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Abstra
t. We propose a symmetri
 thinning s
heme for 
ubi
al or sim-

pli
ial 
omplexes of dimension 2 or 3. We show how to obtain, with a

same generi
 thinning s
heme, ultimate, 
urve or surfa
e skeletons that

are uniquely de�ned (no arbitrary 
hoi
e is done).

Introdu
tion

We propose a symmetri
 thinning s
heme for 
ubi
al or simpli
ial 
omplexes of

dimension 2 or 3. Our motivations are listed below:

- Complexes 
an be used for the representation of dis
rete geometri
 obje
ts,

yielding better understanding of their stru
ture and topologi
al properties;

- The framework of digital topology does not permit to obtain skeletons that

are provably thin, however, su
h a property 
an be proved in the framework of


omplexes;

- To our knowledge, there does not yet exist any symmetri
al thinning algorithm

in the framework of 
omplexes. Only asymmetri
 algorithms, based on the 
ol-

lapse operation have been proposed. However, asymmetri
 thinning algorithms


an produ
e, for the same obje
t, drasti
ally di�erent results depending of the

orientation of the obje
t in spa
e (see Fig. 8). On the other hand, symmetri


algorithms guarantee a 90 degree rotation invarian
e.

In our previous works on 
riti
al kernels, we have proposed methods where

the input and the output were �homogenous� 
omplexes, that is, sets of pixels or

sets of voxels (see e.g. [2, 3℄). The 
ase of general 
omplexes (made of elements

of various dimensions) has never been 
onsidered in this framework.

Here, we show how to obtain, with a same generi
 thinning s
heme, ultimate,


urve or surfa
e skeletons that are uniquely de�ned (no arbitrary 
hoi
e is done).

We also show that, if a thin skeleton is needed, it is better to use our symmetri


method �rst and �nish the thinning with a few steps of 
ollapse.

1 Cubi
al Complexes

Although we fo
us on 
ubi
al 
omplexes in this paper, all the notions and meth-

ods introdu
ed from here to se
tion 5 
an be readily transposed to the framework

of simpli
ial 
omplexes (see [1℄).



Abstra
t 
omplexes have been promoted in parti
ular by V. Kovalevsky [9℄

in order to provide a sound topologi
al basis for image analysis.

Intuitively, a 
ubi
al 
omplex may be thought of as a set of elements having

various dimensions (e.g., verti
es, edges, squares, 
ubes) glued together a

ord-

ing to 
ertain rules. In this se
tion, we re
all brie�y some basi
 de�nitions on


omplexes, see also [2, 6℄ for more details. We 
onsider here n-dimensional 
om-

plexes, with 0 6 n 6 3.

Let S be a set. If T is a subset of S, we write T ⊆ S. Let Z denote the set of

integers.

We 
onsider the families of sets F
1
0, F

1
1, su
h that F

1
0 = {{a} | a ∈ Z},

F
1
1 = {{a, a + 1} | a ∈ Z}. A subset f of Z

n
, n > 2, whi
h is the Cartesian

produ
t of exa
tly m elements of F
1
1 and (n−m) elements of F

1
0 is 
alled a fa
e

or an m-fa
e of Z
n
, m is the dimension of f , we write dim(f) = m.

Observe that any non-empty interse
tion of fa
es is a fa
e. For example, the

interse
tion of two 2-fa
es A and B may be either a 2-fa
e (if A = B), a 1-fa
e,
a 0-fa
e, or the empty set.

(a) (b) (
) (d)

Fig. 1. Graphi
al representations of: (a) a 0-fa
e, (b) a 1-fa
e, (
) a 2-fa
e, (d) a 3-fa
e.

We denote by F
n
the set 
omposed of all m-fa
es of Z

n
, with 0 6 m 6 n.

An m-fa
e of Z
n
is 
alled a point if m = 0, a (unit) interval if m = 1, a (unit)

square if m = 2, a (unit) 
ube if m = 3 (see Fig. 1).

Let f be a fa
e in F
n
. We set f̂ = {g ∈ F

n | g ⊆ f} and f̂∗ = f̂ \ {f}.

Any g ∈ f̂ is a fa
e of f .

If X is a �nite set of fa
es in F
n
, we write X− = ∪{f̂ | f ∈ X}, X−

is the 
losure

of X.

