
HAL Id: hal-01360409
https://hal.science/hal-01360409v2

Preprint submitted on 21 Sep 2016 (v2), last revised 18 Sep 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Manipulation planning: building paths on constrained
manifolds

Joseph Mirabel, Florent Lamiraux

To cite this version:
Joseph Mirabel, Florent Lamiraux. Manipulation planning: building paths on constrained manifolds.
2016. �hal-01360409v2�

https://hal.science/hal-01360409v2
https://hal.archives-ouvertes.fr

Manipulation planning: building paths on constrained manifolds

Joseph Mirabel1,2 and Florent Lamiraux1,2

Abstract— Constrained motion planning and Manipulation
planning, for generic non-linear constraints, highly rely on the
ability of solving non-linear equations. The Newton-Raphson
method, often used in this context, is discontinuous with
respect to its input and point wise path projection can lead
to discontinuous constrained paths.

The discontinuities come from the pseudo-inverse involved at
each iteration of the Newton-Raphson algorithm. An interval
of continuity for one iteration is derived from an upper bound
of the norm of the Hessian of the constraints. Such a bound
is easy to compute for constraints involving joint positions and
orientations.

We introduce two path projection algorithms. They provide
a certificate of continuity of the Newton-Raphson iteration
function along the path. The algorithms compare faster with the
Recursive Hermite Projection on several problems, while having
a stronger guaranty.

I. INTRODUCTION

Manipulation planning is known to be a difficult problem
for several reasons. First, the geometrical structure of the
problem is complex: the search is usually performed in the
composite configuration space, i.e. the Cartesian product of
the configuration spaces of the robots and of the objects. The
admissible subspace of the composite configuration space,
i.e. a union of submanifold defined by constraints (placement
of objects in stable positions, grasp of objects by grippers).
Moreover, in those sub-manifolds, motions are additionally
constrained, thus defining foliations of the sub-manifolds.
Second, the geometrical structure has to be translated into
a graph of states that defines a discrete structure in a
continuous problem. Exploring the graph of states implies
the choice of transitions between states that adds parameters
to the exploration algorithms. The efficiency of exploration
algorithms is then very sensitive to parameter tuning. Third,
manipulation constraints are diverse and difficult to express
in a way both general and efficient.

Recently, we have proposed a formulation of the ma-
nipulation planning problem based on implicit numerical
constraints of the form f(q) = 0 where f is a differentiable
mapping from the composite configuration space to a finite-
dimensional vector space [1]. To the best of our knowledge,
this formulation is the most general ever proposed, and can
express constraints as diverse as

• grasping an object, with possible free degrees of free-
dom (DOF) in the grasps (for cylindrical objects for

*This work has been partially supported by the national PSPC-Romeo 2
project, has received funding from the European CommunityâĂŹs Sev-
enth Framework Programme (FP7/2007-2013) under grant agreement nÂř
609206 and nÂř 608849.

1CNRS, LAAS, 7 avenue du colonel Roche, F–31400 Toulouse, France
2Univ de Toulouse, LAAS, F–31400 Toulouse, France

instance),
• placement of an object on a bounded flat surface,
• quasi-static equilibrium for a humanoid robot,
• and most importantly, any combination of the above.

The above constraints have been implemented and are used
by a manipulation planning algorithm in the software plat-
form HPP that we have been developing for the past two
years [2]. The core of this manipulation planning platform
is thus the notion of implicit numerical constraint. Building
paths that satisfy the constraints at any time is based on
numerical resolution of those constraints (we also use the
word projection since we project an initial guess onto the so-
lution sub-manifold) and raises tricky continuity issues when
projecting a path on a sub-manifold defined by numerical
constraints.

The main contributions of this paper are

• to formulate the problem of path projection in a rigorous
way,

• to propose two algorithms that project a linear inter-
polation on a sub-manifold with a certificate on the
continuity of the projection,

• to provide a mathematical proof of the above certificate.

The paper is organized as follows. In Section II, we
provide a short state of the art in manipulation planning,
showing how original our approach is. In Section III, we
give some useful definitions. Section IV describes the main
theoretical result and our two path projection algorithms.
Finally, the two algorithms are compared to related work
in simulations.

