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We experimentally study the rate of chaotic mixing in viscoplastic fluids, by using a rod-stirring
protocol with a rotating vessel. Only a limited zone localized around the stirring rods is highly
sheared at a given time. Using a dyed spot as initial condition, we measure the decay of concentration
fluctuations of dye as mixing proceeds. The mixing rate is found to be proportional to the volume of
highly-sheared fluid during a rotation period of the rods, and inversely proportional to the number of
rotations of the rods over a rotation of the vessel. Thanks to numerical simulations and experimental
measurements, we relate the volume of highly-sheared fluid to the parameters of the flow. We propose
a quantitative two-zone model for the mixing rate taking into account the geometry of the highly-
sheared zone, as well as the rate at which fluid is renewed inside this zone. For all experiments, the
model predicts correctly the scaling of the exponential mixing rates during a first rapid stage, and
a second slower one.

Chaotic advection [1] is a preferred physical mecha-
nism for mixing fluids at low Reynolds number. The
stretching and folding of fluid filaments results in an ex-
ponential separation of neighboring particles with time,
and in a fast mixing rate compared to diffusion alone, as
characterized for example by the decay of concentration
fluctuations [2–7]. Fluctuations decrease when concen-
tration heterogeneities are stretched into thin filaments,
down to an equilibrium diffusion scale at which molecular
diffusion blurs filaments together [6].

An important fundamental and practical challenge
consists in understanding and predicting the mixing rate
from the geometrical and rheological parameters of the
mixing flow. Theoretical studies [2–4, 8, 9] suggested that
large-deviation statistics of the distribution of stretch-
ing factors of trajectories determine the long-time mix-
ing rate, and numerical experiments on ideal simplified
flows [4, 10, 11] confirmed the validity of such models
for some cases. However, relating quantitatively kine-
matic flow parameters to the distribution of stretching
factors, or its statistics, is hard to achieve. No such at-
tempt has yet been made in the mixing literature for a
realistic mixing flow, with the noteworthy exception of
flows for which successive stretching factors are uncorre-
lated enough that stochastic models of random convolu-
tion account well for mixing rates as well as concentration
distributions [5–7, 12]. Such cases include flow in porous
media [13] or turbulent flows [5]

In this work, we consider an experimental mixing de-
vice in which the shearing and stretching of fluid particles
is strongly localized around mobile obstacles, so that the
distribution of stretching is simple enough that two zones
can be defined: one close to the moving cylinders where
the shear is high and the other part which experiences
only small shear. This enables to predict analytically the
mixing rate from flow parameters. For this purpose, we
study the mixing of non-Newtonian viscoplastic fluids,
that start to flow only when submitted to a stress larger

than a critical value, called yield stress. This behavior
affects the mixing performance, due to shear localization
that can in the worst case generate dead zones inside the
mixing device [14–16]. Since mixing yield-stress fluids is
an operation involved in several industries such as cos-
metic, polymer, petrochemical, pharmaceutical, or food
engineering [16–18], an abundant literature in engineer-
ing [14–17, 19] has focused on design and upscaling of
flows in order to reduce such dead zones. A few stud-
ies have addressed the description of chaotic advection
in flows of viscoplastic [20–22] or other types [23, 24] of
shear-thinning fluids, demonstrating in particular the the
shear localization is often responsible for a very scattered
distribution of stretching factors [21].

The main goal of this study on viscoplastic fluids is to
relate the mixing rate to experimental parameters that
govern it, in particular to evaluate the impact of the rhe-
ological properties of the fluid and the geometry of the
device on the mixing process. To this end, we character-
ize experimentally the mixing rate in a two-dimensional
flow with chaotic advection. We study the mixing of a
transparent yield-stress fluid with a blob of the same fluid
dyed with black ink (Pebeo). We use the same setup as
described in [22]. The device (Fig.1.a) consists of two
pairs of cylindrical stirring rods, counter-rotating with a
constant angular velocity on circular trajectories. The
outer cylindrical vessel is also rotating. We define the
ratio S = Tvessel/Trods, between the period of rotation of
the vessel and the period of rotation of the rods. As yield
stress fluids we use solutions of Carbopol EZ3 in water at
different concentrations [25]. We verified that their flow
curve, i.e. the steady-state shear stress (τ) as a function
of the shear rate (γ̇), is well fitted by a Herschel-Bulkley
model, τ = τc + kγ̇n, where τc is the yield stress and k
and n are material parameters [26]. Since we found con-
stant values for n ' 0.33 and τc/k ' 1 for all polymer
concentrations, in the following we describe the materials
only through their yield stress value τc.
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FIG. 1. (a) Typical images obtained at different times of mix-
ing. (b) and (c) Evolution of the variance of the concentration
of the dye with time, for different rod diameters d (τc = 27 Pa)
(b) and for different values of yield stress τc (d = 7 mm) (c).
The vertical dashed line on graph (c) separates the two mixing
regimes.

