main advantage of the formula (26) is that it allows for

an a priori perturbation analysis, i.e., we do not need the SVD

of the MH matrix to compute the perturbation. Yet another

advantage of (26) is that it clearly shows the perturbation of

the r-th tone (∆ar,n) does not depend on the amplitudes of

other tones (the coefficients ck, k 6= r), and depends only on

angles between the columns of matrices P
n —

and Q. This is

a remarkable feature of N-D ESPRIT (a similar fact for 1D

ESPRIT can be found in [27, Proposition 12]).

Remark 6: The formula (26) can be extended to the case of

multiple snapshots and other subspace-based methods.

C. Computation of moments of the perturbation

First, we rewrite the perturbation (26) in the form

∆ar,n = vH
r,n∆Hx∗

r , (27)

where

vH

r,n =
1

cr
bT

r Pn —

†( I
n —

− ar,n I
n —

), x∗
r = (QT)†br. (28)

Since the equation (27) is linear in ∆H, there is the following

alternative way to compute the perturbation.

Lemma 6: Let e = vecr{E} be the vectorization of the tensor

of the noise term in (3). Then the product (27) is equal to

∆ar,n = zHr,ne, (29)
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where the vector zr,n is defined as

zr,n = vecr{X ⋆ V},

where V ∈ CL1×···×LN and X ∈ CK1×···×KN are the

tensorizations of vr,n and xr , and X ⋆ V ∈ C
M1×···×MN is

the multidimensional convolution4 of tensors.

Proof The proof can be found in Appendix B.

From the representation (29) of the perturbation, it follows that

we can compute the moments of the perturbation as follows.

Corollary 2:

1) E {∆ar,n} = 0 if e is zero-mean.

2) E
{
∆a2r,n

}
= 0 if e is circular.

3) If e has covariance matrix Γ = E
{
eeH

}
,

E
{
|∆a|2r,n

}
= zHr,nΓzr,n.

In particular, if e is white with variance σ2
e , then

E
{
|∆a|2r,n

}
= σ2

e‖zr,n‖
2
2.

4) If e is complex circular Gaussian,

var(∆ωn) = var(∆αn) =
E
{
|∆ar,n|

2
}

2|ar,n|2
.

Remark 7: As in the previous subsection, the new formula

for the variance E
{
|∆a|2r,n

}
allows for an a priori pertur-

bation analysis. It also shows a remarkable feature of N-D

ESPRIT: the variance of the perturbation of the r-th tone does

not depend on the amplitudes of other tones. In particular, it

depends on the partial SNR with respect to each tone.

Remark 8 (On computation of the vr,n, xr): The vectors

vr,n and xr do not require the computation of pseudo-inverses.

Indeed, xr can be obtained by the QR decomposition of Q,

followed by solving a triangular system. It is similar for vr,n.

Finally zr,n can be computed efficiently using FFT, as shown

in Appendix B.

VI. SINGLE-TONE CASE

In this section, we calculate the perturbations of the param-

eter estimates for the signal y(m1, . . . ,mN ) = c
∏N

n=1 a
mn
n .

A. Specialising the general formulas

Since a† = 1
‖a‖2

2
aH for any vector a, and the matrices F̃n

defined in (16) are just scalars, the steps 4–8 of N-D ESPRIT

are equivalent to defining the estimates ân as

ân = F̃n =
1

‖ ũ
n —

‖22
( ũ

n —
)H ũ

n —

,

where ũ is the leading left singular vector of H̃. For the

perturbations, the expression (26) can be also simplified. In

this case, the matrices P and Q consist of a single column,

which we denote by p and q, respectively:

p =
(
a
(L1)
1 ⊠ · · ·⊠ a(Ln)

n ⊠ · · ·⊠ a
(LN )
N

)

4See Appendix B for a definition of multidimensional convolution.

and

q =
(
a
(K1)
1 ⊠ · · ·⊠ a(Kn)

n ⊠ · · ·⊠ a
(KN )
N

)
. (30)

Hence (26), becomes to

∆an =
1

c‖ p
n —

‖22‖q‖
2
2

p
n —

H( I
n —

− an I
n —

)∆Hq∗.