A set X of fa
es in F
n
is a 
ell or an m-
ell if there exists an m-fa
e f ∈ X,

su
h that X = f̂ . The boundary of a 
ell f̂ is the set f̂∗
.

A �nite set X of fa
es in F
n
is a 
omplex (in F

n
) if X = X−

. Any subset Y of

a 
omplex X whi
h is also a 
omplex is a sub
omplex of X. If Y is a sub
omplex

of X, we write Y � X. If X is a 
omplex in F
n
, we also write X � F

n
. In Fig. 2,

some 
omplexes are represented. Noti
e that any 
ell is a 
omplex.

Let X ⊆ F
n
. A fa
e f ∈ X is a fa
et of X if there is no g ∈ X su
h that

f ∈ ĝ∗. We denote by X+
the set 
omposed of all fa
ets of X.

If X is a 
omplex, observe that in general, X+
is not a 
omplex, and that

[X+]
−

= X.



2 Collapse

In this se
tion we re
all a de�nition of the operation of 
ollapse [7℄, whi
h is a

dis
rete analogue of a 
ontinuous deformation (a homotopy).

Let X be a 
omplex in F
n
and let f ∈ X. If there exists one fa
e g ∈ f̂∗

su
h

that f is the only fa
e of X whi
h stri
tly in
ludes g, then g is said to be free

for X and the pair (f, g) is said to be a free pair for X. Noti
e that, if (f, g) is
a free pair, then we have ne
essarily f ∈ X+

and dim(g) = dim(f)− 1.
LetX be a 
omplex, and let (f, g) be a free pair forX. The 
omplexX\{f, g}

is an elementary 
ollapse of X

Let X, Y be two 
omplexes. We say that X 
ollapses onto Y if Y = X or

if there exists a 
ollapse sequen
e from X to Y , i.e., a sequen
e of 
omplexes

〈X0, ..., Xℓ〉 su
h that X0 = X, Xℓ = Y , and Xi is an elementary 
ollapse of

Xi−1, i = 1, ..., ℓ. Fig. 2 illustrates a 
ollapse sequen
e.

(a) (b) (
) (d)

Fig. 2. (a): a 
omplex X � F
3
. (a-d): a 
ollapse sequen
e from X.

Remark 1. Let V be a set of 2-fa
es (pixels) or a set of 3-fa
es (voxels), and

let x ∈ V . The element x is simple, in the sense of digital topology (see [8, 6℄) if

the 
omplex V −

ollapses onto (V \ {x})−.

3 Criti
al kernels

Let us brie�y re
all the framework introdu
ed by one of the authors (in [1℄) for

thinning, in parallel, dis
rete obje
ts with the warranty that we do not alter

the topology of these obje
ts. We fo
us here on the two- and three-dimensional


ases, but in fa
t the results in this se
tion are valid for 
omplexes of arbitrary

dimension. This framework is based solely on three notions: the notion of an

essential fa
e whi
h allows us to de�ne the 
ore of a fa
e, and the notion of a


riti
al fa
e (see illustrations in Fig. 3).

De�nition 2 ([1℄). Let X � F
n
and let f ∈ X. We say that f is an essential

fa
e for X if f is pre
isely the interse
tion of all fa
ets of X whi
h 
ontain f ,

i.e., if f = ∩{g ∈ X+ | f ⊆ g}. We denote by Ess(X) the set 
omposed of all

essential fa
es of X. If f is an essential fa
e for X, we say that f̂ is an essential


ell for X. If Y � X and Ess(Y ) ⊆ Ess(X), then we write Y E X.



(a) (b) (
) (d) (e)

Fig. 3. (a): a 
omplex X � F
2
, the essential fa
es are shown in gray. (b,
,d,e): an

essential fa
e (in gray) and its 
ore (in bla
k). The fa
es in (b,e) are regular, those in

(
,d) are 
riti
al.

Observe that a fa
et of X is ne
essarily an essential fa
e for X, i.e., X+ ⊆
Ess(X).

De�nition 3 ([1℄). Let X � F
n
and let f ∈ Ess(X). The 
ore of f̂ for X is the


omplex Core(f̂ , X) = ∪{ĝ | g ∈ Ess(X) ∩ f̂∗}.

