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Microwave-induced resistance oscillations as a classical memory effect

Y. M. Beltukov1,2 and M. I. Dyakonov2
1Ioffe Institute, 194021, St. Petersburg, Russia

2Laboratoire Charles Coulomb, Université Montpellier,

CNRS, 34095, Montpellier, France

By numerical simulations and analytical studies, we show that the phenomenon of microwave-
induced resistance oscillations can be understood as a classical memory effect caused by recollisions
of electrons with scattering centers after a cyclotron period. We develop a Drude-like approach to
magneto-transport in presence of a microwave field, taking account of memory effects, and find an
excellent agreement between numerical and analytical results, as well as a qualitative agreement
with experiment.

PACS numbers: 73.40.-c, 73.43.-f, 73.21.-b, 78.67.-n

Nearly 20 years ago Zudov, Du, Simmons, and Reno [1]
and later Mani et al [2, 3] experimentally discovered
huge microwave-induced resistance oscillations (MIRO)
in high-mobility two-dimensional electron gas at low tem-
peratures and moderate magnetic fields. This spectac-
ular phenomenon with many very unusual features has
attracted a lot of interest. A detailed review of experi-
mental results and theoretical approaches is presented by
Dmitriev et al [4].

Starting with the pioneering works [5, 6] which pre-
dicted oscillatory photoconductivity long before its ex-
perimental observations, the mainstream theories de-
scribe MIRO as a quantum phenomenon [4] and deal with
quantum transitions between Landau levels in crossed
electric and magnetic fields in the presence of electron
scattering by different types of disorder.

In this paper we demonstrate that the so-called “dis-
placement” mechanism of MIRO can be understood as
a classical memory effect caused by recollisions of elec-
trons with scattering centers after one or more cyclotron
periods. We propose a simple Drude-like equation taking
account of such memory effects.

The idea that memory effects due to re-collisions are
important for understanding MIRO was previously put
forward by Vavilov and Aleiner [7]. They derived a quan-
tum kinetic equation including such effects and consid-
ered quantum interference of scattering amplitudes, using
the self-consistent Born approximation and the Keldysh
technique. Our purely classical approach is much more
transparent, although based on a similar physical picture.

In strong enough magnetic fields, memory effects are
known to result in classical localization when the re-
sistivity ρxx is zero [8] or exponentially small [9]. At
low magnetic fields the magnetoresistance can be either
positive [10] (soft scatterers) or negative (hard scatter-
ers) [11]. Here we consider a regime which is far from
localization.

We start with presenting the results of our numerical
experiment, based entirely on Newton mechanics (Fig. 1),
which reproduces quite well the typical experimental re-
sults for MIRO, notably the absolute negative resistance
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FIG. 1: (Color online) Numerical simulation of classical elec-
tron magnetotransport in presence of a circularly polarized
microwave radiation. Left panel: randomly distributed scat-
tering centers and typical trajectories without (a), (b), and
with re-collisions (c). Right panel: (d) numerically calcu-
lated resistivity, ρxx, as a function of magnetic field, with and
without microwaves, (e) calculated MIRO resistivity, δρxx, as
function of the ratio ω/ωc. Dashed line - theory, see Eq. (17).

in Fig. 1(d).
We use the following input parameters. Sample size:

200 × 200 µm2, impurity concentration: N = 1.1 ·
108 cm−2, Fermi energy: EF = 8.6 meV, effective mass:
m = 0.067me, ac field amplitude: E1 = 2V/cm, ac

frequency: ω = 2π · 50GHz, dc electric field: E0 =
0.02V/cm. These parameters fairly well correspond to
the typical experimental conditions.
We choose the impurity potential as: V (r) = V0[1 −

(r/r0)
2]5/2 for r < r0 and V (r) = 0 for r > r0, with

V0 = 0.6EF and r0 = 55nm. The exact form of V (r) is
not really important.
Each point in Fig. 1 was obtained by averaging over

5·108 electron trajectories with random initial conditions.
Interactions between electrons was neglected.
The initial velocities have the zero-temperature Fermi

distribution which does not noticeably change during the
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FIG. 2: (Color online) Extended double collision. At time
t − T the electron hits the scattering center with an impact
parameter ρ1 and velocity v