From Lemma 6, we get the following expression.

Lemma 7: The first-order perturbation is expressed as

∆an = zHne,

where

zn =
1

c

{ (
a
(L1)
1 ⋆ a

(K1)
1 )

‖a
(L1)
1 ‖22‖a

(K1)
1 ‖22

⊠ · · ·⊠

(
a
(Ln−1)
1 ⋆ a

(Kn−1)
1 )

‖a
(Ln−1)
n−1 ‖22‖a

(Kn−1)
n−1 ‖22

⊠

((
(ILn

−a∗nILn
)Ta

(Ln−1)
n

)
⋆ a

(Kn)
1

)

‖a
(Ln−1)
1 ‖22‖a

(Kn)
1 ‖22

⊠

(
a
(Ln+1)
1 ⋆ a

(Kn+1)
1 )

‖a
(Ln+1)
1 ‖22‖a

(Kn+1)
1 ‖22

⊠ · · ·⊠

(
a
(LN )
1 ⋆ a

(KN )
1 )

‖a
(LN )
1 ‖22‖a

(KN )
1 ‖22

}
,

where ⋆ denotes convolution of vectors.

Proof The proof can be found in Appendix C.

B. Expressions for the moments of the perturbations

Here we assume that e is zero-mean, and E
{
eeH

}
=

σ2
eI

∏
N
n=1 Mn

. Then, by Lemma 7, the variance of ∆an can

be expressed as

E
{
|∆an|

2
}
= σ2

e‖zn‖
2
2 (31)

=
σ2
e

|c|2
f(Ln,Mn, an)

N∏

i=1
i6=n

g(Li,Mi, ai), (32)

where the functions f(L,M, a) and g(L,M, a) are defined as

f(L,M, a) =

∥∥∥
(
(IL−a∗IL)

Ta(L−1)
)
⋆ a(K)

∥∥∥
2

‖a(L−1)‖22‖a
(K)‖42

,

g(L,M, a) =
‖a(L) ⋆ a(K)‖2

‖a(L)‖4‖a(K)‖4
,

with K = M − L+ 1 and a(·) defined as in (2).

C. Closed form expressions

Here we provide expressions that can be also found in [20].

We also give the full proofs that are absent in [20].

First, we note that the formula for f(L,M, a) coincides with

the formula for the variance of the first-order perturbation of

the 1D-ESPRIT. Hence, the results from [40], [27], [19] can

be used.

Proposition 2 ([19, eqn. (26)], [40, eqn. (4.16)], [27,

Corollary 7] ): In the undamped case (|a| = 1), the function

f(L,M, a) has the form

f(L,M, a)=

{
2

K2(L−1) , if L− 1 ≤ M
2 and |a| = 1,

2
K(L−1)2 , if L− 1 ≥ M

2 and |a| = 1.
(33)



7

In the damped case (|a| 6= 1), we have that

f(L,M, a) = (1 − |a|2)3×




1+|a|2K

(1−|a|2K)2(1−|a|2(L−1))
, if L− 1 ≤ M

2 and |a| 6= 1,

1+|a|2(L−1)

(1−|a|2K)(1−|a|2(L−1))2
, if L− 1 ≥ M

2 and |a| 6= 1.
(34)

We note that the function f is symmetric with respect to L =
M
2 + 1.

Proposition 3: In the undamped case the expression is given

in (35).

g(L,M, a)=





1
K

(
1- L

2-1
3LK

)
, if L ≤ M+1

2 and |a| = 1,

1
L

(
1-K

2-1
3LK

)
, if L ≥ M+1

2 and |a| = 1.

(35)

In the damped case (|a| 6= 1), the function g(L,M, a) can be

found as Eq. (36)

Proof The proof can be found in Appendix C.

