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ABSTRACT

Since the seminal work of Zawadzki in the seventies, the so-called Taylor’s ‘‘frozen’’ hypothesis has been

regularly used to study the statistical properties of rainfall patterns. This hypothesis yields a drastic simpli-

fication in terms of symmetry of the space–time structure—the large-scale advection velocity is the conversion

factor used to link the time and space autocorrelation functions (ACFs) of the small-scale variability. This

study revisits the frozen hypothesis with a geostatistical model. Using analytical developments and numerical

simulations tuned on available case studies from the literature, the role of large- and small-scale rainfall

kinematics on the properties of the space–time ACF A(a, t) and associated fluctuations is investigated. In

particular, the merits and limits of the ACF signature classically used to test the frozen hypothesis are ex-

amined. The conclusion is twofold. Taylor’s hypothesis, understood as the quest for a space–time symmetry in

rain field variability, remains important in hydrometeorology four decades after the pioneering work of

Zawadzki. The frozen hypothesis, introduced for simplification purposes, appears difficult to check and too

constraining. The methods proposed to check the hypothesis rely too directly on the use of the advection

velocity as a space–time conversion factor instead of contemplating the ACF signature more globally. The

model proposed that using two characteristic velocities instead of one appears more flexible to fit the ACF

behaviors presented in the literature. This remains to be checked over a long-term high-resolution dataset.

1. Introduction

Since the seminal work ofZawadzki (1973), the so-called

Taylor’s hypothesis has been regularly used to study the

statistical properties of rainfall patterns. Various experi-

mental studies used weather radar data to check the val-

idity range of the hypothesis (Crane 1990; Poveda and

Zuluaga 2005; Li et al. 2009). Theoretical implications of

the hypothesis are considered in several pioneering works,

such as in Gupta and Waymire (1987) for space–time

models or in Lovejoy and Mandelbrot (1985) for fractals.

The motivation of Taylor (1938) was to find a ‘‘space–

time conversion factor’’ extending the time spectrum of

turbulence at a point, which was measurable, to a space

correlation function at a time and thus to have a time–

spacemodel of turbulence. To solve the problem, Taylor

considered the turbulent component u1 parallel to the

airstream mean velocity U, and he assumed that this

component is negligible as compared to the mean ve-

locity. Physically, ju1j � kUk means that the pattern of

turbulence does not change much (low eddy velocities)

while moving along the airstream (high advection ve-

locity). When u1 5 0 this led to the idea of a ‘‘frozen’’

field, hence the name of Taylor’s frozen hypothesis. In

the rest of the paper we will speak about the frozen

hypothesis for short, keeping the wording ‘‘Taylor’s

hypothesis’’ for the more general idea of space–time

equivalence of the autocorrelation function (ACF). As

seen by a fixed observer, if A(a, t) is the space–time

ACF of the 3D space–time stationary random field
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R(x, t), the frozen hypothesis leads to the following re-

lationship:A(0, t)5A(tU, 0), which is in substance the

Eq. (8) of Taylor (1938) and which expresses a space–

time equivalence of the ACF but for a space–time con-

version. The specificity of the frozen hypothesis is to

take the advection velocity as conversion factor between

the time and space ACF.WhenA is isotropic, the vector

a can be replaced by its norm kak.
Zawadzki (1973) transposed this idea to atmospheric

precipitation separating de facto two scales of kinematics.

The ‘‘large scale’’ movement of precipitation systems is

often clearly visible on radar animations andused as such for

short-term precipitation forecasting (see, e.g., Austin and

Bellon 1974; Bowler et al. 2004). It can be mathematically

formulated between instants t1 and t2 as U5 a0/(t1 2 t2),

where a0 is the space vector maximizing the ACF

A(a0, t1 2 t2). This large-scale movement allows one to

distinguish the rainfall variability seen from a coordinate

system moving with the storm velocity (Lagrangian

perspective) from the variability seen at a fixed set of

coordinates (Eulerian perspective). The ‘‘small scale’’

describes the fluctuations of the rain intensity inside the

advected precipitation pattern. Germann and Zawadzki

(2002) use the two-dimensional conservation equation

of the rain intensity R to express in differential form the

Eulerian fluctuation of R as the difference between the

Lagrangian fluctuation and the advection term following

›R/›t5 dR/dt2U›R/›x, the frozen hypothesis corre-

sponding to dR/dt5 0.

Some studies gave a conceptual interpretation to this

transposition of a model of turbulence to precipitation.

Gupta and Waymire (1987), referring to their theoreti-

cal model for mesoscale rainfall (Waymire et al. 1984),

interpreted the cutoff in the hypothesis around 40km,

demonstrated by Zawadzki (1973). Using the ‘‘cell’’ and

‘‘cluster’’ terminology shared by several authors since

Austin andHouze (1972), they concluded that the cutoff

parameter in the frozen hypothesis is the mean cell life

a21 or dissipation time scale, which is much smaller than

the mean cluster life b21. For Crane (1990), the trans-

position amounts to considering the updraft precipitation

generating regions organized at themesoscale as passive

scalars advected by a 2D turbulent flow, the nearest

neighbor distance between cells (12 km according to this

author) being governed by buoyancy waves excited by

convection that in turn trigger new cells. This hypothesis

of passive scalars neglects that convection feeds back

into the large-scale flow. The advection velocity differs

from the mean velocity of a turbulent wind field in

the sense that it results from the complex interaction

between the precipitation system and its environment

through vertical transport of horizontal momentum

(see, e.g., Wu and Yanai 1994). In addition, there is no

perfect correspondence between convection and pre-

cipitation, the differential fall speed of hydrometeors

causing them to spread along their fall (Fabry 1996).

