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Abstract. A k-uniform hypergraph has degeneracy bounded by d if
every induced subgraph has a vertex of degree at most d. Given a k-
uniform hypergraph H = (V (H), E(H)), we show there exists an induced
subgraph of size at least∑

v∈V (H)

min

{
1, ck

(
d+ 1

dH(v) + 1

)1/(k−1)
}
,

where ck = 2−(1+ 1
k−1 ) (1− 1

k

)
and dH(v) denotes the degree of vertex

v in the hypergraph H. This extends and generalizes a result of Alon-
Kahn-Seymour (Graphs and Combinatorics, 1987) for graphs, as well as a
result of Dutta-Mubayi-Subramanian (SIAM Journal on Discrete Math-
ematics, 2012) for linear hypergraphs, to general k-uniform hypergraphs.
We also generalize the results of Srinivasan and Shachnai (SIAM Jour-
nal on Discrete Mathematics, 2004) from independent sets (0-degenerate
subgraphs) to d-degenerate subgraphs. We further give a simple non-
probabilistic proof of the Dutta-Mubayi-Subramanian bound for linear
k-uniform hypergraphs, which extends the Alon-Kahn-Seymour (Graphs
and Combinatorics, 1987) proof technique to hypergraphs. Our proof
combines the random permutation technique of Bopanna-Caro-Wei (see
e.g. The Probabilistic Method, N. Alon and J. H. Spencer; Dutta-Mubayi-
Subramanian) and also Beame-Luby (SODA, 1990) together with a new
local density argument which may be of independent interest. We also
provide some applications in discrete geometry, and address some natural
algorithmic questions.

Keywords: degenerate graphs, independent sets, hypergraphs, and ran-
dom permutations

1 Introduction

For k ≥ 2, a k-uniform hypergraph is a pair (V (H), E(H)) where E(H) ⊆(
V (H)
k

)
. We will call V (H) and E(H) the vertex set and edge set ofH respectively.
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339025 GUDHI (Geometric Understanding in Higher Dimensions).
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When there is no chance of confusion, we will use V and E to denote V (H) and
E(H). For a vertex v ∈ V (H), degree dH(v) of V (H) will denote |{e : e ∈
E(H), v ∈ e}|. For readability, k − 1 will be denoted by t.

For a subset I ⊆ V (H), the induced k-uniform hypergraph H(I) of I denotes
the hypergraph (I, E(H) ∩

(
I
k

)
). A hypergraph is linear if every pair of vertices

are contained in at most a single hyperedge, i.e. any pair of hyperedges intersect
in at most one vertex. A hypergraph H = (V,E) is d-degenerate if the induced
hypergraph of all subsets of V has a vertex of degree at most d, i.e., for all
I ⊆ V , there exists v ∈ I such that dH(I)(v) ≤ d. For a k-uniform hypergraph
H = (V,E), we will denote by αk, d(H) the size of a maximum-sized subset of
V whose induced hypergraph is d-degenerate, i.e.,

αk, d(H) = max {|I| : I ⊆ V, H(I) is d-degenerate} .

Observe that α(H) := αk, 0(H) is the independence number of the hypergraph
H.

1.1 Previous Results

Turán [Tur41] gave a lower bound on the independence number of graphs:
α(G) ≥ n

d+1 where d is the average degree of vertices in G.
Caro [Car79] and Wei [Wei81] independently showed that for graphs

α(G) ≥
∑

v∈V (G)

1

dG(v) + 1
,

see [AS08]. This degree-sequence based bound improves on the original average-
degree based lower bound of Turán, and matches it in the case when all degrees
are equal.

For hypergraphs, Spencer [Spe72] gave a bound on the independence number,
based on the average degree d: α(H) ≥ ck

(
n
d1/t

)
, where ck is independent of n

and d. Caro and Tuza [CT91] generalized the Caro-Wei result to the case of
hypergraphs:

Theorem 1. For all k-uniform hypergraph H, we have

α(H) ≥
∑
v∈V

1(
dH(v)+1/t
dH(v)

) .
The above theorem directly implies the following corollary, which gives Spencer’s
bound:

Corollary 1. For all k ≥ 2, There exists dk > 0 such that all k-uniform hyper-
graphs H satisfy

α(H) ≥ dk
∑
v∈V

1

(1 + dH(v))1/t
.