The behavior of f(L,M, a) and g(L,M, a) for typical

examples are shown in Figures 1 and 2. In Figure 3 and

Figure 4 the analytic variances var(∆ωa) and var(∆ωb) are

plotted. In Figure 5, total mean square error is plotted.

Remark 9: Based on Propositions 2–3, the optimal values

for Li can be obtained, in the same manner as it was shown

in [20] for the 2-D case.

• If one wishes to minimize an individual variance

E
{
|∆an|

2
}

, then the optimal window sizes are chosen

as follows: take Lj , j 6= n as small as possible, and take

the optimal Ln as in 1-D ESPRIT [19]. For an = e−α+ω

and a white Gaussian noise it is given by

L(opt)
n =

{
Mn

3 + 1, α = 0,
Mn

2 + 1
α
ln(tan π−arctan eαMn

3 ) + 1, α 6= 0.

• If one wishes to minimize the total MSE for all modes,

the optimal window sizes seem to be difficult to describe

analytically.

Note that the optimal Li depends on the type of noise, as in

the 1D case [41].

Remark 10: For the undamped case (|an| = 1), the ex-

pression of the variance similar to (32) was independently

and almost simultaneously obtained in [28, Theorem 3]. The

question of finding optimal Lr for the undamped case is also

discussed in [28]. Nevertheless, the expression for g(L,M, a)
given in (35) is much simpler than in [28, eqn. (40)].

VII. SIMULATIONS

Numerical simulations have been carried out to verify

theoretical expressions and compare the performances of N-D

ESPRIT, Fast N-D ESPRIT and IMDF algorithms in the pres-

ence of white Gaussian noise. The performances are measured

by the total mean square error (tMSE) on estimated parameters

and the computational time. The total MSE is defined as

tMSE = 1
RF

Ep

{∑R

r=1

∑F

f=1(ξf,r − ξ̂f,r)
2
}

where ξ̂f,r is

an estimate of ξf,r, and Ep is the average on p Monte-Carlo

trials. In our simulations, ξf,r can be either a frequency or a

damping factor.

L
0 20 40 60 80 100

10
lo

g[
f(

L,
M

,a
)]

-45

-40

-35

-30

-25

-20

-15

-10

alpha = 0.1, M2 = 100
alpha = 0.01, M2 =100
alpha = 0.1, M2 = 30
alpha = 0.01, M2 =30

Fig. 1. Behavior of function f(L,M, a) as a function of L for different
values of M and damping factors.
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alpha = 0.1, M2 = 100
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alpha = 0.01, M2 =30

Fig. 2. Behavior of function g(L,M, a) as a function of L for different
values of M and damping factors.
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Fig. 3. Variance of ∆ωa as a function of L1 and L2
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Fig. 4. Variance of ∆ωb as a function of L1 and L2
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g(L,M, a) = (1− |a|2)×





−2L(1−|a|2)(|a|2K+|a|2L)
(1−|a|2L)2(1−|a|2K)2 + (1+|a|2K)(1+|a|2)

(1−|a|2L)(1−|a|2K)2 , if L ≤ M+1
2 and |a| 6= 1

−2K(1−|a|2)(|a|2L+|a|2K)
(1−|a|2L)2(1−|a|2K)2 + (1+|a|2L)(1+|a|2)

(1−|a|2L)2(1−|a|2K) , if L ≥ M+1
2 and |a| 6= 1

(36)
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Fig. 5. tMSE as a function of L1 and L2
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Fig. 6. Theoretical and empirical MSEs for 2-D ESPRIT versus L, (L =
L1 = L2). (αa, ωa) = (0.1, 0.2π), (αb, ωb) = (0.1, 0.4π), (M1,M2) =
(30, 30), SNR = 40 dB.
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Fig. 7. Theoretical and empirical MSEs for 2-D ESPRIT (fast SVD) versus
L, (L = L1 = L2). (αa, ωa) = (0.1, 0.2π), (αb, ωb) = (0.1, 0.4π),
(M1,M2) = (100, 100), SNR = 40 dB.
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Fig. 8. Theoretical and empirical tMSEs for 2-D ESPRIT versus SNR.
(L1, L2) = (4, 4). (αa, ωa) = (0.1, 0.2π), (αb, ωb) = (0.1, 0.4π),
(M1,M2) = (10, 10).