De�nition 4 ([1℄). Let X � F
n
and let f ∈ X. We say that f and f̂ are regular

for X if f ∈ Ess(X) and if f̂ 
ollapses onto Core(f̂ , X). We say that f and f̂

are 
riti
al for X if f ∈ Ess(X) and if f is not regular for X.

If X � F
n
, we set Criti
(X) = ∪{f̂ | f is 
riti
al for X}, we say that Criti
(X)

is the 
riti
al kernel of X.

If f is a pixel (resp. a voxel), then saying that f is regular is equivalent to say

that f is simple in the 
lassi
al sense (see Rem. (1) and [6℄). Thus, the notion of

regular fa
e generalizes the one of simple pixel (resp. voxel) to arbitrary fa
ets

and even to fa
es that are not fa
ets.

The following theorem is the most fundamental result 
on
erning 
riti
al

kernels. We use it here in dimension 2 or 3, but noti
e that the theorem holds

whatever the dimension.

Theorem 5 ([1℄). Let n ∈ N, let X � F
n
.

i) The 
omplex X 
ollapses onto its 
riti
al kernel.

ii) If Y E X 
ontains the 
riti
al kernel of X, then X 
ollapses onto Y .

iii) If Y E X 
ontains the 
riti
al kernel of X, then any Z su
h that Y � Z E X


ollapses onto Y .

Let n be a positive integer, let X � F
n
. We de�ne Criti


n(X) as follows:
Criti


0(X) = X, and Criti


n(X) = Criti
(Criti
n−1(X)), whenever n > 0. If
Criti


n(X) = Criti


n+1(X), then we say that Criti


n(X) is the ultimate skeleton

of X and we write Criti


n(X) = Criti


∞(X).

From Th. 5, we dedu
e immedialtely that for any X � F
n
, the 
omplex X


ollapses onto Criti


∞(X). See Fig. 4 for an illustration.



4 Symmetri
 thinning s
heme

In this se
tion, we introdu
e our new generi
 parallel thinning s
heme, see algo-

rithm 1. It is generi
 in the sense that any notion of skeletal element (introdu
ed

below) may be used, for obtaining, e.g., ultimate, 
urve, or surfa
e skeletons.

In order to 
ompute 
urve or surfa
e skeletons, we have to keep other fa
es

than the ones that are ne
essary for the preservation of the topology of the

obje
t X. In the s
heme, the set K 
orresponds to a set of features that we want

to be preserved by a thinning algorithm (thus, we have K ⊆ X). This set K,


alled 
onstraint set , is updated dynami
ally at line 3 of the algorithm. To this

aim, we will de�ne a fun
tion SkelX from X+
onto {True,False}, that allows

us to dete
t some skeletal fa
ets of X, e.g., some fa
ets belonging to parts of X

that are surfa
es or 
urves. These dete
ted fa
ets are progressively stored in K.

Algorithm 1: SymThinningS
heme(X,SkelX)

Data: X � F
n
, SkelX is a fun
tion from X+

on {True,False}
Result: X
K := ∅;1

repeat2

K := K ∪ {x ∈ X+
su
h that SkelX(x) = True};3

X := Criti
(X) ∪K−

;4

until stability ;5

Noti
e that, before line 4, the 
omplex Y = Criti
(X) ∪ K−
is su
h that

Y E X and Criti
(X) ⊆ Y . Thus, by Th. 5(ii), the original 
omplex X 
ollapses

onto the result of SymThinningS
heme, for any X and any fun
tion SkelX .

See Fig. 4 for an illustration of SymThinningS
heme, using a fun
tion SkelX

that yields False for any fa
et. The result of this operation is, obviously, the

ultimate skeleton of the input 
omplex X.

(a) (b) (
) (d)

Fig. 4. (a): a 
omplex X � F
3
. (b): after one exe
ution of the main loop of

SymThinningS
heme: Criti


1(X) = Criti
(X). (
): after two exe
utions of the main

loop: Criti


2(X). (d): the �nal result: Criti


3(X) = Criti


∞(X).



In order to preserve geometri
al features of the original obje
t, su
h as elon-

gated or �at parts, we use two kinds of skeletal fa
ets 
alled isthmuses.