Further, Thiele [Thi99] obtained a lower bound on the independence number
of arbitrary (non-uniform) hypergraphs, in terms of the degree rank, a general-
ization of the degree sequence.

On the algorithmic side, Srinivasan and Shachnai [SS04], used the random
permutation method of Beame and Luby [BL90] and also Bopanna-Caro-Wei
(see e.g. [AS08], [DMS12]), together with the FKG correlation inequality, to
obtain a randomized parallel algorithm for independent sets, which matched
the asymptotic form of the Caro-Tuza bound. Dutta, Mubayi and Subramanian
[DMS12] also used the Bopanna-Caro-Wei method; using elementary techniques
they obtained degree-sequence based lower bounds on the independence numbers
ofKr-free graphs and linear k-uniform hypergraphs, which generalized the earlier
average-degree based bounds of Ajtai et al. [AKS80], Shearer [She83, She95] and
Duke, Lefmann and Rödl [DLR95], in terms of degree sequences. 3

Average degree vs. degree-sequence In general, a bound using the degree
sequence would be intuitively expected to be better than a bound using just the
average degree, since it has more information about the graph. For the above
bounds on the independence numbers, this essentially follows from the convexity
of the function x−1/t. Dutta-Mubayi-Subramanian [DMS12] gave constructions
of hypergraphs which show that the bounds based on the degree-sequence can
be stronger than those based on the average degree by a polylogarithmic (in the
number of vertices) factor.

Large d-degenerate subgraphs Compared to independent sets, d-degenerate
subgraphs have been less well-investigated. However, it includes as special cases
zero-degenerate subgraphs i.e. independent sets, as well as 1-degenerate sub-
graphs, i.e. maximum induced forests, whose complements are the well-known
hitting set and feedback vertex set problems respectively. The best known result
on this question is that of Alon, Kahn and Seymour [AKS87], who proved the
following lower bound for α2, d(G): 4

Theorem 2 ([AKS87]). For all graphs G = (V,E) we have

α2, d(G) ≥
∑
v∈V

min

{
1,

d+ 1

dG(v) + 1

}
.

This bound is sharp for every G which is a disjoint union of cliques. Moreover,
they gave a polynomial time algorithm that finds in G an induced d-degenerate
subgraph of at least this size.

3 Their proof also yields an elementary proof of the main bound of Srinivasan and
Shachnai [SS04] without using correlation inequalities, though they do not state this
explicitly.

4 Alon, Kahn and Seymour [AKS87] actually defined a d-degenerate graph as one
where every subgraph has a vertex of degree less than d, whereas we use the more
usual definition in which every subgraph has a vertex of degree at most d.



On the algorithmic side, Pilipczuk and Pilipczuk [PP12] addressed the ques-
tion of finding a maximum d-degenerate subgraph of a graph, giving the first
algorithm with running time o(2n). Zaker [Zak13] studied a more general version
of degeneracy and gave upper and lower bounds for finding the largest subgraph
of a 2-uniform graph having a given generalized degeneracy.

The proof of Dutta-Mubayi-Subramanian [DMS12] implies the following lower
bound on αk, d for linear hypergraphs (though not explicitly stated in their pa-
per):

Theorem 3 ([DMS12]). Let G = (V,E) be a linear k-uniform hypergraph, and
for all v ∈ V , dG(v) denote the degree of v in G. Then

αk, d(G) ≥ w(G) :=
∑
v∈V

wG(v), (1)

where

w(v) =


1 if dG(v) ≤ d

1
1+(t(d+1))−1

(dG(v)

d+1 )
( dG(v)+1/t

dG(v)−d−1)
if dG(v) > d.

(2)

Our Results

We first give a completely different and an extremely simple proof of Theo-
rem 3 using a weight function. Our proof follows along the lines of the proof of
Theorem 2 due to Alon, Kahn and Seymour [AKS87].

Next, we extend Theorem 3 to the case of general hypergraphs:

Theorem 4. Let G = (V,E) be a k-uniform hypergraph, and for all v ∈ V ,
dG(v) denote the degree of v in G. Then

αk, d(G) ≥
∑
v∈V

min

{
1, ck

(
d+ 1

d(v) + 1

)1/t
}
, (3)

where t = k− 1 and ck = 2−1−1/(k−1). There exists a randomized algorithm that
can extract a d-degenerate set of above size in expectation.