A. N -D single-tone

In the first three experiments, we tend to verify the obtained

closed-form expressions in the case of N -D single tone. We

consider a 2-D damped single-tone signal with parameters

(αa, ωa) = (0.1, 0.2π) and (αb, ωb) = (0.1, 0.4π). The SNR

is fixed to 40 dB. Figure 6 shows the total MSE and its

theoretical value obtained from 200 Monte Carlo trials with

(M1,M2) = (30, 30). Since it is difficult to see the difference

between the two curves in a 3-D plot, we show only one

diagonal slice of the 3-D plot corresponding to L1 = L2.

We can observe that the theoretical tMSEs are close to the

estimated ones. In the second example, we repeat the same

experience with (M1,M2) = (100, 100) using the fast N-D

ESPRIT method. The obtained results are reported in Figure 7,

where it can bee seen that theoretical tMSEs are again close

to the estimated ones.

In the third example, the same parameters of the modes

are used but the SNR is varying. The parameters (L1, L2) are

set to (4, 4). The obtained results are depicted in Figure 8.

We observe that the theoretical results are almost equal to

empirical ones beyond a threshold, which is here -5 dB.

For a fast implementation of N-D ESPRIT (denoted as “Fast

N-D ESPRIT”), we use the implementation of the TSVD in

the PROPACK package [42] developed within the PhD thesis

[43]. We use the updated version of the PROPACK package

available as a part of the SVT software [44].

B. Multiple tones N -D modal signals

Experiments of this section verify theoretical expressions

of the variances in the multiple tones case, and compare them
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Fig. 9. Theoretical and empirical tMSEs versus SNR. 2-D damped signal
containing two tones. (L1, L2) = (4, 4). (α1,1, ω1,1) = (0.01, 0.2π),
(α2,1, ω2,1) = (0.01, 0.6π), (α1,2, ω1,2) = (0.01, 0.3π), (α2,2, ω2,2) =
(0.01, 0.8π), (M1,M2) = (10, 10).

with empirical results of N -D ESPRIT, Fast N-D ESPRIT,

IMDF and Tensor ESPRIT. CRB are also reported.

d) Experiment 4: In this experiment, we simulate a 2-D

signal of size 10×10 containing two modes whose parameters

are given by (α1,1, ω1,1) = (0.01, 0.2π), (α2,1, ω2,1) =
(0.01, 0.6π), (α1,2, ω1,2) = (0.01, 0.3π), (α2,2, ω2,2) =
(0.01, 0.8π), (M1,M2) = (10, 10). (L1, L2) are set to (4, 4).
Figure 9 shows the obtained results. We can see that N -D

ESPRIT and Fast N -D ESPRIT have the the same results,

which are almost equal to theoretical ones beyond 0 dB. We

can also remark that N -D ESPRIT outperforms slightly IMDF.

e) Experiment 5: a 3-D signal of size 10× 10× 10 con-

taining two modes is simulated with the parameters given in

table I. The results are shown on Figure 10. In this experiment,

TABLE I
3-D SIGNAL WITH TWO MODES

r ωr,1 αr,1 ωr,2 αr,2 ωr,3 αr,3 cr

1 0.2π 0.01 0.3π 0.01 0.26π 0.01 1

2 0.6π 0.01 0.8π 0.015 0.2π 0.01 1

N -D ESPRIT outperforms IMDF and and have almost similar

results as those obtained by theoretical expressions.