Other studies checked the practical adequacy of this

model of turbulence to rainfall dynamics. Zawadzki

et al. (1994) assessed the predictability of precipitation

patterns using Lagrangian persistence, which is the

forecasting skill of the frozen hypothesis and which ap-

pears to vanish beyond 40–112min for the radar dataset

used. More recently, Poveda and Zuluaga (2005) and Li

et al. (2009) used multievent radar datasets to check the

frozen hypothesis. With more intense convection and

smaller advection velocities than at midlatitude, Amazo-

nian storms exhibit shorter cutoff values (10–15min) when

they satisfy the hypothesis, which is for only 3 storms out of

12 (Poveda and Zuluaga 2005). Two statistical analyses of

radar rainfall ACF in the southeasternUnited States show

that the hypothesis does not hold beyond space and time

scales resolved by the data [4 km and 15min, according

to Li et al. (2009)].

To our best knowledge, no study questioned the choice

of the velocity used to link the space and time ACF.

Freezing the small-scale variability allows one to use the

large-scale advection as the time–space ACF conversion

velocity. This drastic simplification is a sufficient condi-

tion of space–time isotropy, but it is not a necessary one,

as shown here.

This study revisits the question of the conversion ve-

locity using a geostatistical model that relaxes by con-

struction the frozen hypothesis (Leblois and Creutin

2013). The model considers that the small-scale vari-

ability of the rainfall field respects Taylor’s hypothesis of

similarity of the space and time ACF through a conver-

sion velocity specific of this scale that Leblois andCreutin

(2013) name Taylor’s velocity. At this stage, the model

simulates stationary, homogeneous rainfall fields with a

zero mean velocity. The large-scale advection is given a

different characteristic velocity field thatmerely shifts the

small-scale variability respecting incompressibility, like,

for instance, the most often used uniform advection. The

model represents both intermittency and inner rainfall

variability, which are assumed independent and thus can

have a priori unrelated dynamics.

Using analytical developments and numerical simu-

lations tuned on available literature case studies, we

investigate the role of large- and small-scale rainfall

variability on the properties of the space–time auto-

correlation function A(a, t). We pay particular atten-

tion to the ACF signature used in the analysis proposed

by Zawadzki (1973) and by subsequent studies to check

the frozen hypothesis. As developed below, we call

ACF signature the common plot of, on the one hand,

the Eulerian and Lagrangian time ACF and, on the
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other hand, the space ACF converted to time dimension

using the advection velocity.

Section 2 introduces a theoretical formulation of the

space–time ACF showing the role of advection and Tay-

lor’s velocities. Section 3 takes an exponential model to

illustrate analytically how the ACF signature varies when

the ratio u* between advection andTaylor’s velocities [see

Eq. (10)] varies. Section 4 presents the simulation of ad-

vected mesoscale precipitations and their occurrence

(SAMPO) and the protocol of the proposed numerical

experiment pivoting around the case study presented by

Zawadzki (1973). Section 5 examines the uncertainty of

the advection velocity assessment. Sections 6 and 7 show

how the respective values of the two characteristic ve-

locities influence the test of the frozen hypothesis in the

presence and absence of intermittency. Section 8 draws

conclusions.

2. Spatial and temporal structure in Lagrangian and
Eulerian reference

In this section, we use successive changes of coordinate

systems to analytically relate the time and space structure

functions that are used to check the frozen hypothesis.

Let R(x0, z0) denote a 3D isotropic stationary random

function, where the subscript zero indicates coordinates

in an orthonormal coordinate system; x is a vector in-

dexing the 2D horizontal subspace; and the scalar z in-

dexes the 1D orthogonal dimension. Its 3D ACF reads

A(a,b)5 r[R(x0, z0),R(x01 a, z01 b)] , (1)

where r[�] is the correlation and a and b are arbitrary

displacements.

ACF is taken as a generic term and, with no loss of

generality, the results presented in this section apply to

any form of structure function, including, for instance,

the simple covariance chosen in Zawadzki (1973) or

variograms. We consider that the ACF is isotropic, that

is, in a simplified way A(a, 0)5A(kak, 0)5A(0, kak).
A first simple transformation of the z axis allows us to

introduce the time dimension and to get a Lagrangian

rainfall field (super- and subscript L) as follows:

RL(xL, t)5R(x0/L, z0/D)5R(xL, tUT) , (2)

where t is the time and L and D are space and time

characteristic dimensions, respectively, of the rainfall

field, that is, the integral ranges obtained by the mere

integration of the ACF in space and time when they are

integrable (Lantuéjoul 2002, chapter 4). The variableUT

is a conversion scalar linking time and space dimensions

that we name Taylor’s velocity (explanation below) and

that can be noted UT 5L/D.