(i)(t − T ), which is changed to

v
(f)(t − T ) after scattering. In the absence of external fields

(dashed line), after completing the cyclotron circle the im-
pact parameter remains to be ρ1, while the velocity becomes
v
(i)(t). The action of dc and ac electric fields during the

cyclotron period produces a mismatch ∆, which results in
changing the new impact parameter to ρ2. After the second
scattering, the velocity becomes v

(f)(t).

numerical experiment. The resistivity was defined as
ρxx = σxx/(σ

2
xx + σ2

xy), where the conductivity tensor
σ̂ was evaluated by calculating the average electron flow
caused by the dc electric field E0.
We have checked that the conductivity tensor calcu-

lated numerically at low magnetic field and in the ab-
sence of microwaves coincides with the predictions fol-
lowing from the Boltzmann equation for the chosen form
of the scattering potential. The technical details of the
simulation procedure will be presented elsewhere.
Electron trajectories were calculated on a PC by the

velocity Verlet algorithm adapted for problems involving
magnetic field [13] with a variable time step. A graphics
processing unit (GPU) was used to increase the perfor-
mance [14]. It takes about 2 hours to calculate each point
in Fig. 1 with a Nvidia GPU (GTX 560 model).
MIRO-like oscillations were previously obtained nu-

merically in Ref. [12] for a model involving multiple rec-
ollisions with hard disks and a special source of noise.
In the absence of electric fields, the impact parameter

and scattering angle during recollisions remans the same
(Fig. 2). The crucial role of external fields is to introduce
a mismatch, ∆, of trajectories after each cycle [7]. This
mismatch consists of two parts: ∆ = ∆0 + ∆1 due to
the actions of the dc and ac electric fields, E0 and E1(t):

∆0 = 2π
e

m

E0 × ωc

ω3
c

, ∆1(t) =
e

m

E1(t)−E1(t− T )

ω(ω − ωc)
.

(1)

where e and m are the elementary charge and effective
mass, ωc = eB/mc, T = 2π/ωc is the cyclotron period.
The ac field E1(t), is assumed to be circularly polarized

in the sense of cyclotron rotation [15].

We now introduce our Drude-like approach accounting
for the memory effects related to recollisions and result-
ing in a simple equation for the average electron velocity.

Collisions of the type presented in Fig. 2 can be consid-
ered as extended collisions. The external fields, E0 and
E1(t), act on the electron during such extended collisions.

Memory effects are mathematically described by equa-
tions that are non-local in time. Thus, to account for re-
turns, the collision integral in the kinetic equation for the
distribution function f(v, t) should include, terms con-
taining this function at earlier times, f(v, t − nT ), with
non-negative integer values of n [16].

Here, we descend to the level of the Drude equation
for the average electron velocity v(t). Within this ap-
proach, the conventional relaxation term −v(t)/τtr (τtr
is the transport relaxation time), describing the change
of velocity at time t due to collisions, must be modified
to contain the velocities at previous times t− nT .

Fig. 2 (drawn for n = 1), shows that the average
of velocity change during a collision at time t, δv =
v
(f)(t) − v

(i)(t), is proportional to the average velocity
at time t − nT . These considerations lead to our main

result, the following Drude-like equation, accounting for
memory effects caused by extended collisions:

v̇(t) = ωc×v(t)−
e

m
E−(1−p)

∞∑

n=0

pnΓ̂(n)
v(t−nT ), (2)

where E = E0 + E1(t) is the total electric field, the
sum is over the number of recollisions n (so that n = 0

corresponds to a simple collision, and Γ
(0)
ij = δij/τtr), p

is the probability for the electron to make a full circle
unperturbed by collisions, it is also the fraction of elec-
trons that rotate in free space and do not contribute to
conductivity.

The conventional expression for the probability p is [4]:
p = exp(−2π/ωcτq), where τq is the so-called quantum
lifetime [17]. For our model, 1/τq = 2r0NvF .

The tensor Γ̂(n) in Eq. (2) describes the rate of veloc-
ity changes due to extended collisions with n returns. It
is time-dependent and generally depends on all the mis-
matches occurring in each of n cycles.

