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constrained manifolds
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2 Univ de Toulouse, LAAS, F�31400 Toulouse, France

Abstract. Constrained motion planning and Manipulation planning,
for generic non-linear constraints, highly rely on the ability of solving
non-linear equations. The Newton-Raphson method is often used in this
context. This work tackles the problem of continuity that arises when
projecting paths point wise with such method.

A theoretical proof of an interval of continuity for the Newton-Raphson
iteration function is given. This interval requires to bound from above the
norm of the Hessian of the constraints. A method to compute this bound
for constraints involving joint positions and orientations is proposed.

Then, this theoretical result is used in two path projection algorithm to
give a certi�cate of continuity of the continuously projected path.

Finally, simulations are run on several problems.

1 Introduction

Manipulation planning is known to be a di�cult problem for several reasons.
First, the geometrical structure of the problem is complex: the search is usually
performed in the composite con�guration space, i.e. the Cartesian product of
the con�guration spaces of the robots and of the objects. The admissible sub-
space of the composite con�guration space, i.e. a union of submanifold de�ned
by constraints (placement of objects in stable positions, grasp of objects by grip-
pers). Moreover, in those sub-manifolds, motions are additionally constrained,
thus de�ning foliations of the sub-manifolds. Second, the geometrical structure
has to be translated into a graph of states that de�nes a discrete structure in
a continuous problem. Exploring the graph of states implies the choice of tran-
sitions between states that adds parameters to the exploration algorithms. The
e�ciency of exploration algorithms is then very sensitive to parameter tuning.
Third, manipulation constraints are diverse and di�cult to express in a way both
general and e�cient.

Recently, we have proposed a formulation of the manipulation planning prob-
lem based on implicit numerical constraints of the form f(q) = 0 where f is
a di�erentiable mapping from the composite con�guration space to a �nite-
dimensional vector space [1]. To the best of our knowledge, this formulation is
the most general ever proposed, and can express constraints as diverse as



� grasping an object, with possible free degrees of freedom (DOF) in the grasps
(for cylindrical objects for instance),

� placement of an object on a bounded �at surface,
� quasi-static equilibrium for a humanoid robot,
� and most importantly, any combination of the above.

The above constraints have been implemented and are used by a manipulation
planning algorithm in the software platform HPP that we have been developing
for the past two years [2]. The core of this manipulation planning platform is
thus the notion of implicit numerical constraint. Building paths that satisfy the
constraints at any time is based on numerical resolution of those constraints (we
also use the word projection since we project an initial guess onto the solution
sub-manifold) and raises tricky continuity issues when projecting a path on a
sub-manifold de�ned by numerical constraints.

The main contributions of this paper are

� to formulate the problem of path projection in a rigorous way,
� to propose two algorithms that project a linear interpolation on a sub-
manifold with a certi�cate on the continuity of the projection,

� to provide a mathematical proof of the above certi�cate.

The paper is organized as follows. In Section 2, we provide a short state of the
art in manipulation planning, showing how original our approach is. In Section 3,
we give some useful de�nitions. Section 4 describes the main theoretical result
and our two path projection algorithms. These algorithms make use of an upper
bound on the Hessian operator of the constraint that we compute in Appendix A.
Finally, the two algorithms are validated in simulations.

2 Related work

Manipulation planning has been �rst addressed in the 1980's [3,4,5] and has
given rise to a lot of research work in the 1990's [6,7,8]. The �rst use of roadmap-
based random sampling method for the problem of manipulation planning has
been reported in [9]. In this later work, constraints are expressed in an explicit
way: position of the object computed from position of gripper for grasp po-
sitions, position of the gripper for given position of the object computed by
inverse kinematics. As such, this pioneering work is not directly extendible to
more general problems like humanoid robot in quasi-static equilibrium, or robot
arm with more than 6 degrees of freedom. [10] propose an implementation of
Navigation Among Movable Obstacles (NAMO) for a humanoid robot manipu-
lating objects rolling on the ground. The geometry of the robot is simpli�ed to
a cylinder and the 3D con�guration space is discretized. A high lever planner
searches a path between the initial and goal con�guration that may collide with
movable obstacles. Then a manipulation planner plans motion to move objects
out of the way. The algorithm is demonstrated on a humanoid robot HRP2.
They reduced manipulation planning to a 2D problem. [11] addresses the spe-
ci�c case of dual arm manipulation planning. As in [9], constraints are solved by