f) Experiment 6: Results on a 3-D signal of size 10×10×
10 containing three modes are given in Figure 11. Parameters

of the simulated modes are given in table II. Here we observe

TABLE II
3-D SIGNAL WITH THREE MODES

r ωr,1 αr,1 ωr,2 αr,2 ωr,3 αr,3 cr

1 0.2π 0.01 0.3π 0.01 0.26π 0.01 1

2 0.6π 0.01 0.8π 0.015 0.2π 0.01 1

3 0.4π 0.01 π 0.01 0.6π 0.01 1

4 0.5π 0.01 0.7π 0.01 0.8π 0.01 1

5 0.7π 0.01 0.9π 0.01 0.5π 0.01 1

that N -D ESPRIT outperforms IMDF and the gap between
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Fig. 10. Theoretical and empirical tMSEs versus SNR. 3-D damped
signal containing two tones. (L1, L2, L3) = (4, 4, 4), (M1,M2,M3) =
(10, 10, 10).
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Fig. 11. Theoretical and empirical tMSEs versus SNR. 3-D damped signal
containing five tones. (L1, L2, L3) = (4, 4, 4), (M1,M2) = (10, 10, 10).

them become bigger compared to the previous experiment

(experiment with two tones). We also compared with the

Tensor ESPRIT algorithm proposed in [9]. As shown by the

results in Figure 11, the Tensor ESPRIT algorithm does not

yield an improvement in our case.

C. Computational time

Figure 12 shows the CPU time results of N -D ESPRIT,

FAST N -D ESPRIT and IMDF algorithms versus M1 for a

2-D damped signal containing two modes with M2 = 10.

We observe that the FAST N -D ESPRIT involves a low

computational complexity compared to TPUMA and Tensor-

ESPRIT when M1 is large. This is due to the fast computation

of the truncated SVD components (see Section IV-D).

VIII. CONCLUSION

The N-D ESPRIT algorithm is implemented by storing

the multidimensional data into a multilevel Hankel matrix.
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Fig. 12. Average CPU time for a single run under M2 = 10 and R = 2.

A fast version of N-D ESPRIT based on partial SVD has

been proposed to handle efficiently large N-D signals. A first-

order perturbation analysis has been carried out, which led to:

i) simpler expressions that do not involve the SVD factors

ii) closed form expression of the variances of parameters

(damping factors and frequencies) in the single tone case. It

has then been shown that variables Ln, n = 1, . . . , N separate

in each of these variances.

APPENDIX

A. Properties of multilevel Hankel matrices

It is often convenient to use the selection matrices to

construct the HbH matrix.

Given Mn, n = 1, . . . , N, let us define a set of selection

matrices

JLn

kn
=

[
0Ln×(kn−1) ILn

0Ln×(Kn−kn)

]
(37)

Jk1,k2,...,kN
= JL1

k1
⊠ JL2

k2
⊠ · · ·⊠ JLN

kN
(38)

where JLn

kn
and Jk1,k2,...,kN

are of sizes Ln ×Mn and∏N

n=1 Ln ×
∏N

n=1 Mn, respectively; and Kn are defined as

previously. It is easy to verify that

Jk1,k2,...,kN
y = y(k1,...,kN ),

where y = vecr{Y} and y(k1,...,kN ) is defined as in the

previous subsection.

The multilevel Hankel matrix has also the following multi-

level structure:

H =




H0 H1 ··· HK1−1

H1 H2 ··· HK1

...
...

...
HL1−1 HL1 ··· HM1−1


, (39)

where for r = 1, . . . , N − 1 the block matrices Hm1,...,mr
are

Algorithm 1: MH matrix-vector multiplication

input : An N-D signal Y , vector x ∈ CK1···KN .
output: Matrix-vector product w = Hx.

1) Construct the tensorization X ∈ CK1×···×KN of x.
2) Construct the element wise conjugate to X and padded by zeros

tensor X ′∗ ∈ CM1×···×MN , so that

X ′∗

1:K1,1:K2,...,1:KN
= X ∗

1:K1,1:K2,...,1:KN

and other elements are zeros.
3) Compute the N-D FFT of Y and X ′

X̂ ′∗ := X ′∗ •1 FM1
•2 FM1

· · · •N FMN
,

Ŷ := Y •1 FM1
•2 FM1

· · · •N FMN
,

4) Compute the following tensor

Ŵ ′ := (Ŷ � X̂ ′∗)∗,

where � is the elementwise (Hadamard) product.