Our proof uses the random permutation method [AS08] of Bopanna-Caro-Wei,
together with a new local density argument, avoiding advanced correlation in-
equalities. As a consequence, we obtain a simpler proof as well as a generalization
of the result of Srinivasan-Shachnai [SS04].

As an application of Theorem 4 we will prove the following result in inci-
dence geometry, which generalizes a result of Payne and Wood [PW13] on the
maximum size of a subset, out of n points in the plane, such that no three points
in the subset are collinear.

Lemma 1. 1. Let P be a set of n points in the plane such that for any line l
in the plane |l ∩ P | ≤ `. For d ≤ O(n log `+ `2) there exists a subset S ⊆ P



with at most d|S| collinear triples in S and

|S| = Ω

(√
dn2

n log `+ `2

)
.

And if ` ≤ O(
√
n), then

|S| = Ω

(√
dn

log `

)
.

2. Let P be a set of n points in the plane such that for any line l in the plane
|l ∩ P | ≤ `. Let k ≥ 4 be a constant and d ≤ O(`k−3n + `k−1). Then there
exists a subset S ⊆ P of size

Ω

(
n

(
d

`k−3n+ `k−1

)1/(k−1)
)

such that S has at most d|S| collinear k-tuples in S. And if ` ≤ O(
√
n), then

|S| = Ω

((
nk−2d

`k−3

)1/(k−1))
.

The proof of Lemma 1 uses the following lemma by Payne and Wood [PW13],
proved using Szemerédi-Trotter theorem [ST83] on incidence geometry.

Lemma 2 ([PW13]).

1. Let P be a set of n points in the plane such that for any line l in the plane
|l∩P | ≤ `. Then the number of collinear 3-tuples in P is at most O(n2 log `+
n`2).

2. Let P be a set of n points in the plane such that for any line l in the plane
|l∩P | ≤ `. Then, for k ≥ 4, the number of collinear k-tuples in P is at most
O(`k−3n2 + `k−1n).

Proof (Lemma 1). Let H be a k-uniform hypergraph with V (H) = P , and
{p1, . . . , pk} ∈ E(H) if there exists a line a line l in the plane with {p1, . . . , pk} ∈
l. Lemma 2 bounds the size of E(H). The result now follows directly from
Theorem 4.

The rest of the paper is organised as follows: Section 2 has the simpler proof of
Theorem 3, and Section 3 has the proof of Theorem 4. Finally in the Conclusions
section there are some remarks and open questions.



2 Linear Hypergraphs

In this section we will give an alternative proof of the Theorem 3. The proof will
follow exactly along the lines of the proof by Alon, Kahn and Seymour [AKS87]
of Theorem 2.

First observe that(
dG(v)
r

)(
dG(v)+1/t
dG(v)−r

) =
1(

1 + 1
t(r+1)

)
. . .
(

1 + 1
tdG(v)

)
This implies that w(v) is decreasing in dG(v) for all values of dG(v) ≥ r. Also,
observe that (

dG(v)−1
r

)(
dG(v)−1+1/t
dG(v)−1−r

) =

(
1 +

1

t dG(v)

) (
dG(v)
r

)(
dG(v)+1/t
dG(v)−r

) (4)

The alternative proof will be by induction on the number n of vertices of the
k-uniform hypergraph G. The base case of n = 1 follows trivially. Assuming the
result holds for n− 1, we will now show that the result also holds for n.

Case 1

If we have a vertex v ∈ V (G) with dG(v) ≤ d, then consider the hypergraph
H = G(V ′) where V ′ = V \ {v}. Observe that αk, d(G) = αk, d(H) + 1. Since
∀u ∈ V ′, we have from Equation (4), wG(u) ≤ wH(u). This implies

w(H) =
∑
u∈V ′

wH(u) ≥
∑
u∈V ′

wG(u) = w(G)− 1.