II. RELATED WORK

Manipulation planning has been first addressed in the
1980’s [3], [4], [5] and has given rise to a lot of research
work in the 1990’s [6], [7], [8]. The first use of roadmap-
based random sampling method for the problem of manipu-
lation planning has been reported in [9]. In this later work,
constraints are expressed in an explicit way: position of the
object computed from position of gripper for grasp positions,
position of the gripper for given position of the object
computed by inverse kinematics. As such, this pioneering
work is not directly extendible to more general problems
like humanoid robot in quasi-static equilibrium, or robot
arm with more than 6 degrees of freedom. [10] propose
an implementation of Navigation Among Movable Obstacles
(NAMO) for a humanoid robot manipulating objects rolling
on the ground. The geometry of the robot is simplified to a
cylinder and the 3D configuration space is discretized. A high
level planner searches a path between the initial and goal

configuration that may collide with movable obstacles. Then
a manipulation planner plans motion to move objects out of
the way. The algorithm is demonstrated on a humanoid robot
HRP2. They reduced manipulation planning to a 2D problem.
[11] addresses the specific case of dual arm manipulation
planning. As in [9], constraints are solved by inverse kine-
matics. [12] proposes a manipulation planning framework
taking into account constraints beyond the classical grasp
and placement constraints. As in our case, they need to
project configurations and paths on manifolds defined by
non-linear constraints. Path projection is however performed
by discretization and the continuity issue is not discussed.

The Recursive Hermite Projection (RHP) [13] addresses
the problem of generating C1 paths that satisfy a set of non-
linear constraints. We consider random exploration of the
configuration space. As such, we only consider continuity
and not differentiability. We prefer to explore the configura-
tion space of the system and to address differentiability in
a post-processing step. This approach is known to be more
efficient than kinodynamic motion planning that explores the
state space of the system and returns differentiable solutions.
As such, the RHP is thus not a suitable solution. Section IV-C
gives a more detailed comparison between our method and
the RHP.

III. NOTATION AND DEFINITIONS

We consider a manipulation problem defined by a set of
robots and objects. We denote by C the Cartesian product
of the configuration spaces of the robots and of the objects.
If the number of robots is 1 and the number of objects is
0, the problem becomes a classical path planning problem.
Even in this case, the robot may be subject to non-linear
constraints. For instance, static equilibrium constraint for a
humanoid robot standing on the ground, or for a wheeled
mobile robot moving on a non-flat terrain.

We give the following definitions.

• Path p : continuous mapping from an interval I ⊂ R

to C,
• Constraint f : C1 mapping from C to vector space R

m,
where m is a positive integer. We say that configuration

Fig. 1. This 2D example, where (x, y) are the configuration parameters,
shows the graph of f ((x, y)) = y2 − 1. The 2 dotted horizontal line are
the solutions of f ((x, y)) = 0. The 2 red circles are two configurations
satisfying f(q) = 0. On the left, the blue line is straight(q0,qe) and on
the right, the black solid line is its pointwise projection. The discontinuity
is highlighted by the black circles and the red dashed line.

q ∈ C satisfies the constraint iff

f(q) = 0

• Projector on constraint f : mapping proj from a subset
Dproj of C to C such that

∀q ∈ Dproj , f(proj(q)) = 0.

A. Path planning on constrained manifold

When solving a path planning problem where the robot
is subject to a numerical constraint, we make use of an
operator called steering method that takes as input two
configurations satisfying the constraint and that returns (in
case of success) a path satisfying the constraint and linking
the end configurations.

SM :
C × C × C1(C,Rm) → C1([0, 1], C)

(q0,qe, f) 7→ p

such that ∀t ∈ [0, 1], f(p(t)) = 0

We denote by straight the constraint-free steering method
that returns the linear interpolation between the input con-
figurations.

From an implementation point of view, we could discretize
the linear interpolation between q0 and qe into N steps,
project each sample configuration on constraint f and make
the steering method return linear interpolations between
projected sample configurations. However, the point wise
projection has two drawbacks. First, in some cases, for
instance in Figure 1, it introduces a discontinuity. And
second, the resulting path does not satisfy the constraint
between samples.