Intuitively, a fa
et f of a 
omplex X is said to be a 1-isthmus (resp. a 2-

isthmus) if the 
ore of f̂ for X 
orresponds to the one of an element belonging

to a 
urve (resp. a surfa
e) [3℄.

Let X ⊆ F
n
be a non-empty set of fa
es. A sequen
e (fi)

ℓ
i=0 of fa
es of X is

a path in X (from f0 to fℓ) if fi ∩ fi+1 6= ∅, for all i ∈ [0, ℓ− 1]. We say that X

is 
onne
ted if, for any two fa
es f, g in X, there is a path from f to g in X.

We say that X � F
n
is a 0-surfa
e if X+

is pre
isely made of two fa
ets f

and g of X su
h that f ∩ g = ∅.
We say that X � F

n
is a 1-surfa
e (or a simple 
losed 
urve) if:

i) X+
is 
onne
ted; and

ii) For ea
h f ∈ X+
, Core(f̂ , X) is a 0-surfa
e.

We say that X � F
n
is an simple open 
urve if:

i) X+
is 
onne
ted; and

ii) For ea
h f ∈ X+
, Core(f̂ , X) is a 0-surfa
e or a single 
ell.

De�nition 6. Let X � F
n
, let f ∈ X+

.

We say that f is a 1-isthmus for X if Core(f̂ , X) is a 0-surfa
e.

We say that f is a 2-isthmus for X if Core(f̂ , X) is a 1-surfa
e.
We say that f is a 2+-isthmus for X if f is a 1-isthmus or a 2-isthmus for X.

Our aim is to thin an obje
t, while preserving a 
onstraint set K that is made

of fa
es that are dete
ted as k-isthmuses during the thinning pro
ess. We obtain


urve skeletons with k = 1, and surfa
e skeletons with k = 2+. These two kinds

of skeletons may be obtained by using SymThinningS
heme, with the fun
tion

SkelX de�ned as follows:

SkelX(x) =

{

True if x is a k-isthmus for X,

False otherwise,

with k being set to 1 or 2+.
Observe that a fa
et may be a k-isthmus at a given step of algorithm 1, but

not at further steps. This is why previously dete
ted isthmuses are stored in K.

Fig. 5 illustrates 
urve and surfa
e skeletons. We observe that these skeletons


ontain fa
es of all dimensions: 3, 2, 1, 0. This is the 
ounterpart of the 
hoi
e

of having a symmetri
 pro
ess, hen
e a 90 degrees rotation invarian
e property,

as illustrated in Fig. 6. We deal with the thinness issue in the next se
tion.

Observe also that, in Fig. 6, the obtained skeletons are simple open 
urves, as

de�ned above. More generally, despite the fa
t that they are 
omposed of fa
es

of various dimensions, parts of produ
ed skeletons 
an be dire
tly interpreted as

pie
es of 
urves or surfa
es.

5 Asymmetri
 thinning s
heme

Thinner skeletons may be obtained if we give up the symmetry. To this aim, the


ollapse operation may be dire
tly used. The method des
ribed in this se
tion



(a) (b) (
)

Fig. 5. (a): a 
omplex X � F
3
. (b): 
urve skeleton of X. (
): surfa
e skeleton of X.

Fig. 6. Illustration of 90 degrees rotation invarian
e with the symmetri
 thinning (al-

gorithm SymThinningS
heme).


orresponds to a spe
ial 
ase of a method introdu
ed by Liu et al. in [10℄ (see also

[4℄) for produ
ing families of �ltered skeletons. Here, we are interested in non-

�ltered skeletons obtained through parameter-free thinning methods. Besides,

the �ltering approa
h of [10℄ 
an easily be adapted to our method.

In general, removing free pairs from a 
omplex in parallel does not preserve

topology. But under 
ertain 
onditions parallel 
ollapse of free pairs is feasible.

First, we need to de�ne the dire
tion of a free fa
e. Let X be a 
omplex in

F
n
, let (f, g) be a free pair for X. Sin
e (f, g) is free, we know that dim(g) =

dim(f)−1, and it 
an be easily seen that f = g∪g′ where g′ is the translate of g

by one of the 2n ve
tors of Z
n
with all 
oordinates equal to 0 ex
ept one, whi
h

is either +1 or −1. Let v denote this ve
tor, and c its non-null 
oordinate. We

de�ne Dir(f, g) as the index of c in v, it is the dire
tion of the free pair (f, g).
Its orientation is de�ned as Orient(f, g) = 1 if c = +1, and as Orient(f, g) = 0
otherwise.