5) Compute the inverse FFT of Ŵ ′:

W ′ := Ŵ ′ •1 FH

M1
•2 FH

M1
· · · •N FH

MN
.

6) Extract w by truncating and vectorizing W ′

w = vecr{(W
′)1:L1,1:L2,...,1:LN

}.

defined recursively

Hm1,...,mr
=




Hm1,...,mr,0 Hm1,...,mr,1 ··· Hm1,...,mr,Kr+1−1

Hm1,...,mr,1 Hm1,...,mr,2 ··· Hm1,...,mr,Kr+1

...
...

...
Hm1,...,mr,Lr+1−1 Hm1,...,mr,Lr+1

··· Hm1,...,mr,Mr+1−1




(40)

and the blocks of the last level are just scalars

Hm1,...,mN
= y(m1, . . . ,mN).

B. Matrix-vector products for MH matrices

Let the MH matrix H be given in (7). Assume that x ∈
CK1···KN . Consider the matrix-vector product

w = Hx ∈ C
L1···LN .

If we tensorize the vectors w and x to W ∈ CL1×···×LN

and X ∈ C
K1×···×KN (such that x = vecr{X} and w =

vecr{W}), then we see that the tensor W is obtained via a

“filtering operation”, i.e.

(W)i1,...,iN =

K1,...,KN∑

j1,...,jN=1

(Y)i1+j1,...,iN+jN (X )j1,...,jN . (41)

Hence, the matrix-vector product can be computed using the

FFT. In what follows, we define by FM ∈ CM×M the matrix

of the Discrete Fourier Transfrom.

Algorithm 1 has the following advantages:

• It has computational complexity O(M logM) due to the

use of FFT.

• It does not require the storage of the matrix H, so the

storage complexity is minimal.

• The N-D FFT of Y can be precomputed, and can be used

for matrix-vector multiplication with different choice of

L1, . . . , LN .
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Algorithm 2: MH bilinear transform

input : Vector x ∈ CK1···KN , v ∈ CL1···LN

output: The vector z in the bilinear operation (42).

1) Construct the tensorizations X ∈ CK1×···×KN and
V ∈ CL1×···×LN .

2) Construct the padded by zeros tensors X ′,V ′ ∈ CM1×···×MN

X ′

1:K1,1:K2,...,1:KN
= X1:K1,1:K2,...,1:KN

,

V ′

1:L1,1:L2,...,1:LN
= V1:L1,1:L2,...,1:LN

,

and other elements are zeros.
3) Compute the N-D FFT of V ′ and X ′

X̂ ′ := X ′ •1 FM1
•2 FM1

· · · •N FMN
,

V̂ ′ := V ′ •1 FM1
•2 FM1

· · · •N FMN
,

4) Compute the inverse FFT of the Hadamard product

Z := (V ′ ◦ X ′) •1 FH

M1
•2 FH

M1
· · · •N FH

MN
.

5) Extract w by vectorizing Z

z = vecr{Z}.

• The matrices can be padded by zeros, so that the tensor

size can be adjusted for better performance of the FFT.

In a similar way we can compute the bilinear transform of

type (29), as shown by Lemma 6.

Proof of Lemma 6 Let x ∈ C
K1···KN and v ∈ C

L1···LN .

We need to show that for any vector y ∈ CM1···MN and the

corresponding matrix H given in (7), it holds that

vHHx∗ = zHy, (42)

X , V are tensorizations of x, v, and z = vecr{Z}, where

Z := X ⋆ V , i.e.

(Z)m1,...,mr
:=

K1,...,KN∑

i1+j1=m1,...,iN+jN=mN

(X )i1,...,iN (V)j1,...,jN .

Indeed, from (41), we have that

vHHx∗ =
L1,...,LN∑

i1,...,iN=1

K1,...,KN∑

j1,...,jN=1

(Y)i1+j1,...,iN+jN (X )j1,...,jN (V)i1,...,iN ,

which completes the proof. �

Finally, using the relation with the convolution, the vector-

matrix-vector product (42) can be computed efficiently using

the FFT, as shown in Algorithm 2.