inverse kinematics. [12] proposes a manipulation planning framework taking into
account constraints beyond the classical grasp and placement constraints. As in
our case, they need to project con�gurations and paths on manifolds de�ned by
non-linear constraints. Path projection is however performed by discretization
and the continuity issue is not discussed.

The Recursive Hermite Projection (RHP) [13] addresses the problem of gen-
erating C1 paths that satisfy a set of non-linear constraints. Our contribution is
very close to this latter work. The main di�erences are the following.

1. We consider random exploration of the con�guration space. As such, we only
consider continuity and not di�erentiability. We prefer to explore the con�gu-
ration space of the system and to address di�erentiability in a post-processing
step. This approach is known to be more e�cient than kinodynamic motion
planning that explores the state space of the system and returns di�eren-
tiable solutions.

2. We only assume that the constraint is C2 with bounded Hessian, instead of
satisfying a Lipschitz condition. We also compute a bound of the Hessian for
common constraints.

3. We also perform Newton-Raphson projection at curve evaluation. We thus
need to project less intermediate interpolation points to make sure that the
constraint is satis�ed all along the path up to the precision threshold.

4. From an implementation point of view, we represent the robot con�guration
space as a manifold (SO(3) rotations, denoted SO3, are represented by unit
quaternions). De�ning polynomials on such manifolds is not as straightfor-
ward as in a vector space.

Section 4.3 gives a more precise comparison between our method and the RHP.

3 Notation and de�nitions

We consider a manipulation problem de�ned by a set of robots and objects.
We denote by C the Cartesian product of the con�guration spaces of the robots
and of the objects. If the number of robots is 1 and the number of objects is 0,
the problem becomes a classical path planning problem. Even in this case, the
robot may be subject to non-linear constraints. For instance, static equilibrium
constraint for a humanoid robot standing on the ground, or for a wheeled mobile
robot moving on a non-�at terrain.

We give the following de�nitions.

� Path p : continuous mapping from an interval I ⊂ R to C,
� Constraint f : C1 mapping from C to vector space Rm, where m is a positive
integer. We say that con�guration q ∈ C satis�es the constraint i�

f(q) = 0

� Projector on constraint f : mapping proj from a subset Dproj of C to C
such that

∀q ∈ Dproj , f(proj(q)) = 0.



3.1 Path planning on constrained manifold

When solving a path planning problem where the robot is subject to a numerical
constraint, we make use of an operator called steering method that takes as input
two con�gurations satisfying the constraint and that returns (in case of success)
a path satisfying the constraint and linking the end con�gurations.

SM :C × C × C1(C,Rm) → C1([0, 1], C)
(q0,qe, f) → p

∀t ∈ [0, 1], f(p(t)) = 0

We denote by straight the constraint-free steering method that returns the
linear interpolation between the input con�gurations.

From an implementation point of view, we could discretize the linear inter-
polation between q0 and qe into N steps, project each sample con�guration on
constraint f and make the steering method return linear interpolations between
projected sample con�gurations. However, the point wise projection has two
drawbacks. First, in some cases, for instance in Figure 1, it introduces a discon-
tinuity. And second, the resulting path does not satisfy the constraint between
samples.

As for collision-checking, discretizing constraints along paths raises many
issues, mainly

� discretization step needs to be chosen for each application,
� some algorithms that assume that constraints are satis�ed everywhere may
fail because the assumption is not satis�ed.

Our steering method instead applies the constraint at evaluation:

SM(q0,qe, f)(t) = proj(straight(q0,qe)(t))

where proj is a projector on f .