As for collision-checking, discretizing constraints along
paths raises many issues, mainly

• discretization step needs to be chosen for each applica-
tion,

• some algorithms that assume that constraints are satis-
fied everywhere may fail because the assumption is not
satisfied.

Our steering method instead applies the constraint at
evaluation:

SM(q0,qe, f)(t) = proj(straight(q0,qe)(t))

where proj is a projector on f .

IV. PATH PROJECTION ALGORITHM

In this section, we derive a continuity condition of the
Newton-Raphson (NR) algorithm. Then, we introduce two
algorithms to check for path continuity.

The NR algorithm iteratively updates the robot configura-
tion so as to decrease the norm of the constraints value f(q).
Let α > 0 and Pα ∈ F (C, C) be the NR iteration function:

Pα(q) = q− α× J(q)† × f(q) (1)

where A† is the Moore-Penrose pseudo-inverse of A and
J(q) is the Jacobian matrix of f in q. Pα(q) is the con-
figuration obtained after one iteration of the NR algorithm,
starting at q.

For a given sequence (αn) ∈]0, 1]
N and a given numerical

tolerance ϵ > 0, let PN (q) = PαN
(· · · (Pα0

(q))). The
projection of a configuration q is PN (q) where N is such
that:

• ∀i ∈ J0, NK, Pαi
(· · · (Pα0

(q))) ≥ ϵ,
• PN (q) < ϵ.

Note that the projection is not always defined as N might
not exist.

Denoting B (q, r) = {q̃ ∈ C, ||q̃− q||2 < r}. The conti-
nuity of Pα is expressed as follows.

Lemma 4.1 (Continuity of the NR iteration function):

Let f ∈ C1 (C,Rm). Let J(q) be its Jacobian and σ(q) be
the smallest non-zero singular value of J(q). Finally, let
r = max

q∈C
(rank(J(q))).

If J is a Lipschitz function, of constant K, then, ∀q ∈ C

rank(J(q)) = r ⇒ Pα is C0 on B
(

q, σ(q)
K

)

A. Proof of continuity of the NR iteration function

This section provides a proof of Lemma 4.1. f is continu-
ously differentiable, K is a Lipschitz constant of its Jacobian,
and r = max

q
(rank(J(q))) is known.

As f is continuously differentiable, Pα is continuous where
the pseudo-inverse application is continuous. The first part of
the proof reminds some continuity condition of the pseudo-
inverse. The second part proves that the latter condition is
satisfied on the interval of Lemma 4.1.

1) Condition of continuity of the pseudo-inverse: Let q

be a regular point, i.e. rank(J(q)) = r. As the set of
regular points is open [14] and J is continuous, there exists
a neighborhood U of q where the rank of J is constant.
The continuity of the Moore-Penrose pseudo inverse can be
expressed as follows [15].

Theorem 4.1 (Continuity of the pseudo inverse): If
(An) ∈ (Mm,d)

N, A ∈Mm,d and An 7→ A, then

A†
n 7→ A† ⇔ ∃n0, ∀n ≥ n0, rank(An) = rank(A)

Theorem 4.1 proves that J† is a continuous function of q
on U . In the following section, we prove that U = B

(

q, σ
K

)

is a suitable neighborhood.
2) Interval of continuity of the pseudo-inverse: The norm

onMm,n(R) we consider is the Frobenius norm (L2-norm),
denoted |||.|||F .

Theorem 6 of [16], restricted to the Frobenius norm, is:
Theorem 4.2 (Mirsky): If σ1 ≥ σ2 ≥ · · · ≥ σn and σ̃1 ≥

σ̃2 ≥ · · · ≥ σ̃n are the singular values of two matrices of the
same size, B and B̃, then

|||diag(σ̃i − σi)|||F ≤ |||B̃−B|||F
.