Considering two distin
t free pairs (f, g) and (i, j) for a 
omplex X in F
n

su
h that Dir(f, g) = Dir(i, j) and Orient(f, g) = Orient(i, j), we have f 6= i. It


an easily be seen that (f, g) is free for X \ {i, j}, and (i, j) is free for X \ {f, g}.
Loosely speaking, (f, g) and (i, j) may 
ollapse in any order or in parallel. More

generally, we have the following property.

Proposition 7 ([5℄). Let X be a 
omplex in F
n
, and let (f1, g1), . . . , (fm, gm)

be m distin
t free pairs for X having all the same dire
tion and the same orien-

tation. The 
omplex X 
ollapses onto X \ {f1, g1, . . . , fm, gm}.

Now, we are ready to introdu
e algorithm 2.

Algorithm 2: ParDirCollapse(X,SkelX)

Data: X � F
n
, SkelX is a fun
tion from X+

on {True,False}
Result: X
K := ∅; L = {{f, g} | (f, g) is free for X};1

while L 6= ∅ do2

K := K ∪ {x ∈ X+
su
h that SkelX(x) = True};3

for dir = 1 → n do4

for orient = 0 → 1 do5

for d = n → 1 do6

T = ∪{{f, g} ∈ L | (f, g) is free for X and f /∈ K,7

Dir(f, g) = dir, Orient(f, g) = orient, dim(f) = d};8

X = X \ T ;9

Noti
e that opposite orientations (e.g., north and south) are treated 
onse
-

utively in a same dire
tional substep. To obtain 
urve or surfa
e skeletons, we

set the fun
tion SkelX as follows:

SkelX(x) =

{

True if dim(x) = 1,
False otherwise.

for 
urve skeletons, and

SkelX(x) =

{

True if dim(x) ∈ {1, 2},
False otherwise.

for surfa
e skeletons.

Fig. 7 shows results of algorithm ParDirCollapse. Noti
e that the 
urve

skeleton is only 
omposed of 1- and 0-fa
es, and that the surfa
e skeleton does

not 
ontain any 3-fa
e. Indeed, the following property guarantees that a 
urve

skeleton in 2D (resp. a surfa
e skeleton in 3D) does not 
ontain any 2-fa
e (resp.

3-fa
e).

Proposition 8 ([5℄). Let X be a �nite 
omplex in F
n
, with n > 0, that has at

least one n-fa
e. Then X has at least one free (n− 1)-fa
e.



(a) (b) (
)

Fig. 7. (a): a 
omplex X � F
3
. (b): a 
urve skeleton by 
ollapse of X. (
): a surfa
e

skeleton by 
ollapse of X.

The pri
e to pay for getting this thinness property is the loss of 90 degrees

rotation invarian
e. The example of Fig. 8 shows that di�eren
es of arbitrary size

may be observed between skeletons of a same shape, depending on its position

in spa
e. On the left, we see that two parallel skeleton bran
hes 
orrespond to

a single bran
h of the right image. The length of this �split bran
h� may be

arbitrarily big, depending on the size of the whole obje
t.

Fig. 8. Illustration of asymmetri
 thinning (algorithm ParDirCollapse). The boxed

area is detailed in Fig. 9.

Fig. 9 details the dire
tional substeps of algorithm ParDirCollapse and

shows how this algorithm may give birth to di�erent skeleton 
on�gurations for

di�erent orientations of the same original obje
t.



(a) (b) (
)

(d) (e) (f)

Fig. 9. Detail of the thinning by 
ollapse (algorithm ParDirCollapse) of the 
omplexes

of Fig. 8. (a,d): �rst step. (b,e): se
ond step. (
,f): third step. Bla
k fa
es are the ones

that remain at the end of the step. The order in whi
h the fa
es of di�erent dire
tions

and orientations are pro
essed is the same in all 
ases: 1. horizontal, left to right

(white); 2. horizontal, right to left (light gray); 3. verti
al, downwards (medium gray);

4. verti
al, upwards (dark gray). An arrow indi
ates the only 1-fa
e that is added to the


onstraint set K at the beginning of the se
ond iteration. At the beginning of the third

step, all the 1-fa
es in bla
k are in K. We observe the birth of two parallel bran
hes in

(
), and the merging of two bran
hes in (f).