4 Path projection algorithm

In this section, we derive a continuity condition of the Newton-Raphson algo-
rithm. Then, we introduce two algorithms to check for path continuity.

The Newton-Raphson algorithm iteratively updates the robot con�guration
so as to decrease the norm of an error function f . Let α > 0 and Pα ∈ F (C, C)
be the Newton-Raphson iteration function:

Pα(q) = q− α× J(q)† × f(q) (1)

where A† is the Moore-Penrose pseudo-inverse of A and J(q) is the Jacobian
matrix of f in q. Pα(q) is the con�guration obtained after one iteration of the
Newton-Raphson algorithm, starting at q.



Fig. 1. This 2D example, where (x, y) are the con�guration parameters, shows the
graph of f ((x, y)) = y2−1. The 2 dotted horizontal line are the solutions of f ((x, y)) =
0. The 2 red circles are two con�gurations satisfying f(q) = 0. On the left, the blue
line is straight(q0,qe) and on the right, the black solid line is its pointwise projection.
The discontinuity is highlighted by the black circles and the red dashed line.

For a given sequence (αn) ∈ ]0, 1]
N
and a given numerical tolerance ϵ > 0,

let PN (q) = PαN
(· · · (Pα0

(q))). The projection of a con�guration q is PN (q)
where N is such that:

� ∀0 ≤ i < N,Pαi
(· · · (Pα0

(q))) ≥ ϵ,
� PN (q) < ϵ.

Note that the projection is not always de�ned as N might not exist.
The continuity of Pα is expressed as follows.

Lemma 1 (Continuity of the Newton-Raphson iteration function). Let
f ∈ C1 (C,Rm). Let J(q) be its Jacobian and σ(q) be the smallest non-zero sin-

gular value of J(q). Finally, let r = max
q∈C

(rank(J(q))).

If J is a Lipschitz function, of constant K, then,

∀q ∈ C, rank(J(q)) = r ⇒ Pα is continuous on Ball

(
q,

σ(q)

K

)

4.1 Proof of continuity of the Newton-Raphson iteration function

This section provides a proof of Lemma 1. f is continuously di�erentiable, K is
a Lipschitz constant of its Jacobian, and r = max

q
(rank(J(q))) is known.

As f is continuously di�erentiable, Pα is continuous where the pseudo-inverse
application is continuous. The �rst part of the proof reminds some continuity
condition of the pseudo-inverse. The second part proves that the latter condition
is satis�ed on the interval of Lemma 1.

Condition of continuity of the pseudo-inverse Let q be a regular point,
i.e. rank(J(q)) = r. As the set of regular points is open [14] and J is continuous,
there exists a neighborhood U of q where the rank of J is constant. The continuity
of the Moore-Penrose pseudo inverse can be expressed as follows [15].



Theorem 1 (Continuity of the pseudo inverse). If (An) ∈ (Mm,d)
N, A ∈

Mm,d and An 7→ A, then

A†
n 7→ A† ⇔ ∃n0, ∀n ≥ n0, rank(An) = rank(A)

Theorem 1 proves that J† is a continuous function of q on U . In the following
section, we prove that U = Ball

(
q, σ

K

)
is a suitable neighborhood.

Interval of continuity of the pseudo-inverse The norm on Mm,n(R) we
consider is the Frobenius norm (L2-norm), denoted |||.|||F .

Applying Theorem 6 of [16] to the Frobenius norm, we have:

Theorem 2 (Mirsky). If σ1 ≥ σ2 ≥ · · · ≥ σn and σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n are the

singular values of two matrices of the same size, B and B̃, then

|||diag(σ̃i − σi)|||F ≤ |||B̃−B|||F

.