Lemma 4.2: Let (J,dJ) ∈M2
m×d and σ be the smallest

non-zero sigular value of J. Then,

|||dJ|||F < σ ⇒ rank(J) ≤ rank(J+ dJ)

Proof: Let p, resp. q, be rank(J), resp. rank(J+dJ).
Let σ1 ≥ σ2 ≥ · · · ≥ σp > 0, resp. σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃q > 0,

be the non-zero singular values of J, resp. J+dJ. We apply
Theorem 4.2 with B = J and B̃ = J+ dJ.

|||dJ|||F < σp ⇒ |||diag(σ̃i − σi)|||F < σp

⇒ ∀i ≤ p, σ̃i > σi − σp

⇒ ∀i ≤ p, σ̃i > 0

⇒ p ≤ q

Note that the ball has to be open. At this point, we have an
interval for the Jacobian in which the rank does not decrease.
We use the Lipschitz constant K to have an interval in the
configuration space.

∀(q, q̃) ∈ C2, |||J(q̃)− J(q)|||F ≤ K||q̃− q||2
Let q ∈ C and σ be the smallest non-zero singular value of
J(q). Then,

q̃ ∈ B
(

q, σ
K

)

⇒ |||J(q̃)− J(q)|||F ≤ K||q̃− q||2 < σp

⇒ rank(J(q̃)) ≥ rank(J(q))

If q is a regular point, rank(J(q)) has rank r =
max
q

(rank (J(q))). Thus J(q̃) has a constant rank r on

B
(

q, σ
K

)

. By Theorem 4.1, J(q)† is continuous. Pα is the
composition of continuous functions so it is continuous on
B
(

q, σ
K

)

.
This proves Lemma 4.1.

B. Algorithms

This section presents two path projection algorithms
with continuity certificate. From an initial constrained path
SM(q0,qe, f), the algorithm generates a set of interpolation
points (q1, · · · ,qn) where f(qi) = 0 and n is decided by
the algorithm. The resulting path is the concatenation of
SM(qi,qi+1, f), ∀i ∈ [0, n[. When the algorithms succeed,
qn = qe. When they fail to project a path, they return the
longuest part along the path, starting at q0, that has been
validated.

To benefit from the continuity interval of Pα, an upper
bound of the norm of the Hessian of the constraints for
constraints involving joint placements is computed [17]. This
upper bound is a Lipschitz constant of the Jacobian. This
method extends to constraints involving the center of mass
(COM) of the robot as the COM is a weighed sum of joint
positions. Lemma 4.1 ensures the output is a path along
which the NR iteration function is continuous.

The maximum number of interpolation points on unit
length paths Nmax is set to 20 and the minimum interpola-
tion distance λm is set to 0.001. These parameters ensure our
algorithms terminate. When a limit is reached, the algorithm
returns the left part of a path that has been successfully
projected, as stated above.

1) Progressive projection: is presented in Alg 1 and
depicted in Figure 2.

From q0, it builds a configuration satisfying the constraint,
within the continuity interval of q0. The configuration is
chosen towards qe (Line 7). When qe is within the continuity
interval of q0 (Line 2), the algorithm succeeds.

Algorithm 1 Progressive continuous projection

1: function PROJECT(q0,qe, depth)
▷ Continuously project the direct path (q0,qe) onto the
submanifold f(q) = 0

2: if K × ||q0 − qe||2 < σr(q0) then return (q0,qe)

3: if depth > Nmax × ||q0 − qe||2 then return (q0)

4: λ← σr(q0)/K
5: repeat

6: if λ < λm then return (q0)

7: q← SM(q0,qe, f)(
λ

||q0−qe||2
)

8: λ← λ
2

9: until K||q− q0||2 < σr(q0)
10: return {q0}∪ PROJECT(q,qe, depth+ 1)

From 2a to 2b, the path is cut in two at distance λ from
the start configuration. λ is gradually reduced so that the
projected configuration is within the continuity ball of q0

(Lines 4-9). When λ < λm (Line 6), the projection locally
increases the distances more than σr(qk)/(λmK). The path
is considered discontinuous and the algorithm fails. If q is
found in B

(

q0,
σ(q0)
K

)

, the left part satisfies the condition
of Lemma 4.1. The right part then projected using the same
procedure.

2) Global projection: method is presented in Alg 2 and
depicted in Figure 3.