In a second step, this steady rainfall field is advected

with a velocity vectorU to give the Eulerian view of the

rainfall field (super- and subscript E):

RE(xE, t)5RL(xE2Ut, t)5R(xE 2Ut, tUT) . (3)

The space–time ACF of the Lagrangian and the Eu-

lerian rainfall fields are derived from Eqs. (1)–(3) and

can be written as follows:

AL(kak, t)5A(kak, tUT) (4)

and

AE(kak, t)5A(ka2 tUk, tUT) , (5)

where t is an arbitrary time lag.

It is easy to see that the Lagrangian and EulerianACFs

only differ by the time dimension. As long as the space

dimension is considered, all the aboveACFs are identical

with AL(kak, 0)5AE(kak, 0)5A(kak, 0). Depending

on the relative values of U and UT, different simplifica-

tions appear.

When UT is strictly positive, the Lagrangian ACF AL

follows the property of space–time conversion looked

for in Taylor (1938), namely, AL(0, t)5AL(tUT , 0), as

A is isotropic, hence the name of Taylor’s velocity given

to UT in Leblois and Creutin (2013).

When UT tends toward zero, the advected pre-

cipitation pattern is frozen, and thus Eq. (3) reads:

RE(xE, t)5R(xE 2Ut, 0) . (6)

The space and time Eulerian ACFs are related as in Eq.

(2.17) of Zawadzki (1973):

AE(tkUk, 0)5A(tkUk, 0)5AE(0, t) . (7)

Equation (7) tells that when the field is frozen, Taylor’s

space–time conversion applies to the Eulerian ACF and

the conversion velocity is the norm of the advection

velocity kUk. The Lagrangian time ACF is constant and

equals A(0, 0).

When the advection U is nil, the Eulerian and La-

grangian ACF are identical and Eq. (7) applies to either

AE orAL while keeping the same conversion velocity. If

Taylor’s velocity is also nil, the Eulerian ACF equals

A(0, 0), that is, there is no variability at all, a mere

mathematical limit.

3. ACF signature in a pure exponential case

In the studies applying the frozen hypothesis, the

main graphic representation used to check the validity
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of Eq. (7) groups three ACFs in the time dimension: the

time Lagrangian AL(0, t) and Eulerian AE(0, t) ACF

and a space ACF converted to time scale using the ad-

vection velocityA(0, tkUk) [see, e.g., Fig. 15 of Zawadzki
(1973)]. For short, we call this plot the ACF signature. It is

worth noting at this stage that most analyses of the ACF

signature ignored the Lagrangian ACF and only focused

on the fit between the Eulerian and the space-converted

ACF, that is, checking Eq. (7) and commenting on an

eventual cutoff time like in Zawadzki (1973).

In this section, we show typical behaviors of the ACF

signature when the frozen hypothesis is relaxed. The given

illustrations are based on an exponential ACF model:

AE(a, t)5 exp[2dist(kak, t)] with dist (kak, t)

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ka2 tUk21 t2U2

T

q
. (8)

ACF surfaces representingA andAL (a fully symmetric

cone-like surface and its stretching along an axis, re-

spectively) are simpler than the surface representing AE.

Let us consider in Fig. 1 the surface representing the

Eulerian ACF AE in the exponential case when the ad-

vection kUk is chosen to be much greater than (frozen,

here taken for u* 5 10.0 only for numerical reasons),

equal to, or smaller than Taylor’s velocity UT. By con-

struction, on this surface the space ACF is read in the

vertical plane including the space axis and the time Eu-

lerian ACF is read in the corresponding time plane. The

Lagrangian time ACF is less obvious to read. Using Eqs.

(4) and (5), the Lagrangian time ACF can be written as

AL(kak, t)5AE(ka2 tUk, t) , (9)

and thus, the time Lagrangian ACF AL is at the in-

tersection of the ACF surface with the vertical plane

oriented along (tkUk, t).
Figure 1 shows that the Lagrangian time ACF is by

construction above the Eulerian one. At this point, it is

useful to note that Lagrangian and Eulerian space co-

ordinates are such that

AL(0, t)5AE(ktUk, t)5AE(0, t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 u*2

p
) , (10)

where u*5 kUk/UT is the ratio between advection and

Taylor’s velocities.

Incidentally, one can notice the difference between the

line of themaximumcross correlation between successive

time steps (maximization at a constant time interval) and

the line of the maximum cross correlation between

nearby locations (maximization at a constant space in-

terval). The former, the straight line y5 ka2 tUk, is
more commonly used in practice to identify the advection

velocity than the latter [see Crane (1990), his Fig. 11].

The latter is also influenced by Taylor’s velocity and thus

provides a biased estimate of the advection velocity,

except in the frozen case. As a more general remark,

given the sharpening of ACF surfaces, the methods us-

ing maximum correlation to estimate the advection ve-

locity are more likely to work when u* is high (close to

frozen and/or high advection).