Lemma 2. Let (J,dJ) ∈ M2
m×d and σ be the smallest non-zero sigular value

of J. Then,
|||dJ|||F < σ ⇒ rank(J) ≤ rank(J+ dJ)

Proof. Let p, resp. q, be rank(J), resp. rank(J+dJ). Let σ1 ≥ σ2 ≥ · · · ≥ σp >
0, resp. σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃q > 0, be the non-zero singular values of J, resp.

J+ dJ. We apply Theorem 2 with B = J and B̃ = J+ dJ.

|||dJ|||F < σp ⇒ |||diag(σ̃i − σi)|||F < σp

⇒ ∀i ≤ p, σ̃i > σi − σp

⇒ ∀i ≤ p, σ̃i > 0

⇒ p ≤ q

Note that the ball has to be open. At this point, we have an interval for the
Jacobian in which the rank does not decrease. We use the Lipschitz constant K
to have an interval in the con�guration space.

∀(q, q̃) ∈ C2, |||J(q̃)− J(q)|||F ≤ K||q̃− q||2
Let q ∈ C and σ be the smallest non-zero singular value of J(q). Then,

q̃ ∈ Ball
(
q,

σ

K

)
⇒ |||J(q̃)− J(q)|||F ≤ K||q̃− q||2 < σp

⇒ rank(J(q̃)) ≥ rank(J(q))

If q is a regular point, rank(J(q)) has rank r = max
q

(rank (J(q))). Thus

J(q̃) has a constant rank r on Ball
(
q, σ

K

)
. By Theorem 1, J(q)† is continuous.

Pα is the composition of continuous functions so it is continuous on Ball
(
q, σ

K

)
.

This proves Lemma 1.



4.2 Algorithms

This section presents two path projection algorithms with continuity certi�cate.
From an initial constrained path SM(q0,qe, f), the algorithm generates a set
of interpolation points (q1, · · · ,qn) where f(qi) = 0 and n is decided by the
algorithm. The resulting path is the concatenation of SM(qi,qi+1, f), ∀i ∈ [0, n[.
When the algorithms succeed, qn = qe. When they fail to project a path, they
return the longuest part along the path, starting at q0, that has been validated.

To bene�t from the continuity interval of Pα, a Lipschitz constant must be
computed for the Jacobian of the constraint. Appendix A proposes a method
to bound from above the norm of the Hessian for constraints involving joint
placements. This upper bound is a Lipschitz constant of the Jacobian. This
method also extends to constraints involving the center of mass (COM) of the
robot as the COM is a weighed sum of joint positions.

A Lipschitz constant might be hard to compute in some cases. Moreover, the
larger the upper bound, the smaller the interval of continuity and the greater the
number of interpolation points. Because of these two limitations, two versions of
each algorithms exist. The strong version makes use of the continuity interval of
Lemma 1. A Lipschitz constant of the Jacobian of the constraint must be known.
The output is a path along which the Newton-Raphson iteration function is
continuous. The weak version, with a weaker guaranty, ensures continuity up to
a threshold. It introduces a parameter δM , set to 0.02, which limits the maximum
distance between interpolation points.

For both algorithms, the limit the number of interpolation points on unit
length paths Nmax is set to 20 and the minimal interpolation distance λm is set
to 0.001. These parameters ensure our algorithms terminate.

Progressive projection method is presented in Alg 1 in its weak version.

Algorithm 1 Progressive continuous projection

1: function project(q0,qe, f)
▷ Continuously project the direct path (q0,qe) onto the submanifold f(q) = 0

2: for k = 0 · · ·Nmax × ||q0 − qe||2 do
3: if ||qk − qe||2 < δM then return (q0,q1, . . . ,qk,qe)

4: λ← δM
5: repeat

6: if λ < λm then return (q0,q1, . . . ,qk)

7: q← interpolate(qk,qe, λ)
8: q← project(q, f)
9: λ← λ

2

10: until ||qk,q||2 < δM and Projection succeeded
11: qk+1 ← q

12: return (q0,q1, . . . ,qk)



From q0, it builds a list of con�gurations satisfying the constraints, within
the continuity interval of the previous con�guration. The list is iteratively grown
towards qe. When qe is within the continuity interval of the last con�guration,
the algorithm succeeded.