C. Proofs of lemmas and propositions

Proof of Lemma 4 For simplicity, we denote A = Us
n —

and

B = U
n —

. By the rule of differentiation of the product,

∆(A†B) = A†∆B+∆(A†)B. Next, since A is full column

rank, ∆(A†) can be expressed using [39, Proposition 1]:

∆(A†B) = A†∆B

+
(
−A†∆AA† + (AHA)−1∆AH(I−AA†)

)
B.

(43)

Since A and B span the same column space, (I−AA†)B = 0,

and (43) becomes

∆(A†B) = A†(∆B−∆AA†B). (44)

Finally, since Fn = A†B, (44) can be simplified to (23). �

Proof of Lemma 5 First, from (19) and the rule of differen-

tiation of inverses ∆(T−1) = −T−1∆TT−1 , we have that:

∆Dn = T−1∆FnT+T−1Fn∆T−T−1∆TT−1FnT

= T−1∆FnT+DnT
−1∆T−T−1∆TDn.

Next, we denote by br the r-th unit vector, and write

∆ar,n = bT

r∆Dnbr

= τ
T

r ∆Fntr + bT

rDnT
−1∆Tbr − bT

rT
−1∆TDnbr

(45)

Since bT

rDn = ar,nb
T

r and Dnbr = ar,nbr, the last two

terms in (45) cancel, and eqn. (24) takes place. �

Proof of Corollary 1 Next, we combine (22) and (23). For

simplicity, denote C = ∆HVsΣ
−1
s . Then

∆Fn = (Us
n —

)†( I
n —

∆Us − I
n —

∆UsFn)

= (Us
n —

)†( I
n —

(I−UsU
H

s )C− I
n —

(I−UsU
H

s )CFn)

+ (Us
n —

)†(Us

n —

R−Us
n —

RFn).

By expanding the parentheses and using the identities

(Us
n —

)†Us

n —

= Fn, (Us
n —

)†Us
n —

= I,

we get

∆Fn = (Us
n —

)†( I
n —

C− I
n —

CFn) +GFn − FnG, (46)

where G = (UH

s C−R). Next, we combine (46) and (24).

∆ar,n = τ
T

r (Us
n —

)†( I
n —

C− I
n —

CFn)tr

+ τ
T

r (GFn − FnG)tr.
(47)

Since Fntr = ar,ntr and τ
T

r Fn = ar,nτ
T

r , the last term in

(47) vanishes, and eqn. (47) is simplified to (25). �

Proof of Proposition 1 From equation between (13) and

(14), we have that

Us = PT−1, ΣsV
H

s = TDiag(c)QT.

where the matrices P and Q are defined in (8). Next, since

(ΣsV
H

s )
† = VsΣ

−1
s ,

and from properties of the pseudoinverse, we have that

∆ar,n = τ
T

r (Us
n —

)†( I
n —

− ar,n I
n —

)∆H (ΣsV
H

s )
†tr

= τ
T

r (Pn —
T−1)†( I

n —

− ar,n I
n —

)∆H (TDiag(c)QT)†tr

= τ
T

r TP
n —

†( I
n —

− ar,n I
n —

)∆H (QT)†Diag(c)−1T−1tr

=
1

cr
b⊤
r P

n —

†( I
n —

− ar,n I
n —

)∆H (QT)†br. �
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Proof of Lemma 7 First, we remark that

p
n —

H( I
n —

−an I
n —

) =
(
a
(L1)
1 ⊠ · · ·⊠ b⊠ · · ·⊠ a

(LN )
N

)H

, (48)

where b = (ILn
−a∗nILn

)Ta
(Ln−1)
n . Next, the convolution of

two rank-one tensors is a rank-one tensor:

(x1⊗· · ·⊗xN )⋆(v1⊗· · ·⊗vN ) = (x1⋆v1)⊗· · ·⊗(xN ⋆vN ).