Figure 2 displays typical ACF signatures. As stated

before, the Eulerian time ACF is always below the La-

grangian one and those two ACFs get closer when the

advection velocity diminishes. When u* increases, we

observe a twofold movement of the curves. On the one

side, the Lagrangian ACF rises up toward a limit value

equal to A(0, 0). On the other side, the spatial ACF

converted using the advection velocity falls down to

reach the Eulerian ACF, that is, toward the satisfaction

of the criterion proposed by Zawadzki (1973). When u*

equals 1, advection and Taylor’s velocities are equal,

and, in turn, the converted spatial and Lagrangian ACFs

are identical. This central case basically separates two

signatures according to the respective positions of the

Lagrangian and spatial ACFs. The extremes of these

two signatures are when the Lagrangian or spatial ACF

matches the Eulerian ACF (no-advection and frozen

cases, respectively). The examination of a continuous

range of variation of u* using a simple visualization

software shows that it is graphically possible to distin-

guish the transition between these extremes only when

0:4, u*, 2:5.

Real-world data in Zawadzki (1973) and Poveda and

Zuluaga (2005) can be compared with the aforemen-

tioned signatures. Figure 15 of Zawadzki (1973) is

probably close to the ambiguous case u* 5 1, when the

criterion of Eq. (8) is satisfied and when the Lagrangian

ACF is clearly far from the frozen case in spite of a

significant advection velocity. Figures 2 and 3 of Poveda

and Zuluaga (2005) illustrate the signatures well with u*

below and over 1, respectively, which is consistent with

their diagnosis of satisfaction of the frozen hypothesis in

their Fig. 3. Notice that, in Fig. 3 of Poveda and Zuluaga

(2005), the Lagrangian ACFs are close to the flat limit

behavior, which is expected in theory from the frozen

case.

As a side remark, we can note that the theoretical iden-

tification of the Taylor and advection velocities consists of

elementary movements over the AE surface. Looking, for

instance, for a maximum value ofAE(ka0k, t0) at a chosen
t0 allows to us estimate (i) the advection velocity

kUk5 ka0k/t0 and (ii) Taylor’s velocity from the ratio be-

tween AE(ka0k, t0) and AE(0, t0).

In practice, the analysis of experimental rainfall ACF

in order to test the frozen hypothesis meets several

sources of difficulties, namely, the skewness of the
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FIG. 1. Three-dimensional Eulerian ACF in space and time. Left axis is the time dimension,

and the intersect of the corresponding vertical plane with the Eulerian ACF surface is the time

Eulerian ACF (red). Right axis is the space dimension, and the intersect is the space ACF

(green). The Lagrangian ACF (blue) is obtained by maximizing the correlation value along

a section of the surface at constant time. Given the model used, the crest of max values of cor-

relation for the Lagrangian ACF appears to be a line. The space ACF converted into time di-

mension with the advection velocity is represented in the time plane (orange). (a)–

(e) Correspond to increasing u* values of 0.5 (close to ‘‘static’’, i.e., weak advection), 1.0, 1.4, 3.0,

and 10.0 (close to frozen, i.e., weak Taylor’s velocity), respectively. Space and time axes are

scaled in arbitrary units according to u* so that the Lagrangian ACF is along the identity line.
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FIG. 2. Plots of Lagrangian (blue) and Eulerian

(red) time ACF corresponding to increasing u* (same

values as in Fig. 1). The space ACF (orange) is con-

verted to time dimension with the advection velocity.

Plots are x-scaled by the Lagrangian decorrelation

duration D.
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rainfall intensity distribution, the intermittency of rain-

fall fields, the identification of the advection velocity,

and various sampling effects. These difficulties are hard

to formalize analytically. In the following, we use a nu-

merical simulation to explore the respective importance of

some of these difficulties in a range of fluctuations that

mimics experimental conditions met in previous studies.

4. Model and parameters used for the numerical
experiment

SAMPO (Leblois and Creutin 2013) is a stochastic

rainfall simulator that adapts a classical Gaussian field

simulation technique, the turning-bandmethod, to produce

sequences of rainfall fields satisfying three key features of

actual precipitation systems: (i) the skewed distribution

function at a point and the space–time structure of nonzero

rainfall (NZR), (ii) the average probability and the space–

time structure of rainfall intermittency, and (iii) a pre-

scribed advection field.

The presented numerical study is centered on the

experiment presented by Zawadzki (1973)—a summer

midlatitude mesoscale convective system in Canada

with a marked advection velocity. The advection ve-

locity is taken equal to 18ms21 and is arbitrarily ori-

ented toward the east. This linear advection is common

to both intermittency (when present) and NZR fields

that are nevertheless supposed to have distinct statistical

features: specific mean and variance as well as specific

space and time characteristic dimensions L and D, that
is, specific Taylor’s velocity. Having no specification

about the distribution of the rainfall intensities at the

elemental time step of simulation, we chose to keep the

inverse-Gaussian distribution as in Leblois and Creutin

(2013) without expected loss of generality. The NZR

characteristics specified below correspond to natural

rainfall intensities. The mean and standard deviation of

NZR are 2.9 and 5.6mmh21, respectively, close to the

maximum values given by Zawadzki (1973, his Fig. 8).

The distance corresponding to a correlation in rain of 1/e

is taken about 40km in agreement with the space ACF

plots given in his Figs. 12 and 13. The ratio u* is 1.4 ac-

cording to the ratio between the Lagrangian andEulerian

time characteristics (44 and 32min at 1/e), shown by his
Fig. 10, remembering from Eq. (10) that this ratio equalsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

11 u*2
p

. For intermittency, a probability to have rain of
72% is retained from percentages of rain area fluctuating

from almost 0% to ;80% during the active part of the

event (his Fig. 8). The characteristic dimension of in-

termittency is 41km, in agreement with the number of

rainy areas present on the pictures of his Fig. 4 (;6–8 rain

clusters in the radar scope at the highest activity).