Figure 2 shows the path at some iterations. From 2a to 2b, the path is cut
in two at distance λ from the start con�guration. λ is decided at lines 7 to 11.
λ is chosen so that the projected con�guration is at a distance less than δM , the
discontinuity tolerance, from the previous interpolation point. When λ < λm,
the projection locally increases the distances more than δM/λm. The path is
considered discontinuous and the algorithm fails. In case of success, the left
part, of length λ, is assumed to be continuous. The right part will be projected
at next iterations.

(a) (b) (c) (d) (e)

Fig. 2. Progressive projection method. The green curve is f(q) = 0. 2a shows the input
path. Between 3b and 3c, the interpolation point is added because it is close enough
from the last point. On 3d, the point is rejected because it is too far from the last point
and λ is divided by two. It results in 3d and the interpolation point is �nally added.

Global projection method is presented in Alg 2 in its strong version and
depicted in Figure 3.

(a) (b) (c) (d) (e)

Fig. 3. Global projection method. The green curve is f(q) = 0. 3a shows the input
path. Between 3b and 3c, each interpolation points has been updated to decrease the
constraint violation. Between 3c and 3d, an interpolation point is added because the
distance between two adjacent points is bigger than the threshold.

The algorithm starts by computing interpolation points along the straight
path. Then, it works in two steps. First, the interpolation points are improved



Algorithm 2 Global continuous projection

1: function project(q0,qe, f)
▷ Continuously project the direct path (q0,qe) onto the submanifold f(q) = 0

2: Q← (q0,qe)
3: repeat← True
4: while repeat do
5: repeat← False
6: for all qk ∈ Q do

7: if ||f(qk)||2 > ϵ then
8: qk ← Pα(qk)
9: repeat← True

10: for all Consecutive qk,qk+1 ∈ Q do

11: if σr(qk) < Kλm then Q← (q0, · · · ,qk) and break

12: d← σr(qk) + σr(qk+1)
13: if d < K × ||qk − qk+1||2 then
14: q← interpolate(qk,qk+1,

σr(qk)
K

)
15: Q← (q0, · · · ,qk,q,qk+1, · · · )
16: repeat← True
17: if Length(Q) > Nmax×||q0−qe||2 thenQ.RemoveLastElement

18: return Q

in order to decrease the constraint violation, by applying the Newton-Raphson
iteration function (Line 8). Second, it checks whether the distance between each
pair of consecutive interpolation points (qk,qk+1) is within the union of the two
continuity balls (Line 13). If this check fails, a new interpolation point q is added
at the border of the continuity ball of qk. Next iteration will consider the two
consecutive points (q,qk+1).

For clarity of the pseudo-code, we omitted to include a limit on the number
of iterations of constraint violation reduction loops (Line 6). Such a limit must
be integrated to avoid in�nite loops due to local minimas. We set this limit to 40
in our implementation and the counter is reset whenever a interpolation point
is added.

Figure 3 shows the path after some iterations. From 3b and 3c, the projection
loop (Line 6) reduces the constraint violation point-wise. Between 3c and 3d, an
interpolation point is added (Line 18).

4.3 Discussion

The strong version of the two algorithms presented here have the following guar-
anties. They provide a path with interpolation points satisfying the constraints.
Moreover, they ensure that the Newton-Raphson iteration function is continu-
ous along the lines connecting consecutive interpolation points. The piecewise
straight interpolation is closer to constraint satisfaction than the input path
and one iteration of Newton-Raphson is continuous. This leads to good chances



to have the resulting path continuous. In practice, no discontinuity has been
encountered.