6 Experiments, dis
ussion and 
on
lusion

Skeletons are notoriously sensitive to noise, and this is major problem for many

appli
ations. Even in the 
ontinuous 
ase, the slightest perturbation of a smooth


ontour shape may provoke the appearan
e of an arbitrarily long skeleton bran
h,

that we will refer to as a spurious bran
h. A desirable property of dis
rete skele-

tonization methods is to generate as few spurious bran
hes as possible, in re-

sponse to the so-
alled dis
retization (or voxelization) noise that is inherent to

any dis
retization pro
ess.

It would make little sense to dire
tly 
ompare results of SymThinningS
heme

with those of ParDirCollapse, as the goals of these two methods are di�erent.

On the other hand, we may 
ompare the results of i) ParDirCollapse with

those of ii) SymThinningS
heme followed by ParDirCollapse, as both are thin

skeletons.

First of all, let us take a look at Fig. 10, where the latter method is applied

to the same obje
ts as in Fig. 6 and Fig. 8. We see that the split bran
h artifa
t

of Fig. 8 is avoided.

We will 
ompare the two methods with respe
t to their ability to produ
e

skeletons that are free of spurious bran
hes. In the following, we 
ompare how

di�erent methods behave with respe
t to this property.

In order to get ground truth skeletons, we dis
retized six simple 3D shapes for

whi
h the skeletons are known: a bent 
ylinder forming a knot (X1), a Eu
lidean



Fig. 10. Illustration of symmetri
 thinning (algorithm SymThinningS
heme) followed

by a few asymmetri
 thinning steps (algorithm ParDirCollapse).

ball (X2), a thi
kened straight segment (X3), a torus (X4), a thi
kened spiral

(X5, see Fig. 11), an ellipsoid (X6). For example, a 
urve skeleton of a dis
retized

torus should ideally be a simple 
losed dis
rete 
urve (a 1-surfa
e). Any extra

bran
h of the skeleton must undoubtedly be 
onsidered as spurious. Thus, a

simple and e�e
tive 
riterion for assessing the quality of a skeletonization method

is to 
ount the number of extra bran
hes, or equivalently in our 
ase, the number

of extra 
urve extremities (free fa
es). Noti
e that, even if the original obje
ts

are 
omplexes obtained by taking the 
losure of sets of voxels (3-fa
es), the

intermediate and �nal results are indeed general 
omplexes, whi
h may 
ontain

2-fa
ets and 1-fa
ets.

In order to 
ompare methods, we use the indi
ator S(X) = |c(X) − ci(X)|,
where c(X) stands for the number of 
urve extremities for the result obtained

fromX after thinning, and ci(X) stands for the ideal number of 
urve extremities

to expe
t with the obje
t X. In other words, S(X) 
ounts the number of spurious

bran
hes in the skeleton of obje
t X, a result of 0 being the best one.

Table 1.

Obje
t X1 X2 X3 X4 X5 X6

S(ParDirCollapse(SymThinningS
heme(Xi))) 4 0 0 0 0 0

S(ParDirCollapse(Xi)) 16 0 0 0 8 1

Additionally, we performed dis
rete rotations of the obje
t X4 (torus), by

angles ranging from 1 to 89 degrees by steps of 1 degree, and 
omputed the

values of S(X) for all these rotated obje
ts and for both methods. The mean



Fig. 11. Results for obje
t X5. Left: ParDirCollapse(X5). Center:

SymThinningS
heme(X5). Right: ParDirCollapse(SymThinningS
heme(X5)).

value of S(X) was 131.0 for ParDirCollapse and 69.2 for SymThinningS
heme

followed by ParDirCollapse, whi
h always gave the best result.

To 
on
lude, our symmetri
 parallel thinning s
heme is the �rst one that per-

mits to thin general 2D or 3D 
omplexes in a symmetri
al manner, avoiding any

arbitrary 
hoi
e. We also showed experimentally that if, however, thin skeletons

are required, then it is better to use our symmetri
 thinning s
heme �rst.
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