As summarized in Fig. 3, the present sensitivity study

relies on 24 experiments exploring various levels of

‘‘freezing’’ (u* variation) under continuous or in-

termittent rainfall conditions and around the simulation

of the original case study (denoted c0) of Zawadzki

(1973). In each experiment, the advection velocity

used to convert space to time ACF is either assessed

from the simulated fields (prime notation) or assumed to

be known and equal to the true parameter value (no

prime notation). Each experiment consists of 400 storm

period simulations over 8.5 h, that is, 33 time steps of

16min.

FIG. 3. Description of the 12 simulation experiments exploring increasing u* velocity ratio values (ranging from 0.5

to 3.0 and frozen) under continuous (no int) and intermittent (with int) rainfall conditions. The central experiment

(denoted c) mimics the original case study by Zawadzki (1973) over a 100-km range domain. For each experiment,

the advection velocity is either assumed to be known and equal to the true parameter value (main frame with no

prime notations) or assessed from the simulated fields (shadow frame with prime notation). The range of the study

domain varies (k and l). Links indicate lines of changing parameter influence discussed in the paper.
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The range of velocity ratios u* considered includes

basically the same values as in section 3 [u* 5 0.5, 1.0,

and 3.0, plus u* 5 1.4 as in the case of Zawadzki (1973)

and u* 5 1030, an arbitrary large value for the frozen

case]. The variety of tropical storms of the Amazon re-

gion, presented in Poveda and Zuluaga (2005), may be

covered by the above range. We argue that the velocity

ratio, more than the absolute values of the Taylor and

advection velocities, governs the ACF signature.

The SAMPO model assumes the stationarity of the

rainfall process in space and time. This assumption is

behind many empirical analyses even if, as specified by

Zawadzki (1973), the ACF analysis can be thought of

in a more deterministic framework that geostatisticians

name the transitive theory (Matheron 1965). For the

purpose of this numerical study, this difference is not

really relevant. We will consider that our results apply

to a homogeneous period in a storm from which we

determined the simulation parameters.

5. Advection velocity assessment

The advection velocity is estimated looking for the

displacement a0 that maximizes the Eulerian ACF

AE(a0, t1 2 t2) over the time interval t1 2 t2, which is the

classical tracking radar echoes by correlation (TREC)

method (Austin and Bellon 1974; Laroche and

Zawadski 1995; and references therein). An iterative

estimation at increasing grid resolution, close to the

scaling-guess procedure of Laroche and Zawadzki

(1995), drastically reduces the processing time.

In theory, the accuracy of assessment of the advection

velocity depends on the space–time volume and shape of

the storm compared to the size of the domain of ob-

servation Ds and to the sampling resolution character-

ized in time by Dt and space by Dx. The space–time

volume of a storm is obtained by space–time integration

of the function AE and is equal to 8pL2D (Lantuéjoul
2002, appendix, Table 2). We will keep in mind its pro-

portionality to L2 and D and its independence on the

advection velocity kUk. Assessing the advection velocity

needs both the surface of the storm to be smaller than

the domain size and the volume of the storm to be much

bigger than the space–time resolution. The space–time

shape of a storm can be assessed by the length of its track

at ground that is the fraction of its length L represented

by its displacement DkUk. This fraction reads DkUk/L
that turns out to be u*. The more the field is frozen and

the more the storm has an elongated shape, the easier it

is to analyze in terms of velocity direction. This is well

analyzed in Poveda and Zuluaga (2005).

In practice, the present simulation uses a domain size

of 2003 200km2 over 8.5 h. According to our reference

case, only a range of 100 km around the domain center is

considered to mimic radar coverage, and the sampling

parameters are Dx5 1 km andDt5 16min. The variable

L is taken as constant (41 km) and D takes five key

values according to u* (19, 38, 52, 114, and ;1031min

when u* is 0.5, 1.0, 1.4, 3.0, and 1030). The observation

volume covers the simulated storms well. The expected

storm surface is one-fourth of the domain size and its

volume is a tiny fraction of the observation volume

(3.5%–7.5%—neglecting the reduction of the volume

needed to cope with edge effects and advection that

essentially reduces the length of efficient observation by

the expected length of the storm track DkUk). The ob-

servation resolution is fine in space but, for low u*, the

time resolution gets too close to the characteristic time

of the storm (16 and 19min, respectively).

Figure 4 shows the advection velocities estimated for

400 simulated storm events over the basic set of velocity

ratios u*. The dispersion of the obtained results is iso-

tropic and decreases when u* increases, that is, when the

advection velocity becomes relatively high compared to

when Taylor’s velocity is low or when the storm shape

elongates.

As recapitulated in Fig. 5a, this dispersion increase is

only marginally linked to the intermittency of the pre-

cipitation system. One can simply note that intermittency

helps tracking when u* is small. Figure 5b shows that the

domain size given the resolution plays a less dominant role.

The case of Zawadzki (1973), close to themidsimulation

case, looks at a case with low dispersion of the assessed

advection velocity and direction in spite of its distance

from the ideal frozen case.Most storm cases of Poveda and

Zuluaga (2005) lay probably more toward the low u* case,

where the advection velocity is harder to identify, although

the time resolution is different (7–10min) and the char-

acteristic time is quite constant (Eulerian ACF at 1/e

around 30min).