Compared to our method, the RHP gives strict continuity, at the cost of being
computationally less e�cient. Indeed, RHP generates a lot more interpolation
points than us. The distance between interpolation points is less than ϵ/Kf where
ϵ is the constraint satisfaction tolerance and Kf is a Lipschitz constant of the
constraint. In our case, this distance is around σ/KJ, where σ is the smallest
singular value of the Jacobian and KJ is a Lipschitz constant of the Jacobian
of the constraint. In part of the con�guration space far from singularities, σ is
orders of magnitude bigger that ϵ, set to 10−4 in our experiments.

5 Simulations

In this section, each version of both algorithms are compared to each other in
two settings, each described in the two following paragraph. The benchmarks
are run using the HPP software framework, in which the 4 algorithms have been
implemented.

Quadratic problems We �rst compare the two versions of each algorithm for
various parameter in the following problems.

� Circle: the con�guration space is R2, subject to constraint f1(x, y) = x2 +
y2 − 1 = 0. A Lipschitz constant of the Jacobian is K = 2

√
2. We project

line segments between (1, 0) and (cos θ, sin θ) for θ ∈ [π/2, π]. None of the
algorithms were able to �nd a continuous path for the singular case θ =
π. The Global projection method did not need any interpolation points to
return an answer.

� Parabola: the con�guration space is R2, subject to constraint f1(x, y) =
x2 − 1 = 0. A Lipschitz constant of the Jacobian is K = 2. We project line
segments between (1, 0) and (−1, τ) for τ ∈ [0, 2]. All the algorithms were
able to detect the discontinuity.

Results are presented in Table 1. The global projection method outperforms
the progressive method on these quadratic problems.

Manipulation planning

UR5 We constrain the end-e�ector of the UR5 robot along a line, its orientation
being �xed. We project a motion where the robot must move along this line and
switch between inverse kinematic solutions. A Lipschitz constant of the Jacobian,
using Eq. (7) with L = 1m, is K =

√
36L2 + 15 < 8. Table 2 summarizes the

obtained results for various line segment. The �rst part of the accompanying
video shows one of the computed motions. Note that, in this case, we do not
do any motion planning. To our best knowledge, it would not be possible to
compute the same motions merely using inverse kinematics.



Global proj. Circle Parabola

K - 2 - 2
√
2

tavg/tmax (µs) 877/1617 43/289 420/478 569/610
dmin/davg/dmax(mm) 8/44/99 - 11/27/45 0/25/316

Nip 38 0 6.5 9.5

Progressive proj. Circle Parabola

K - 2 - 2
√
2

tavg/tmax (µs) 739/1399 1541/2189 995/1838 594/1003
dmin/davg/dmax (mm) 7/67/100 35/90/100 1/11/45 1/45/94

Nip 33 22 39 11

Table 1. Quadratic problems benchmarks.K is the Lipschitz constant of the Jacobian,
where �-� for the weak version is used. The rows corresponds to the number of interpo-
lation points Nip, the average, minimum and maximum distance between consecutive
waypoints davg, dmin, dmax, and the average and maximum computation time over 10
runs tavg, tmax.

When the projection method returns a false negative, the longest validated
part of the input path is returned. In the context of randomized motion planning,
the high rate of false negatives of global methods does not block the search. The
expected e�ect is a increase of the number of nodes generated.

Projection method Global Progressive
strong weak strong weak

tavg/tmax (ms) 1313/2475 243/613 426/449 146/169
Nip 149 216 267 261

False negative 71% 71% 0% 0%

Table 2. Results of UR5 case. The rows have the same meaning as in Table 1. The
number of false negative corresponds to the ratio of rejected path over all tests, while
a continuous path exists.

Integration in a manipulation planner The continuous projection can easily be
integrated in randomized constrained motion planners. Path projection must be
done before collision checking as it modi�es the path. To ensure their validity,
paths can be created in two steps. First, continuously project the straight in-
terpolation onto the constraint satisfaction manifold. Optionally, keep one valid
end of the path. And second, check the projected path for collision.