Algorithm 2 Global continuous projection

1: function PROJECT(q0,qe, f)
▷ Continuously project the direct path (q0,qe) onto the
submanifold f(q) = 0

2: Q← (q0,qe)
3: repeat← True
4: while repeat do

5: repeat← False
6: for all qk ∈ Q do

7: if ||f(qk)||2 > ϵ then

8: qk ← Pα(qk)
9: repeat← True

10: for all Consecutive qk,qk+1 ∈ Q do

11: if σr(qk) < Kλm then

12: Q← (q0, · · · ,qk) and break

13: d← σr(qk) + σr(qk+1)
14: if d < K × ||qk − qk+1||2 then

15: q← INTERPOLATE(qk,qk+1,
σr(qk)

K
)

16: Q← (q0, · · · ,qk,q,qk+1, · · ·)
17: repeat← True
18: if LENGTH(Q) > Nmax × ||q0 − qe||2

then

19: Q.REMOVELASTELEMENT

20: return Q

The algorithm starts by computing interpolation points

along the straight path. Then, it works in two steps. First,
the interpolation points are improved in order to decrease the
constraint violation, by applying the NR iteration function
(Line 8). Second, it checks whether the distance between
each pair of consecutive interpolation points (qk,qk+1) is
within the union of the two continuity balls (Line 14). If this
check fails, a new interpolation point q is added at the border
of the continuity ball of qk. Next iteration will consider the
two consecutive points (q,qk+1).

For clarity of the pseudo-code, we omitted to include
a limit on the number of iterations of constraint violation
reduction loops (Line 6). Such a limit must be integrated to
avoid infinite loops due to local minimas. We set this limit to
40 in our implementation and the counter is reset whenever
a interpolation point is added.

Figure 3 shows the path after some iterations. From 3b
and 3c, the projection loop (Line 6) reduces the constraint
violation point-wise. Between 3c and 3d, an interpolation
point is added (Line 18).

C. Discussion

The two algorithms have the following guaranties. They
provide a path with interpolation points satisfying the con-
straints. Moreover, they ensure that the NR iteration function
is continuous along the lines connecting consecutive interpo-
lation points. The piecewise straight interpolation is closer to
constraint satisfaction than the input path and one iteration
of NR is continuous. This leads to good chances to have the
resulting path continuous. In practice, no discontinuity has
been encountered.

Compared to our method, the RHP gives continuity, at
the cost of being first, computationally less efficient, second,
unable to return the continuously projected part of the path
and third requires to introduce velocities. The efficiency of
our method, compared to RHP, comes from the expected dis-
tances between interpolation points. Indeed, RHP generates
a lot more interpolation points than us. The reason is the
following. The distance between interpolation points is less
than ϵ/Kf where ϵ is the constraint satisfaction tolerance and
Kf is a Lipschitz constant of the constraint. In our case, this
distance is around σ/KJ, where σ is the smallest singular
value of the Jacobian and KJ is a Lipschitz constant of
the Jacobian of the constraint. In part of the configuration
space far from singularities, σ is orders of magnitude bigger
that ϵ, set to 10−4 in our experiments. The comparison of
RHP and our work in next section emphasizes. Next section
comparison of both approaches regarding this result. This
results are

V. SIMULATIONS

In this section, both algorithms and the RHP are compared
to each other in two settings, each described in the two
following paragraph. The benchmarks are run using the HPP
software framework, in which the 3 algorithms have been
implemented1.

1https://github.com/jmirabel/hpp-core/tree/hermite_projection/src/path-
projector

(a) (b) (c) (d) (e)

Fig. 2. Progressive projection method. The green surface is f(q) = 0. 2a shows the input path. Between 3b and 3c, the interpolation point is added
because it is close enough from the last point. On 3d, the point is rejected because it is too far from the last point and λ is divided by two. It results in 3d
and the interpolation point is finally added.

(a) (b) (c) (d) (e)

Fig. 3. Global projection method. The green surface is f(q) = 0. 3a shows the input path. Between 3b and 3c, each interpolation points has been updated
to decrease the constraint violation. Between 3c and 3d, an interpolation point is added because the distance between two adjacent points is bigger than
the threshold.

1) Quadratic problems: We first compare our two algo-
rithms and the RHP for various parameter in the following
problems.