The last inequality follows from the fact that wG(v) = 1 since dG(v) ≤ d.
Using the induction hypothesis αk, d(G) ≥ w(G) and the fact that αk, d(G) =
αk, d(H) + 1, we get

αk, d(G) = αk, d(H) + 1 ≥ w(H) + 1 ≥ w(G).

Case 2

Now we will consider the case where dG(v) > d, ∀v ∈ V (G). Let∆ = maxu∈V (G) dG(u),
and let v ∈ V (G) be a vertex with dG(v) = ∆. Let u1, . . . , ul, where l = t∆,
be the neighbors of v in G. Note that l = t∆ follows from the fact that G is a
linear hypergraph. We will now show that w(H) ≥ w(G), where H = G(V ′) and
V ′ = V \ {v}. We will now show w(H) ≥ w(G).

w(H) =
∑
u∈V ′

wH(u)

= w(G)− wG(v)−
l∑
i=1

wG(ui) +

l∑
i=1

wH(ui)



= w(G)− wG(v) +

l∑
i=1

wG(ui)

t dG(ui)

≥ w(G)

The second last inequality follows from the facts that dH(ui) = dG(ui) − 1 (as
G is a linear hypergraph) and Equation (4). The last inequality follows from the
facts that dG(u) ≤ ∆ for all u ∈ V and wG(ui) ≥ wG(v) (direct consequence of
Equation (4)). From induction hypothesis we have

αk, d(H) ≥ w(H) ≥ w(G).

This completes the proof of Theorem 3 since αk, d(G) ≥ αk, d(H).

3 General k-uniform Hypergraphs

In this section we shall prove a lower bound on αk,d(H) for general k-uniform
hypergraph H in terms of its degree sequence. We will give a very simple random-
ized algorithm to obtain an d-degenerate subgraph of a k-uniform hypergraph,
whose analysis in expectation will yield the desired bound in Theorem 4.

3.1 Details of the Algorithm

Before we can give the details of the algorithm, we will need some definitions.

Definition 1. Let σ be an ordering of the vertices of H.

– Fix a vertex v ∈ V (H). Call a hyperedge e ∈ E(H) with v ∈ e a backward
edge with respect to σ, if ∀u ∈ e \ {v}, σ(u) < σ(v).

– We will denote by bσ(v) the number of backward edges of the vertex v with
respect to the ordering σ.

Algorithm 1 RandPermute

Input: H := (V,E) and d;
// H is a k-uniform hypergraph
Random odering: Let σ be a random ordering of the vertex set V ;
Initialization: I ← ∅;
// I will be the degenerate subset we output;
for v ∈ V do

Compute: bσ(v);
if bσ(v) ≤ d then
I ← I ∪ {v};

end if
end for
Output: I;



3.2 Analysis of the Algorithm

Theorem 4 directly follows from the following result.

Claim.

E [|I|] ≥
∑
v∈V

min

{
1, ck

(
d+ 1

dH(v) + 1

)1/t
}
,

where ck = ck = 2−(1+ 1
k−1 ) (1− 1

k

)
= 2−(1+ok(1)).

Proof. For all vertices v ∈ V , we will denote by N(v) the neighbors of v in H.
Given an arbitrary vertex v ∈ V , and a random ordering of the vertices σ, we

need to bound Pr [v ∈ I] from below. Since the event of v being selected depends
on the relative ordering of the vertices in N(v), therefore, the probability v
being selected in I in a random ordering is the number of orderings for which v
is selected, divided by (|N(v)| + 1)!. Let σ be an ordering of the vertices of V ,
such that v is selected in I in the ordering σ. Given a vertex v ∈ V , consider now
Lv := (V (Lv), E(Lv)), the (k−1)-uniform link hypergraph on the neighbourhood
of v, defined as follows:

V (Lv) := N(v), and

E(Lv) := {S ⊂ V (Lv) : S ∪ {v} ∈ E},

i.e., the vertices are the neighbours of v, and the edges are those edges of the
original hypergraph H which contained v, but with v removed. Clearly |E(Lv)| =
dH(v). Let F ⊂ V (Lv) be

F := {u ∈ N(v) : σ(u) < σ(v)} ,

i.e., the vertices in the neighbourhood of v which occur before v in the ordering
σ. We want Lv(F ) to have at most d hyperedges. The vertices occurring before
v can be ordered arbitrarily amongst themselves, and similarly for the vertices
occuring after v. So we get that the probability that v is selected in I is given
by:

Pr [v ∈ I] =
∑

J⊂V (Lv) : |E(Lv(J))|≤d

(|J |)! (|V (Lv)| − |J |)!
(|V (Lv)|+ 1)!