The proposed algorithms have been integrated in a manipulation planner. We
wish to compute a path for the HRP2 robot opening a door. The planning is split
in two phases [17]. A quasi-static full-body motion for the sliding robot is �rst



computed. Additionally to the manipulation rules, quasi-static constraints are
taken into account. Then, the motion is post-processed to obtain a dynamically-
feasible walking trajectory.

Fig. 4. HRP2 opening a door.

The accompanying video and Figure 4 shows the result of the �rst phase,
obtained with and without continuous path projection. No optimization were
run. As one can see, the motion without continuous path projection has several
discontinuity. This demonstrates both the necessity to check motion continuity
and that our algorithms perform as expected.

6 Conclusion

This work has shown that it is possible to deal with generic non-linear implicit
constraints and still have a certi�cate of continuity for motions projected inside
the constraint satisfaction submanifold. Our main focus has been to derive a
theoretical condition of continuity which can be exploited by a computer, and
to design algorithms using this condition.

E�ciency of the proposed algorithms has not been the main focus and is
left for future work. They can be improved by better organising the computa-
tion as computing singular values and evaluating the Newton-Raphson iteration
function can be factorized.
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A Lipschitz constant of the Jacobian matrix

A.1 Notation

We consider a tree of joints with N joints and d DOF. Each joint can have one
or several DOF. p(n) denotes the parent joint of joint n and pk(n) = p(pk−1(n))
is its k-th ancestor. On, resp. nn, is the center, resp. normal, of joint n. Let L
be the longest possible distance between two centers of joint.

Let I(n) be the set of joint indexes of the chain between the root joint and
joint n. Let IR(n) (resp. IT (n), ISO3(n)) be the subset of indexes of rotation
(resp. translation, SO3) joint in I(n). They are such that I(n) = IR(n)∪IT (n)∪
ISO3(n) and IR(n) ∩ IT (n) = IT (n) ∩ ISO3(n) = ISO3(n) ∩ IR(n) = ∅.

[u]X is the cross matrix, i.e. [u]X v = u ∧ v. [[M3,n]]X is the cross tensor,
i.e. [[M3,n]]X xn = [M3,nxn]X .



A.2 Jacobian

The Jacobian of the placement of joint n is Jn ∈ M6×d(R). Jn C
j is the block

corresponding to joint j in Jn . Jn v
j denotes the velocity part of Jn C

j . Jn ω
j denotes

the angular velocity part of Jn C
j . The following list explicity the di�erent block

of Jn . The unlisted block are matrices of zeros.

� Joint pk(n) is a rotation:

Jn v
pk(n) = OnOpk(n) ∧ npk(n), Jn ω

pk(n) = npk(n)

� Joint pk(n) is a translation:

Jn v
pk(n) = npk(n), Jn ω

pk(n) = 0

� Joint pk(n) is a SO3:

Jn v
pk(n) =

[
OnOpk(n)

]
X
, Jn ω

pk(n) = I3

Thus, when pk(n) is a rotation, we have || Jn v
pk(n)||2 ≤ L and || Jn v

pk(n)||2 ≤ 1.

Otherwise, we have || Jn v,w
pk(n)

||2 ≤ 1.

A.3 Hessian

The Hessian matrix is de�ned by Hn i,j,k =
∂ Jn

i,j

∂q̇k
. Similarly to Jn v,ω

j , we denote

Hn v,ω
j,k =

∂ Jn v,ω
j

∂q̇k
.

Element of the Hessian matrix

� Joint pj(n) is a rotation:

j > k, Hn v
pj(n),pk(n) =

[
npj(n)

]
X

Jn v
pk(n)

Hn ω
pj(n),pk(n) =0

j ≤ k, Hn v
pj(n),pk(n) =

[
npj(n)

]
X

(
Jn v
pk(n) − J

pj(n) v

pk(n)

)
−
[
OnOpj(n)

]
X

([
npj(n)

]
X

J
pj(n) ω

pk(n)

)
Hn ω

pj(n),pk(n) =−
[
npj(n)

]
X

J
pj(n) ω

pk(n)

� Joint pj(n) is a translation:

Hn v
pj(n),pk(n) = −

[
npj(n)

]
X

J
pj(n) ω

pk(n)

Hn ω
pj(n),pk(n) = 0

� Joint pj(n) is a SO3:

Hn v
pj(n),pk(n) =

[[
Jn v
pk(n) − J

pj(n) v

pk(n)

]]
X

Hn ω
pj(n),pk(n) = 0



Bounds By the mean value theorem, an upper bound of |||| Hn (q)||||F on C is a
suitable Lipschitz constant for Jn . An explicit upper bound is computed in this
section.