• Circle: the configuration space is [−1, 1]2, subject to
constraint f(x, y) = x2 + y2 − 1 = 0. A Lipschitz
constant of f is M = 2

√
2 and a Lipschitz constant

of its Jacobian is K = 2
√
2. We project line segments

between (1, 0) and (cos θ, sin θ) for θ ∈ [π/2, π]. None
of the algorithms were able to find a continuous path
for the singular case θ = π. The Global projection
method did not need any interpolation points to return
an answer.

• Parabola: the configuration space is [−1, 1] × [0, 2],
subject to constraint f(x, y) = y2 − 1 = 0. This
constraint has two disjoint sets of solution: y = −1
and y = 1. Fig. 1 illustrates it. A Lipschitz constant of
f is M = 2 and a Lipschitz constant of its Jacobian
is K = 2. We project line segments between (0, 1)
and (τ,−1) for τ ∈ [0, 2]. No continuous path can
both connect any pair of these points and satisfy the
constraints at all time. All the algorithms were able to
detect the discontinuity.

Results are presented in Table I. The global projec-
tion method outperforms the progressive method on these
quadratic problems.

2) Manipulation planning:

a) UR5: We constrain the end-effector of the UR5
robot along a line, its orientation being fixed. We project
a motion where the robot must move along this line and
switch between inverse kinematic solutions. Using [17], a
Lipschitz constant of the constraint is M = 6 and a Lipschitz
constant of its Jacobian is K = 7.14. Table II summarizes
the obtained results for various line segment. The first part of
the accompanying video shows one of the computed motions.
Note that, in this case, we do not do any motion planning.
To our best knowledge, it would not be possible to compute

Global proj. Circle Parabola
tavg/tmax (µs) 16/90 201/231

dmin/davg/dmax(mm) - 0.2/51/316
Nip 0 10

Progressive proj. Circle Parabola
tavg/tmax (µs) 78/134 173/207

dmin/davg/dmax (mm) 284/462/512 1/71/316
Nip 4.75 14

Recursive hermite proj. Circle Parabola
tavg/tmax (ms) 503/900 0.017/0.03

dmin/davg/dmax (µm) 50/75/100 -
Nip 28946 0

TABLE I

QUADRATIC PROBLEMS BENCHMARKS. THE ROWS CORRESPONDS TO

THE NUMBER OF INTERPOLATION POINTS Nip , THE AVERAGE, MINIMUM

AND MAXIMUM DISTANCE BETWEEN CONSECUTIVE WAYPOINTS davg ,

dmin , dmax , AND THE AVERAGE AND MAXIMUM COMPUTATION TIME

OVER 10 RUNS tavg , tmax .

the same motions merely using inverse kinematics.

When the projection method returns a false negative, the
longest validated part of the input path is returned. In the
context of randomized motion planning, the high rate of
false negatives of global methods does not block the search.
The expected effect is a increase of the number of nodes
generated.

b) Integration in a manipulation planner: The con-
tinuous projection can easily be integrated in randomized
constrained motion planners. Path projection must be done
before collision checking as it modifies the path. To ensure
their validity, paths can be created in two steps. First, contin-
uously project the straight interpolation onto the constraint
satisfaction manifold. Optionally, keep one continuous end of
the path. And second, check the projected path for collision.

Fig. 4. HRP2 opening a door.

Projection method Global Progressive RHP
tavg/tmax (ms) 85/746 6.5/9.5 160/175

Nip 123 72 3403
False negative 54% 0% 8%

TABLE II

RESULTS OF UR5 CASE. THE ROWS HAVE THE SAME MEANING AS IN

TABLE I. THE NUMBER OF FALSE NEGATIVE CORRESPONDS TO THE

RATIO OF REJECTED PATH OVER ALL TESTS, WHILE A CONTINUOUS

PATH EXISTS.

The proposed algorithms have been integrated in a ma-
nipulation planner. We wish to compute a path for the
HRP2 robot opening a door. The planning is split in two
phases [18]. A quasi-static full-body motion for the sliding
robot is first computed. Additionally to the manipulation
rules, quasi-static constraints are taken into account. Then,
the motion is post-processed to obtain a dynamically-feasible
walking trajectory.