To quantify the mixing process, we follow the evolu-
tion of the dye concentration field during the experiment
by taking photographs through the transparent bottom
of the mixing vessel, once per rotation period of the rods.
A blob of dyed fluid is released in a plane at mid-height
of the vessel, inside the central zone of the vessel sec-
tion (Fig.1.a left). The eggbeater-like motion of the rods
as well as the rotation of the vessel promote efficient
chaotic advection through stretching and folding of fluid
filaments (Fig.1.a center), so that no non-chaotic islands
are observed in the center of the vessel, which would have
led to the formation of either dye free zone or persis-
tent dye blob. Nevertheless, a non-chaotic dye-free zone
(Fig.1.a center and right) exists close to the boundary of
the vessel, consisting of fluid that is entrained in solid
rotation for most of the vessel period – it is only sheared
when stirring rods pass close-by. During the first periods
of mixing, the initial blob of dyed fluid (Fig.1.a left) is
stretched into many filaments that quickly fill the chaotic
region (Fig.1.a center); the asymptotic mixing pattern
(Fig.1.a right) consists of the chaotic region delineated
by the dyed fluid, and the dye-free non-chaotic region.

The standard deviation of the dye concentration inside
the mixing region is determined by image processing, us-
ing Beer-Lambert law for light absorption. We normalize
the measured value of the standard deviation by the av-
erage value of the asymptotic concentration inside the
mixing region, so that this value σC is independent of
the amount of dye injected in different experiments. The
evolution of the variance with the number of rotation
periods of the rods shows the existence of two distinct
mixing regimes (Fig.1 b and c). First, exponential decay
occurs when dye filaments are stretched by the rods, un-
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FIG. 2. (a, b, c) Pictures of mixing showing the dependence
of the thickness of the dye filament formed behind the rod
(red arrow), on the rod diameter: (a) d = 3 mm ,(b) d = 7
mm and (c) d = 15 mm, for Trods = 6 s. (d) Influence of the
speed of the rod on the thickness of the dye filament (d = 7
mm), after the first period for Trods = 6 s, Trods = 20 s and
Trods = 45 s. (e) Schematic of the morphology of the flow
around a cylinder moving at constant speed through a yield
stress fluid, highlighting the boundary layer and the area of
thickness δ0, where the shear is very intense and localised near
the cylinder (case of low values of Bi).

til their width reaches in turn the Batchelor scale [5], at
which molecular diffusion balances stretching and smears
out concentration fluctuations (as in Fig.1.a center). At
the end of this regime, dye filaments almost fill the en-
tire chaotic region. Then, a slower mixing regime, also
exponential, occurs when remaining fluctuations are due
to the slow transport of fluid from the periphery of the
chaotic region (where stretching is typically lower) to
the core of the chaotic region. This can be observed
in Fig.1.a.right as funnels of dye-free fluid originate from
the boundary of the mixing pattern, and result in fila-
ments of fluid injected inside the mixing region with a
different (lower) concentration level. In this final regime,
the mixing rate is controlled by slow transport between
a zone of low stretching (here, the periphery) and a zone
of high stretching (the core). The resulting structured
pattern of funnels of dye-free fluid being stretched into
thin filaments is the so-called strange eigenmode [27], a
persistent pattern that corresponds to the slowest decay-
ing eigenmode of the advection-diffusion operator [28–
30]. We characterize the mixing rate by the exponential
rates of the first and second regimes, λ1 and λ2:

σ2
C(t) ∝ exp (−λ1,2t/Trods) . (1)

In order to identify the mechanisms and key parame-
ters that control the mixing process, we study the vari-
ation of the mixing rate with the diameter d and the
velocity of the rods U , the stirring ratio S, and the yield
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stress τc of the fluid. A first series of experiments carried
out at constant S shows that λ1 and λ2 increase signifi-
cantly with the diameter (Fig.1.b) and the velocity of the
rods (described later on). However, the mixing rates do
not seem to depend on the yield stress of the fluid in the
range that we tested (Fig.1.c).