We are interested in joint trees, which makes the Hessian matrix sparse.
Joints not in I(n) are not in�uencing the placement of joint n so:

|||| Hn ||||2F =
∑

j∈I(n),k∈I(n)

|| Hn v
j,k||22 + || Hn ω

j,k||22 (2)

It gives the following bound:

|||| Hn ||||2F ≤ |I(n)|2(max(9L2, (L+ 2)2) + 1) (3)

We denote σ(m,χ, κ) =
∑

j∈Iχ(n),k∈Iκ(n)

|| Hn m
j,k||22. Bounds for σ are summa-

rized in Table 3.
Eq. 2 becomes

|||| Hn ||||2F =
∑

m∈{v,ω},(χ,κ)∈{R,T,SO3}2

σ(m,χ, κ)

The element of the Hessian matrix given above gives, we have:

∀κ ∈ {R, T, SO3} , σ(ω, T, κ) = 0

∀κ ∈ {R, T, SO3} , σ(ω, SO3, κ) = 0

σ(ω,R, T ) = 0

σ(ω,R, SO3) ≤ |IR(n)||ISO3(n)|
σ(v, T, T ) = 0

σ(v,R, T ) ≤ 4|IR(n)||IT (n)|
σ(v, T,R) ≤ 2|IT (n)||IR(n)|

σ(v, T, SO3) ≤ 2|IT (n)||ISO3(n)|

Moreover, as ∀(j, k) ∈ IR(n)× I(n)|j ≥ k, Hn ω
j,k = 0 and || Hn ω

j,k||2 ≤ 1,

σ(ω,R,R) ≤
∑

j,k∈IR(n)2,j<k

1 =
|IR(n)|(|IR(n)| − 1)

2
(4)

∀j ∈ ISO3 , we have:

|| Hn v
j,k||22 = 2(|| Jn v

k − Jj v
k||

2
2) ≤

2L2 if k ∈ IR(n)
2 if k ∈ IT (n)
2L2 if k ∈ ISO3(n)

So we have:

σ(v, SO3, κ) ≤ 2|ISO3(n)| ×

2L2|IR(n)| if κ = R
2|IT (n)| if κ = T
2L2(|ISO3(n)| − 1) if κ = SO3



The Jacobi identity of cross product on Hn v
j,k where j ∈ IR(n) gives:

σ(v,R,R) ≤ |IR(n)|2L2 (5)

σ(v,R, SO3) ≤ 2|IR(n)||ISO3(n)|L2 (6)

χ\κ R T SO3

R |IR|2L2 4|IR||IT | 2|IR||ISO3 |L2

T 2|IR||IT | 0 2|IT ||ISO3 |
SO3 4|IR||ISO3 |L2 4|IT ||ISO3 | 4|ISO3 |(|ISO3 | − 1)L2

χ\κ R SO3

R |IR| (|IR| − 1) /2 |IR||ISO3 |

Table 3. Upper bound for σ(v, χ, κ) (left) and σ(ω, χ, κ) (right). Omitted combination
are null.

The above inequalities put together give the following bound.

|||| Hn ||||2F ≤
(
|IR|2 + 6|IR||ISO3 |+ 4|ISO3 |(|ISO3 | − 1)

)
× L2

+6|IT ||IR|+ 6|IT ||ISO3
|+ |IR|(|IR| − 1)

2
+ |IR||ISO3

|
(7)