The accompanying video and Figure 4 shows the result
of the first phase, obtained with and without continuous
path projection. No optimization were run. As one can see,
the motion without continuous path projection has several
discontinuity. This demonstrates both the necessity to check
motion continuity and that our algorithms perform as ex-
pected.

VI. CONCLUSION

This work has shown that it is possible to deal with generic
non-linear implicit constraints and still have a certificate
of continuity for motions projected inside the constraint
satisfaction submanifold. Our main focus has been to derive
a theoretical condition of continuity which can be exploited
by a computer, and to design algorithms using this condition.

Efficiency of the proposed algorithms has not been the
main focus and is left for future work. They can be improved
by better organising the computation as computing singular
values and evaluating the Newton-Raphson iteration function
can be factorized.

REFERENCES

[1] Mirabel, J., Lamiraux, F.: Constraint graphs: Unifying task and motion
planning for navigation and manipulation among movable obstacles.
submitted to IROS 2016

[2] Mirabel, J., Tonneau, S., Fernbach, P., Seppälä, A.K., Campana, M.,
Mansard, N., Lamiraux, F.: Hpp: a new software for constrained
motion planning. submitted to IROS 2016

[3] Mason, M.: Manipulation by grasping and pushing operations. PhD
thesis, MIT, Artificial Intelligence Laboratory (1982)

[4] Cutkosky, M.: Robotic Grasping and Fine Manipulation. Kluwer,
Boston (1985)

[5] Peshkin, M., Sanderson, A.: Planning robotic manipulation strategies
for workpieces that slide. IEEE Transactions on Robotics and
Automation 4(5) (1988) 524–531

[6] Koga, Y., Latombe, J.C.: On multi-arm manipulation planning. In:
International Conference on Robotics and Automation, San Diego
(USA), IEEE (May 1994) 945–952

[7] Bicchi, A.: Hands for dexterous manipulation and powerful grasping.
In Giralt, G., Hirzinger, G., eds.: International Symposium on Robotics
Research. Springer, London (1996) 2–15

[8] Alami, R., Laumond, J., Siméon, T.: Two manipulation planning
algorithms. In Goldberg, K., Halperin, D., Latombe, J.C., Wilson,
R., eds.: Algorithmic Foundations of Robotics, Wellesley, MA, A K
Peters, Ltd. (1995) 109–125

[9] Siméon, T., Laumond, J.P., Cortés, J., Sahbani, A.: Manipulation plan-
ning with probabilistic roadmaps. International Journal of Robotics
Research 23(7/8) (July 2004)

[10] Stilman, M., Nishiwaki, K., Kagami, S., Kuffner, J.J.: Planning and
executing navigation among movable obstacles. Advanced Robotics
21(14) (2007) 1617–1634

[11] Harada, K., Tsuji, T., Laumond, J.P.: A manipulation motion planner
for dual-arm industrial manipulators. In: IEEE International Confer-
ence on Robotics and Automation (ICRA), Hong Kong, China (May
2014)

[12] Berenson, D., Srinivasa, S., Ferguson, D., Kuffner, J.: Manipulation
planning on constraint manifolds. In: IEEE International Conference
on Robotics and Automation. (May 2009)

[13] Hauser, K.: Fast interpolation and time-optimization on implicit
contact submanifolds. In: Proceedings of Robotics: Science and
Systems, Berlin, Germany (June 2013)

[14] Lewis, A.: Semicontinuity of rank and nullity and some consequences
[15] Rakočević, V.: On continuity of the moore-penrose and drazin inverses.

Matematički Vesnik 49(209) (1997) 163–172
[16] Stewart, M.: Perturbation of the {SVD} in the presence of small

singular values. Linear Algebra and its Applications 419(1) (2006) 53
– 77

[17] Schwarzer, F., Saha, M., Latombe, J.C. In: Exact Collision Checking
of Robot Paths. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)
25–41

[18] Dalibard, S., El Khoury, A., Lamiraux, F., Nakhaei, A., Taïx, M.,
Laumond, J.P.: Dynamic walking and whole-body motion planning for
humanoid robots: an integrated approach. The International Journal
of Robotics Research 32(9-10) (2013) 1089–1103