A more detailed sensitivity analysis exploring larger

ranges of domain and resolution characteristics, using

more sophisticated tracking methods and more com-

plicated advection fields like in Germann and Zawadzki

(2002), is achievable using SAMPO but is beyond the

scope of this paper. The above short analysis is a simple

illustration of the uncertainty of advection identifica-

tion, remembering that this parameter governs the ACF

signatures used to test Taylor’s frozen hypothesis.

6. Testing Taylor’s frozen hypothesis in continuous
rainfall fields

In this section, we start testing the a priori favorable case

of frozen fields by design (u*5 1030), andwe next examine

the effect of relaxing the frozen property of simulated
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FIG. 4. Dispersion of estimated advection veloc-

ities according to the west–east (u) and south–north

(y) axes. (a)–(e) Correspond to increasing u* values

of 0.5, 1.0, 1.4, 3.0, and frozen, respectively. The

circles indicate the theoretical Gaussian distribu-

tion that best fits the dispersion of the velocities

(considered bivariate independent with equal

variances).
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fields by taking decreasing values of u* [simulations f–j of

Fig. 3, denoted SIM(f–j)]. In both experiments, we

consider that there is no intermittency and that advec-

tion velocity is known. We thus eliminate fluctuations

due to imperfect space–time anisotropy, intermittency,

or advection velocity assessment. The simulation allows

us to consider both individual event results and their

ensemble features. We illustrate the capability of the

ACF signature to test the frozen hypothesis using two

types of representation. The first one, like in Fig. 6,

displays the ensemble of event ACF signatures and their

mean and standard deviation. The second one relies on

the conversion factor ÛE best suited to match, event per

event, Eulerian time and space ACFs at short distance

(minimization of the squared differences between the

two functions up to the decorrelation distance of 1/e, i.e.,

six values in our case). It shows, like in Fig. 7, the em-

pirical cumulative distribution function (CDF) of the

ratio ÛE/U that measures the adequacy of the advection

velocity U to produce a good fit and thus to validate the
hypothesis. In ourmodel, the theoretical value of this ratio

is given by u*/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 u*2

p
and is shown with the empirical

CDF. Below we use the term ‘‘adequacy CDF.’’
Figures 6 and 7 are about the simulation of frozen

fields [SIM(j)]. In Fig. 6, the two beams of simulated

Eulerian time- and space-converted ACFs overlap well

and the average values are almost perfectly equal over

the complete range. The Lagrangian timeACF looks far

from what we expect from the frozen hypothesis: the

dispersion is considerable and the average behavior is

slightly biased compared to the expected constant value.

The slightly larger dispersion of the space ACF suggests

somemore sampling dispersion in identifying space than

time structure. Figure 7 gives a more specific look at the

event per event match between the time- and space-

converted Eulerian ACFs, that is, for the event per event

ability, we have to check the frozen hypothesis through

the classical use of the ACF signature. On average, the

frozen hypothesis is positively tested given the perfect

symmetry of the experimental adequacy CDF in regard

to the axis 1. This is expected from the chosen u* in our

simulation and confirmed by the theoretical adequacy

value that is confounded with this axis. Considering its

dispersion, this CDF roughly indicates a 0.5 probability to

have a mismatch between the ACFs greater than 20%

when using the known advection velocity to check

the hypothesis. The dispersion in general, as well as

the difference between the Lagrangian average and the

expected theoretical constant, is due to the limited

support of the simulated fields. Our first conclusion is

that, in front of a perfect frozen event, the classical way

to test the frozen hypothesis works well on average but

may be difficult to analyze event per event given the

demonstrated dispersion.

Figures 8 and 9 are about SIM(f–j), when taking a

range of u*. Figure 8 shows an evolution of the average

ACF signature that is quite consistent with the analytical

exercise shown in Fig. 2. The respective positioning

of the different ACF evolves the same way when u*

increases, including the steady movement of the La-

grangian toward the Eulerian ACF, away from a perfect

correlation A(0, 0). If we consider the event dispersion,

a salient point is that the overlap between the Eulerian

and the converted space ACF beams persists even with

values of u* being less than 1. This point is quite con-

sistent with the CDF representation of Fig. 9, where we

have typically three behaviors. When u*. 3, we remain

basically in the frozen situation like in Fig. 7. When

1, u*, 3, the CDF starts to shift significantly toward

values lower than 1 in good agreement with the average

value predicted by the model. The dispersion does not

FIG. 5. Evolution of the advection uncertainty with (a) u* and

(b) the domain size. In both, the uncertainty is given as the RMSE

(m s21) of the estimated advection velocity. In (a), u* varies as in

Fig. 4 in the presence (diamonds) or absence (squares) of in-

termittency. In (b), the domain radius varies from 50 to 200 km.
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increase notably. When u* , 1, both the shift and the

dispersion increase dramatically and even the predicted

average value turns out to be contradicted by the sim-

ulated values, indicating finally too big of a gap

between the hypothesis and the model properties. Note

that, even when u* is below 1, the CDF cuts the 1 axis,

leaving almost 30% of the obtained values reasonably

close to 1 and diagnosing positively the frozen

FIG. 6. ACF signature for 400 events as close as possible to frozen (u*5;1030). (a) Eulerian timeACF, (b) Lagrangian

timeACF, and (c) space–timeACF converted through the prescribed advection velocity value are represented separately

in order to display the dispersion of the individual event ACF (gray) and the average simulated value (black; thick for the

mean and thin for the std dev). For readability, ACFs for only 50 events are displayed. (d) The three average ACFs and

their confidence interval (Lagrangian in red, Eulerian in green, and converted space in blue).
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hypothesis. Our second conclusion is that as long as

advection velocity is larger than Taylor’s velocity

(u*. 1), the classical test of the frozen hypothesis re-

sponds positively in a majority of cases.