Equations (1, 2) describe the memory effects in the
dark magnetoresistance and the ac conductivity, as well
as the microwave-induced oscillations of ρxx and ρxy.
They also describe effects that are non-linear in mi-
crowave power and/or the dc field E0 [18, 19].

Dark magnetoresistance. In the absence of the ac field,
the linear in E0 magnetotransport is described by the
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stationary solution of Eq. (2) with Γ
(n)
ij = γnδij :

ωc × v −
e

m
E0 − γv = 0, γ = (1− p)

∞∑

n=0

pnγn (3)

Thus the magnetoresistance is given by the formula:

ρxx(B)/ρxx(0) = γτtr. (4)

The parameters γn can be readily evaluated, since in
the absence of external fields the impact parameter ρ
remains the same during an arbitrary number of recolli-
sions:

γn = NvF

∫
[cos(nθ)− cos((n+ 1)θ)]σ(θ)dθ, (5)

where σ(θ) is the differential scattering cross-section.
Note that γ0 = 1/τtr. Equations. (4, 5) gives the ρxx(B)
dependence indistinguishable from the corresponding re-
sult of simulations in Fig. 1(c) (the “MW off” curve).
For p ≪ 1 and small angle scattering, when γ1 = 3γ0,
Eq. 4 coincides with the corresponding result in Ref. [7]
obtained by a quantum approach.
Microwave-induced resistance oscillations. For n ≥ 1,

the tensor Γ̂(n) in Eq. (2) oscillates in time due to mis-
matches caused by the microwave field. To solve Eq. (2),
we look for a solution in the form v(t) = v+v1(t), where
v is the constant part, and v1(t) is the oscillating part
induced by the ac field E1(t):

v1(t) =
e

m

ωc ×E1(t)

ωc(ω − ωc)
. (6)

Inserting this result into the last term of Eq. (2) and av-
eraging over the period of the microwave field, we obtain
the following equation for the steady-state velocity v:

ωc × v − (γ +
ˆ̃
Γ)v −

e

m
(E0 + Ẽ) = 0, (7)

where the microwave-induced relaxation tensor Γ̃ij and

the effective electric field Ẽ are given by:

e

m
Ẽ = (1− p)

∞∑

n=1

pn〈Γ̂(n)
v1(t− nT )〉, (8)

Γ̃ij = (1− p)

∞∑

n=1

pn
(
〈Γ

(n)
ij 〉 − δijγn

)
. (9)

Here, the angular brackets denote averaging over the pe-
riod of the ac field. Thus the action of microwave radia-
tion during extended collisions (i) modifies the relaxation

term and (ii) produces an effective dc electric field, Ẽ.

The relaxation tensor Γ̃ij and effective field Ẽ are both
oscillating functions of the ratio ω/ωc and proportional to
the power of microwave radiation. They also depend on
the polarization of the microwave fieldE1(t). For circular

polarization the tensor Γ̃ij is diagonal: Γ̃ij = δij γ̃.

The number of terms that substantially contribute to
the sums in Eqs. (2, 8, 9) depends on the value of the
probability p. We will assume that p ≪ 1. Consequently,
in the following we will take into account single recolli-
sions only (n = 1) [20].

The general form of the tensor Γ
(1)
ij , depending on the

vector ∆, is:

Γ
(1)
ij − γ1δij = α∆2δij + β∆i∆j , (10)

where α and β are functions of ∆2, ∆ = ∆0 +∆1(t) is
given by Eq. (1). To the lowest order in ∆ the coefficients
α and β are constants that will be calculated below.
The field Ẽ being proportional to the dc electric field

E0, its components can be generally presented as:

Ẽ = κ‖E0 + κ⊥
E0 × ωc

ωc
, (11)

We solve Eq. (7) with Γ̃ij = δij γ̃ to find the corrections
δρxx and δρxy to the longitudinal and Hall resistances
respectively. Keeping only terms that are linear in κ‖,
κ⊥, and γ̃, we obtain:

δρxx/ρ
(0)
xx = (γ̃ + ωcκ⊥)τtr, δρxy/ρ

(0)
xy = −κ‖, (12)

where ρ
(0)
xx and ρ

(0)
xy are the conventional components of

the resistivity tensor in the absence of microwaves.
While the corrections δρxx and δρxy are of the same or-

der of magnitude, the microwave-induced correction δρxx
might be comparable to, or even greater than ρ