=
1

|V (Lv)|+ 1

∑
J⊂V (Lv) : |E(Lv(J))|≤d

1(|V (Lv)|
|J|

)
For k = 2, the link hypergraph is a 1-graph i.e. a set of vertices, each vertex
being a 1-edge. Hence the summation in the RHS evaluates to d+ 1 (counting 1
for each case when there are exactly 0, 1, . . . , d vertices before v, in the random
ordering). Therefore

E [|I|] =
∑
v∈V

Pr [v ∈ I] =
∑
v∈V

min

{
1,

d+ 1

d(v) + 1

}
,



and we get the theorem of Alon-Kahn-Seymour (Theorem 2).
For general k-uniform hypergraphs, observe that if dH(v) ≤ d, then Pr [v ∈ I] =

1. However, if dH(v) > d, then we need to look at the link hypergraph which
can be an arbitrary k − 1-uniform hypergraph. In this case, we shall prove the
following general lemma, (which may be of independent interest).

Lemma 3. For each k-uniform hypergraph H = (V,E), such that |V | = n,
|E| = m, we have ∑

J⊂V (H) : |E(J)|≤a

1(
n
|J|
) ≥ c′kn(a+ 1

m

)1/k
.

where c′k = 2−(1+1/k).

Indeed, we get that the probability that v is selected in I is given by:

Pr [v ∈ I] =
1

|V (Lv)|+ 1

∑
J⊂V (Lv) : |E(Lv(J))|≤d

1(|V (Lv)|
|J|

)
≥
c′k−1 |V (Lv)|
|V (Lv)|+ 1

× (d+ 1)1/(k−1)

|E(Lv)|1/(k−1)
(from Lemma 3)

≥
c′k−1 |V (Lv)|
|V (Lv)|+ 1

× (d+ 1)1/(k−1)

dH(v)1/(k−1)
(as |E(Lv)| = dH(v))

≥ ck
(

d+ 1

dH(v) + 1

)1/(k−1)

, (5)

where

ck = 2−(1+ 1
k−1 )

(
1− 1

k

)
= 2−(1+ok(1)).

Note that Inequality (5) follows from the fact that since dH(v) > d ≥ 0, we must
have at least k − 1 vertices in the hypergraph Lv, i.e., |V (Lv)| ≥ k − 1.

It only remains to prove Lemma 3, which we will prove using a local density
argument.

Proof (of Lemma 3). For all 1 ≤ s ≤ n, we define

ρs := E|S|=s [|E(H(S))|] =

∑
S⊆V, |S|=sE(H(S))(

n
s

) .

Note that the expectation is taken over all subsets of V of size s, and E(H(S)) =
{e ∈ E(H) : e ⊆ S}.

Counting the number of pairs (e, S), where e ∈ E(H), and S ⊂ V : |S| =
s, e ∈ S, in two ways, we get the average local density of sets of size s is

ρs =
m
(
n−k
s−k
)(

n
s

) =
m(s)k
(n)k

≤ msk

nk
.



(Here
(
a
b

)
:= 0 if b < 0). This is as follows: let

z := #

{
(e, S) : e ∈ E,S ∈

(
V

s

)
, e ⊂ S

}
.

Then each of the
(
n
s

)
sets of size s contributes, on average, ρs-many entries to

z. On the other hand, each edge e ∈ E(H) belongs to
(
n−k
s−k
)
-many sets of size s.

Equating the two summations gives the claimed average local density.
Now, we use the above observation to prove the lemma. Partition the sum-

mands on the LHS into n parts, depending on the size of the set J (i.e. the
number of neighbouring vertices which precede v in the random ordering):

n∑
i=1

 ∑
J⊆V : |J|=i, |E(H(J))|<a

1(
n
i

)
 .