Figure 10 shows that the dispersion of the Lagrangian

ACF of individual events increases with u*. The distance

between Eulerian and LagrangianACFs thus appears, on

average and in dispersion, more selective than the clas-

sical criterion using the converted space ACF. Our third

conclusion is that the Lagrangian ACF is very useful to

appreciate the validity of the frozen hypothesis. We thus

recommend taking a comprehensive view of the ACF

signature, including the Lagrangian one, to test the frozen

hypothesis.

7. Sensitivity to advection assessment,
intermittency, and domain size

The validation of the frozen hypothesis using theACF

signature can be sensitive, among other factors, to (i) the

accuracy of the advection velocity used to convert ACFs

from space to time [SIM(f–j) vs SIM(f0–j0)] and (ii) the

presence of intermittency in the precipitation fields

[SIM(a–e) vs SIM(f–j)].

Figure 11 shows a modest effect of advection assess-

ment on the converted space ACF and its dispersion.

The dispersion raise when using estimated instead of

prescribed advection velocities is more significant at

short distances and when u* is weak, as expected from

the accuracy of the advection velocity assessment seen

in Fig. 3. This effect is easier to interpret in Fig. 12,

where the CDFs for u* 5 0.5 show that uncertainty on

advection velocity leads to a much larger number of

failures of the diagnostic. When the advection is as-

sessed, the CDF cuts the 1 axis around 0.8 with a slope

allowing still 20%–30% of the ratios reasonably close to

1. Our conclusion is that the need to assess advection

velocity further degrades the diagnosing capacity of the

classical test of the frozen hypothesis.

We finally apply the same test to bulk rainfall fields,

that is, intermittent fields for which ACFs are computed

with both zero and nonzero rainfall values. Figure 13

shows the signature of the pivoting case of Zawadzki

(1973) without and with intermittency. The presence of

intermittency changes the range of the ACFs that de-

creases by typically 30%, a ‘‘mechanical’’ effect due to

the change of variance of the rainfall field, but the ACF

signature and the associated sampling dispersion remain

quite close. The ACF signature appears also to be in-

sensitive to the characteristic dimension (or decorrelation

length) of the intermittency (test not shown here). The

relative size of the domain to the characteristic length of

the intermittency has a great influence on the estimation of

the adequacy factor. As shown in Fig. 14, when the size

of the considered domain increases, passing from ;2 to

10 times the characteristic length of the intermittency

(40km), the average adequacy factor decreases, moving

toward its theoretical value. Its dispersion also decreases

notably. Both results confirm the influence of the domain

size, putting a single radar scope at the lower size limit.Our

conclusion is that rainfall intermittency does not disturb

the test of the frozen hypothesis, provided the covered

domain is large enough, which seems to be the case of

standard weather radar coverage.

8. Conclusions

Paraphrasing Gupta and Waymire (1987), we can say

today that the geometry and kinematics of rain fields

have been the subject of constant interest over the last

four decades, that is, since the seminal works of Austin

and Houze (1972) and Zawadzki (1973). In this line of

research, the hypothesis of frozen turbulence, proposed

by Taylor (1938) as a very convenient way to relate the

space and time variability, played an important role in

frameworks as varied as classical space–time models or

fractal or cascade models.

FIG. 7. Empirical adequacyCDF for the same frozen experiment as in

Fig. 6. The blue line is the theoretical value of the adequacy ratio.
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FIG. 8. ACF signature for 400 events for

(a) u* 5 0.5, (b) u* 5 1.0, (c) u* 5 1.4, and

(d) u* 5 3.0, and (e) frozen. The different

ACFs are labeled as in Fig. 6.
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FIG. 9. Empirical adequacy CDF for

(a) u*5 0.5, (b)u*5 1.0, (c)u*5 1.4, (d)u*5
3.0, and (e) frozen. The blue line is the

theoretical value of the adequacy ratio.
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FIG. 10. Sensitivity of the Lagrangian time

ACFwhen u* takes increasing values: (a) 0.5,

(b) 1.0, (c) 1.4, (d) 3.0, and (e) frozen (see

Fig. 5).
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At the end of this study, our conclusion is twofold.

Taylor’s hypothesis, understood as the quest of a space–

time symmetry in rain field variability, remains important

in hydrometeorology. The so-called frozen hypothesis,

introduced for simplification purposes, appears difficult

to check and unnecessarily constraining.