Hence, by applying (1) and Lemma 6 to (48) and (30), we get

the desired result. �

Proof of Proposition 3 We define L∗∗ = min(L,K) and

K∗∗ = max(L,K). Then the vector in the denominator can

be explicitly written as

a(L) ⋆ a(K) =
[
1, 2a, . . . , L∗∗a

(L∗∗−1),

L∗∗a
(L∗∗), . . . , L∗∗a

(K∗∗−2),

L∗∗a
(K∗∗−1), . . . , 2a(M−1), a(M−1)

]
.

Next, we consider each case separately.

a) Undamped case: In this case,

‖a(L)‖4 = L2, ‖a(K)‖4 = K2, and

‖a(L) ⋆ a(K)‖2 = L2
∗∗(M − 2L∗∗) + 2

L∗∗∑

k=1

k2

= L2
∗∗(K∗∗ − L∗∗ − 1) +

2L3
∗∗

3
+ L2

∗∗ +
L∗∗

3

= L2
∗∗K∗∗ −

L∗∗(L
2
∗∗ − 1)

3
.

By combining all these expressions together, we get eqn. (35).

b) Damped case: Then the squared norm of the convo-

lution is equal to

‖a(L) ⋆ a(K)‖2 =

L∗∗∑

k=1

k2|a|2(k−1)

+ L2
∗∗

K∗∗−1∑

k=L∗∗+1

|a|2(k−1) +

M∑

k=K∗∗

(M − k + 1)2|a|2(k−1)

=

L∗∗∑

k=1

k2|a|2(k−1) + L2
∗∗

M−L∗∗∑

k=L∗∗+1

|a|2(k−1)

+ |a|2(M−1)
L∗∗∑

j=1

j2
1

|a|2(j−1)
.

In order to simplify the expression, we use the fact that for

ρ 6= 1

L∑

k=1

k2ρk−1 = L2 ρL

ρ− 1
− 2L

ρL

(ρ− 1)2
+

(ρL − 1)(ρ+ 1)

(ρ− 1)3
.

By subsituting ρ = |a|2 and get

L∗∗∑

k=1

k2|a|2(k−1) =

L2
∗∗

|a|2L∗∗

|a|2 − 1
− 2L∗∗

|a|2L∗∗

(|a|2 − 1)2
+

(|a|2L∗∗ − 1)(|a|2 + 1)

(|a|2 − 1)3
.

Next we take ρ = |a|−2, and get

|a|2(M−1)
L∗∗∑

j=1

j2
(

1

|a|

)2(j−1)

=

= |a|2(M−1)
(
L2
∗∗

|a|−2L∗∗

|a|−2 − 1
− 2L∗∗

|a|−2L∗∗

(|a|−2 − 1)2

+
(|a|−2L∗∗ − 1)(|a|−2 + 1)

(|a|−2 − 1)3

)

= −L2
∗∗

|a|2(K∗∗−1)

|a|2 − 1
− 2L∗∗

|a|2K∗∗

(|a|2 − 1)2

+
|a|2K∗∗(|a|2L∗∗ − 1)(|a|2 + 1)

(|a|2 − 1)3
.

Next, due to the fact that

L2
∗∗

K∗∗−1∑

k=L∗∗+1

|a|2(k−1) = L2
∗∗

|a|2(K∗∗−1) − |a|2L∗∗

|a|2 − 1
,

after cancellations of some terms, we have

‖a(L) ⋆ a(K)‖22 = −2L∗∗
|a|2K∗∗ + |a|2L∗∗

(|a|2 − 1)2

+
(|a|2K∗∗ + 1)(|a|2L∗∗ − 1)(|a|2 + 1)

(|a|2 − 1)3
.

(49)

Finally, combining (49) with

‖a(L∗∗)‖22 =
|a|2L∗∗ − 1

|a|2 − 1
, ‖a(K∗∗)‖22 =

|a|2K∗∗ − 1

|a|2 − 1
,

yields eqn. (36).
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