Flow around a rod - When a stirring rod first passes
through the dyed blob, the thickness – hence the amount
– of dyed fluid stretched and carried away by the rod in-
creases significantly with the diameter of the rod (Fig.2.a,
b, c.) or its speed (Fig.2.d.). As we will elaborate on
later, the enhanced transport and stretching of fluid re-
sult in faster mixing. Let us first estimate the volume of
fluid stretched efficiently by one rod during a period of ro-
tation. We consider the flow generated around a cylinder
moving at constant velocity through a yield-stress fluid.
Because of the viscoplasticity of the fluid, the flow will be
strongly localized around the rods. According to the lit-
erature [31–33], there exists a limited sheared and liquid
region around the cylinder, while the rest of the mate-
rial is negligibly deformed and can be considered solid
(Fig.2.e). Furthermore, it has been shown [33–35] for
Bingham fluids [36] that the shear is very localized and
very intense within a thin boundary layer close to the
cylinder (see the schematic velocity profile in Fig.2.e).
We note δ0 the typical thickness of this boundary layer.
While the shear is very intense inside the boundary layer,
the rest of the fluid of the liquid region is only weakly
sheared. This thin boundary layer is therefore a good
candidate to characterize the volume of fluid efficiently
stretched by the rods.

Dimensional analysis suggests that the size of the
boundary layer depends on the rod diameter d and on the
Bingham number Bi, which is the ratio of yield stress to
viscous stress. For a Herschel-Bulkley fluid, the Bingham
number is defined as Bi = τc

k ( dU )n. For Bingham fluids,
Tokpavi et al. [35] showed numerically that δ0 can be
expressed as δ0 ∝ d Bi−0.54, for a Bingham number Bi
ranging from 10 to 2.105. Since no information exists in
the literature about the size of the boundary layer for a
Herschel-Bulkley fluid, we performed numerical simula-
tions.

To evaluated the thickness of the shear layer around
a cylinder numerically, we choose the configuration of a
moving 2D cylinder of diameter d in a straight channel
of width w = 4d at constant velocity U . The fluid is
a Herschel-Bulkley fluid whose shear stress σ is given by
σ = τc+kγ̇n, where τc is the yield stress, k and n are ma-
terial dependent. We set the same value for the exponent
n as in experiments (n = 0.33) and the dimensionless mo-
mentum equation simulated are scaled by the Bingham
number. Numerical simulations are performed using the
finite-element library Rheolef [37]. Using the augmented
Lagrangian method and a mixed finite-element method
[38], we computed the steady velocity profile and derive
the value of δ0 by extrapolating to zero the lateral ve-

locity gradient at the wall cylinder, in the range of Bi
[0.003 - 6]. The numerical results can be well fitted by
the following law:

δ0 =
0.038 d

(0.48 + Bi1.3)0.53
, (2)

The form of the equation is chosen to provide a good
agreement of the data while keeping a compact form.
The figure 3 shows the results of the simulations and the
fit by equation 2.

FIG. 3. Thickness δ of the strongly sheared layer around a
cylinder moving in a Herschel-Bulkley fluid at constant veloc-
ity (•). The line is a fit following the equation 2 Inset: The
residuals are lower than 2% in the range of interest of the
experiemnts.

FIG. 4. Mixing rates λ1 (full symbol) and λ2 (empty symbol)
versus δ0/R (computed from Eq. 2), with d ∈ {3, 5, 7, 10, 15}
mm (triangles), Trods ∈ {6, 20, 30, 45} s (square) and τc ∈
{7, 27, 54} Pa (circles), and at constant stirring ratio S = 5.5.
The lines are fits forced through the origin. Inset: Same data
only related to the impact of the yield stress, highlighting the
constant values of λ1 and λ2, independent of τc.