When i < k, it is easy to see that the inner summation is 1. The main idea of
the proof is the following: first, observe that for any i ∈ [n], the inner summation
is just the probability that a randomly picked set of exactly i vertices has fewer
than a+1 edges. Then for small enough i, the expected number of edges is upper
bounded by ρi, and is much smaller than (a + 1)/2. So the probability that a
random i-set contains more than twice the expected number, is at most half.
Therefore for all such i, the contribution to the outer sum is at least 1/2. The
number of such terms in the outer sum, then gives the claimed lower bound.

Formally, let Xi be a random variable giving the number of edges contained
in a randomly chosen set on i vertices. By Markov’s inequality:

Pr [Xi ≥ 2.E [Xi]] ≤
1

2
.

We have that E [Xi] = ρi. Therefore, the LHS becomes:

n∑
i=1

Pr [Xi < a+ 1] = 1−
n∑
i=1

Pr [Xi ≥ a+ 1]

With foresight, we split the above sum into two parts, when i ≤ t∗ := n(a+1)1/k

(2m)1/k
,

and when i > t∗. Observe that when i ≤ t∗, we have that mik

nk ≤ a+1
2 . We get

n∑
i=1

Pr [Xi < a+ 1] =

t∗∑
i=1

Pr [Xi < a+ 1] +
∑
i>t∗

Pr [Xi < a+ 1]

≥
t∗∑
i=1

(
1− E [Xi]

a+ 1

)

=

t∗∑
i=1

(
1− m(i)k

(a+ 1)(n)k

)



≥
t∗∑
i=1

(
1− mik

(a+ 1)nk
)

≥
t∗∑
i=1

(
1− 1

2

)
≥ n(a+ 1)1/k

2(2m)1/k

where in the second step we used Markov’s inequality on the first summation,
and in the penultimate step we used the observation on t∗ noted above.

Remark 1 (Regarding the constant “ck”).

1. Observe that

ck = 2−(1+ 1
k−1 )

(
1− 1

k

)
≥ 1

8
,

for all k ≥ 2, and ck → 1
2 as k →∞.

2. For simplicity of exposition we did not try to optimize ck.

4 Conclusion

Our randomized algorithm for finding d-degenerate subgraphs of k-uniform hy-
pergraphs inherits the analysis of Srinivasan-Shachnai [SS04] for independent
sets:

(i) The RandPermute algorithm runs in RNC, as long as d is polylogarithmic
in the number of vertices and edges.

(ii) Our proof technique generalizes to non-uniform hypergraphs.

(iii) All our results generalize to the vertex-weighted scenario, where we want an
induced d-degenerate subgraph of maximum weight.

It is interesting to ask if the RandPermute algorithm can be used to obtain
lower bounds for the generalized degeneracy of Zaker, or to solve the conjecture
of Beame and Luby [BL90], which asks whether iterating the RandPermute
algorithm always yields a maximal independent set.
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dom Structures & Algorithms, 6(2/3):209–212, 1995.

[DMS12] K. Dutta, D. Mubayi, and C. R. Subramanian. New Lower Bounds for the
Independence Number of Sparse Graphs and Hypergraphs. SIAM Journal
on Discrete Mathematics, 26(3):1134–1147, 2012.

[PP12] Marcin Pilipczuk and Micha l Pilipczuk. Parameterized and Exact Com-
putation: 7th International Symposium, IPEC 2012, Ljubljana, Slovenia,
September 12-14, 2012. Proceedings, chapter Finding a Maximum Induced
Degenerate Subgraph Faster Than 2 n, pages 3–12. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2012.

[PW13] M. S. Payne and D. R. Wood. On the General Position Subset Selection
Problem. SIAM J. Discrete Math., 27(4):1727–1733, 2013.

[She83] J. B. Shearer. A note on the independence number of triangle-free graphs.
Discrete Mathematics, 46(1):83–87, 1983.

[She95] J. B. Shearer. On the Independence Number of Sparse Graphs. Random
Structures & Algorithms, 7(3):269–272, 1995.

[Spe72] J. H. Spencer. Turán’s theorem for k-graphs. Discrete Mathematics, 2:183–
186, 1972.

[SS04] Hadas Shachnai and Aravind Srinivasan. Finding large independent sets in
graphs and hypergraphs. SIAM J. Discrete Math., 18(3):488–500, 2004.
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