Taylor’s approach invites one to distinguish large- and

small-scale variability and to assume that the statistical

properties related to the time dimension relate to those in

the space dimension through a simple linear coordinate

transformation. These properties are those of the geo-

statistical model used in this study and are common to

FIG. 11. Space ACF converted using the (left) prescribed advection velocity and (right) assessed advection velocity

when (a),(b) u* 5 0.5 and (c),(d) u* 5 3.0.
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most state-of-the-art rainfall stochastic models. They

allow us to reproduce the consensual distinction be-

tween advection and intrinsic variability of rainfall in a

parsimoniousmodel setting and tomake use of themany

mathematical techniques producing isotropic 3D fields

to be used in hydrometeorology. Rainfall stochastic

modeling remains of interest for theoretically linking the

Lagrangian and Eulerian rainfall variability and, in turn,

for interpreting gauge patrimonial data that remain of

interest for climatological studies in spite of recent

progress in radar detection.

The frozen hypothesis appears to be very difficult to

check. Our analytical developments attract attention on

at least three recommendations about the classical use

of the ACF signature as a test of the frozen hypothesis.

The first is when u* is close to 1, that is, when the two

characteristic velocities are equal. In this case, the mere

superposition of the converted space ACF and the

FIG. 12. Empirical adequacy CDF using the (left) prescribed advection velocity and (right) assessed advection

velocity when (a),(b) u* 5 0.5 and (c),(d) u* 5 3.0.
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Eulerian time ACFmay be good for wrong reasons. The

second is that the Lagrangian time ACF should not be

ignored as a quite robust and sensitive indicator of the

distance to the frozen case. The third is that the ACF

signature is graphically operative only within the range

0:4, u*, 2:5. As far as we understand, Zawadzki

(1973) was in the case of ambiguity when the charac-

teristic velocity is unique or when the advection velocity

is the good conversion velocity (agreement of the ACF)

for the wrong reason (Lagrangian ACF far from being

constant). Li et al. (2009), focusing only on the distance

between the converted space ACF and the Eulerian

time ACF [their Eq. (2)], may have several cases in their

analysis that are wrongly diagnosed as frozen. Our nu-

merical simulations invite one to exercise caution about

how the sampling dispersion of individual ACF signa-

tures makes the event by event analysis difficult. Be-

cause of the dispersion of estimations, we do not believe

an event-based analysis can be enough to detect a cutoff

time, that is, a lag beyond which the converted spatial

FIG. 13. ACF signatures for 400 events for the velocity ratio u*5 1.4 in (a) absence or (b) presence of intermittency.

ACFs are labeled as in Fig. 6.

FIG. 14. Empirical adequacy CDFwhen u*5 1.4 and over domains of increasing size: radius of (a) 50, (b) 100 (reference), and (c) 200 km.
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ACF and the Eulerian time ACF would diverge. Among

the various sources of dispersion explored in this study, no

one appeared to be significantly dominant beyond the fact

that the value of u* directly governs the degree of freezing

detected by the ACF signature, a property by design. The

frozen hypothesis appears overall too constraining re-

garding practical andmoremethodological considerations.

In practice, all the ACF signatures seen in the literature

look far from the frozen case, at least considering themost

probing Lagrangian time ACF. Our study proposes using

two characteristic velocities instead of one, and for this we

recommend using only the Lagrangian and Eulerian time

ACFs as the ACF signature. The slope ratio between

Lagrangian and EulerianACFs gives access to u* through

Eq. (4), and the position of the time Lagrangian ACF

compared to a constant valueA(0, 0) eventually indicates

a frozen case.

From a methodological point of view, freezing the

small-scale variability wipes out the multiscale nature of

Taylor’s approach included in SAMPO. Using two

characteristic velocities, that is, ‘‘unfreezing’’ Taylor’s

hypothesis, allows us to distinguish two levels of pre-

cipitation variability: (i) a global level governed by the

‘‘visible’’ movement of precipitation, the advection ve-

locity, which is responsible for the time asymmetry of

the ACF, and (ii) a local level representing the pre-

cipitation dynamics at lower scales, the Taylor’s veloc-

ity, which is responsible for the space–time anisotropy of

the ACF. Using more than one Taylor’s velocity allows

is to represent additional levels of local-scale variability

by simply summing independent processes having dif-

ferent characteristic scales and dynamics. It is in this

sense that unfreezing Taylor’s hypothesis allows us to

better capture the multilevel nature of precipitation.

As a side result, the simulations performed in this study

show that the assessment of the advection velocity be-

comes difficult as soon as u* becomes smaller than 1. Our

analytical developments reveal the noticeable difference

between the two methods classically used to assess the

advection velocity. They show that the maximum cross

correlation between nearby locations used for rain gauge

networks (e.g., Niemczynowicz 1988; Crane 1990; Upton

2002) is biased compared to the maximum cross corre-

lation between successive time steps used for radar data

[the TREC method of Austin and Bellon (1974) or

Laroche and Zawadzki (1995), for instance], the bias

disappearing when u* is high, that is, when the frozen

hypothesis is satisfied.

The above elements of conclusion invite one to check

some key experimental properties regarding advection;

Taylor’s velocity; and, more comprehensively, the ACF

signature over a long-term radar dataset. Properties ofU

andUT are the main things we would like to look in real

data, so as to see if u* changes at some point in actual

situations. This needs a strategy to describe the vari-

ability of advection across scales.
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