For the different experiments at constant S, we have
represented in Fig.4 the mixing rates, λ1 and λ2, asso-
ciated to the two mixing regimes, as a function of the
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characteristic thickness δ0 normalized by the radius of the
area scanned by the rods R (which corresponds roughly
to the radius of the chaotic zone, Fig. 1.a.right). For the
two regimes, all results collapse on a linear master curve,
meaning that δ0 is the relevant parameter to capture the
evolution of the mixing rates with the rod speed, the di-
ameter, or the yield stress, and that the mixing rate of
a yield-stress fluid is controlled by the boundary layer
generated around the stirring rod. The good correlation
between δ0 and the mixing rates explains the absence of
impact of the yield-stress value on the mixing rate (see
inset in Fig. 4). Indeed, δ0 depends via Bi on the ratio
τc/k, that is constant for our different fluids. Neverthe-
less, δ0 can be varied in our experiments by using different
rod diameters and velocities.

We now propose a model in order to account for the lin-
ear dependence between the mixing rates and δ0. Let us
start by considering λ1, the mixing rate during the first
regime. In this two-zone model, we proposed that the
part of fluid highly stretched by the rods is that strongly
sheared in the boundary layer. We checked this hypoth-
esis thanks to complementary experiments where a thin
strip of colored fluid was deformed by a cylinder moved
at constant speed perpendicularly to the strip. Measure-
ments obtained with different cylinder diameters show
that the width of the strip associated with a deformation
larger than 200 % of the initial band (highly-stretched
fluid portion) is proportional to δ0 (Fig. 5). The param-
eter δ0 is therefore a good proxy for the size of the highly
sheared zone.

FIG. 5. Highly deformed width E (deformation larger than
200 %) of an initially-straight filament by a cylindrical rod as
a function of the thickness of the boundary layer for different
rod radii. The rod is moving at constant speed perpendicu-
larly to the initial filament. The line is a fit forced through
the origin. Inset: The measurement of this width is done by
determining the point of the colored band of fluid deformed
so that its tangent lies at an angle θ = arctan(2) = 63◦ rela-
tive to the initial state, which corresponds to a deformation
of 200 %.

So, the total volume sheared during the movement of
the rod over a given distance is proportional to δ0 times

the distance travelled by the rod. Accordingly, the frac-
tion of fluid inside the mixing area sheared during one ro-
tation period of the rods should be proportional to δ0/R,
and the fraction of non-sheared fluid is (1 − α δ0/R); α
here is a constant pre-factor. If the vessel were not rotat-
ing, the rods would stretch again the same fluid particles
when looping on their circular trajectory, while most of
the fluid would be barely stretched for long times. How-
ever, the rotation of the vessel entrains the fluid, so that
new fluid lies on the rods’ trajectory when they come
back. We therefore assume that the time taken for the
fluid to be renewed in the highly-sheared zone on a period
of rod rotation scales with Tvessel. A graphical explana-
tion of this process is proposed in Fig. 6 (inset): the
fraction of fluid renewed inside the shear zone during a
rotation of the rod (Trods) is proportional to 1/S. Thus,
the smaller S (faster vessel), the larger the amount of new
fluid sheared at each period of rotation of the rods, and
the faster the mixing. We suppose that once fluid parti-
cles enter the boundary layer, their contribution to con-
centration fluctuations vanishes quickly; this is supported
by the analysis of the filaments in Fig. 2 showing that the
concentration along the stretched filaments decays ex-
ponentially and that they reach the Batchelor diffusion
scale in the wake of a rod. In fact, the amount of fluid for
which concentration fluctuations are erased depends on
the diffusivity via the Batchelor scale. However, previous
studies of scalar mixing by chaotic advection [3, 11, 39–
41] show that the effect of diffusivity on mixing rates
induces only a weak dependency at high Peclet number.
We shall therefore not consider such contribution. Under

FIG. 6. Mixing rates λ1 (full symbol) and λ2 (empty symbol)
versus δ0/SR for S equal to {5, 6, 7, 8, 9, 20, 40}. All other
parameters are kept constant: d = 10 mm, Trods = 6 s and
τc = 7 Pa. The lines are fits forced through the origin. Inset:
schematic showing the impact of S: The gray area represents
the envelope of the sheared zone at a time t0, that moved
with the vessel over a period Trods. Its longest dimension
corresponds to 2R. At time t = t0 + Trods, the zone sheared
around the rods (trajectories in red) consists of part of the
fluid already sheared in the previous period, and of a portion
of yet unmixed fluid, that scales with 1/S.
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such hypotheses, the variance of the concentration can be
expressed as

σ2
C(t) ∝

(
1− α δ0

SR

)t/Trods

≈ e
t

Trods
log

(
1−α δ0

SR

)
(3)

Since the shear is strongly located close to the rods and
δ0/R is small, this expression is approximated as

σ2
C(t) ∝ e−α

δ0
SR

t
Trods , (4)

which correctly predicts the observed linear dependency
of λ1 observed for the series of experiments performed at
constant S (Fig. 4). In order to verify the dependence on
S, we conducted a second series of measurements where
we vary only S, for a range (S ≥ 5) for which fluid is
only partially renewed at each period inside the sheared
zone, so that fluid particles do not leapfrog the sheared
zone. The values of the mixing rates are shown in Fig.6
and confirm that λ1 and λ2, in our measurement range,
vary linearly with δ0/SR. While we have developed the
model for the first regime only, similar arguments can be
used to account for the linear evolution of λ2 with δ0/SR.
During the second regime, most of the fluid at the core of
the mixing region is well mixed and concentration fluc-
tuations are mostly found at the periphery of the chaotic
region. Therefore, the rods are most efficient at removing
concentration fluctuations when their trajectory passes
close to the periphery, that is, for a limited angular sec-
tor of their rotation. Within this sector, we also expect
the volume of fluid that is efficiently sheared to be pro-
portional to δ0, and the renewal of the fluid inside the
highly sheared zone to be proportional to 1/S. During
the remainder of the period, the rods mainly shear fluid
that has already been highly stretched beforehand. The
small angular sector at which the rods are the most ef-
ficient in this regime is responsible for the smaller value
of λ2 with respect to λ1.

In conclusion, this work has shown that the scaling of
mixing rates can be successfully predicted from flow pa-
rameters when shear is strongly localized. For the case
of Herschel-Bulkley fluids, we have related the flow pa-
rameters to the quantity of fluid that is displaced and
sheared, and hence to the mixing rates. Such quanti-
tative understanding is to our knowledge unprecedented
for chaotic advection; it is also paramount for geometry
selection and upscaling in engineering. A challenge for
future work consists in extending the approach to dif-
ferent kinds of fluid and less simplistic distributions of
stretching.

The authors acknowledge the precious help of E. Garre
for the experimental device, as well as support from the
French ANR (project Rheomel ANR-11-JS09-015).
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Bérengère Dubrulle, Stéphane Roux, and J-L Thiffeault,
“Walls inhibit chaotic mixing,” Phys. Rev. Lett. 99,
114501 (2007).

[30] Emmanuelle Gouillart, J-L Thiffeault, and Olivier Dau-
chot, “Rotation shields chaotic mixing regions from no-
slip walls,” Phys. Rev. Lett. 104, 204502 (2010).

[31] Evan Mitsoulis, “On creeping drag flow of a viscoplastic
fluid past a circular cylinder: wall effects,” Chem. Eng.
Sci. 59, 789–800 (2004).

[32] Nicolas Roquet and Pierre Saramito, “An adaptive finite
element method for bingham fluid flows around a cylin-
der,” Comput. Meth. Appl. Mech. Eng. 192, 3317–3341
(2003).

[33] Benjamin Deglo De Besses, Albert Magnin, and Pas-
cal Jay, “Viscoplastic flow around a cylinder in an infi-
nite medium,” J. Non-Newtonian Fluid Mech. 115, 27–49
(2003).

[34] N Nirmalkar, RP Chhabra, and RJ Poole, “On creeping
flow of a bingham plastic fluid past a square cylinder,”
J. Non-Newtonian Fluid Mech. 171, 17–30 (2012).
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