(0)
xx . The

correction to the Hall resistance is always relatively small.
With the help of Eqs. (8–11) we can now determine

the coefficients κ⊥, κ‖, γ̃, which define the microwave-

induced corrections to ρ
(0)
xx and ρ

(0)
xy according to Eq. (12):

κ⊥ = Ppr20
2α+ 3β

ωc

πω

ωc
sin

2πω

ωc
, (13)

κ‖ = Ppr20
2β − 4α

ωc

πω

ωc
sin2

πω

ωc
, (14)

γ̃ = Ppr20(4α+ 2β) sin2
πω

ωc
, (15)

where P is the dimensionless microwave power:

P =

(
eE1

m

)2
1

ω2(ω − ωc)2r20
. (16)

Finally, the microwave-induced resistivity is given by:

δρxx

ρ
(0)
xx

= −P exp
(
−

2π

ωcτq

)(
C1

πω

ωc
sin

2πω

ωc
+ C2 sin

2 πω

ωc

)
;

C1 = −r20τtr(2α+ 3β), C2 = −r20τtr(4α+ 2β). (17)

Calculation of α and β (see below) for the chosen form of
the impurity potential V (r) gives: C1 = 29.5, C2 = 27.0.
The resulting curve for δρxx as a function of ω/ωc is

presented by the dashed line in Fig. 1(e), showing a very
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FIG. 3: (Color online) MIRO for high microwave power. (a)
Dependencies of C1 and C2 in Eq. (17) on ∆/r0, showing the
role of increasing microwave power, (b) dependence of ∆1/r0
on the frequency ratio for E1 = 2 V/cm (corresponding to
Fig. 1) and to E1 = 6.3 V/cm, (c) Numerically simulated
MIRO for E1 = 6.3 V/cm, dashed line - calculation using
Eq. (17) and the results in (a) and (b).

good agreement with simulations, especially for ω/ωc >
2. The small deviations at higher magnetic field are due
to the neglected terms in Eqs. (8, 9) with n > 1 and also
to a small non-linearity in the microwave power.
Up to numerical factors which depend on the exact

form of the potential V (r), Eq. (17) is similar to corre-
sponding results in Refs. [4, 7], obtained by using quan-
tum formalism. In Ref. [7], where scattering by a random
potential was considered, our r0 in Eq. (16) is replaced by
the correlation radius ξ of the scattering potential. Thus
their Eq. (6.11), like our Eq. (17), does not contain the
Planck constant ~, which is a clear indication that the
MIRO effect calculated in Ref. [7] is, in fact, classical.
On the other hand, Eqs. (72-74, 84) in Ref. [4] coincide

with our Eq. (17) with C1 = C2 if the scatterer radius r0
is replaced by the De-Broglie wavelength λ, which seems
reasonable for the case when λ ≫ r0 [21].
Evaluation of the parameters of an extended collision.

We briefly outline the way to determine the parameters
α and β in Eq. (10).
During the first collision with an impact parameter

ρ1, the initial velocity v
(i)(t − T ) rotates by an angle

θ1 = θ(ρ1) and becomes v
(f)(t − T ). After completing

the cyclotron circle, the electron hits the scatterer for the
second time with the velocity v

(i)(t) = v
(f)(t− T ).

Because of the mismatch ∆, the new impact parame-
ter, ρ2, will differ from ρ1 by the projection of the vector
∆ on the direction perpendicular to v(i)(t): ρ2 = ρ1+∆ρ.
During the second collision, the velocity rotates by the

angle θ2 = θ(ρ1 +∆ρ) and becomes v(f)(t). The velocity
change δv(t) = v

(f)(t)− v
(i)(t) of each electron depends

on its initial impact parameter ρ1 and velocity v
(i)(t −

T ). Considering ∆ to be small, we expand δv to the

second order in ∆ρ. Finally, we integrate δv(t) over the
initial impact parameter ρ1 and take the average over
the distribution of the initial electron velocities, which is
characterized by the average initial velocity v(t− T ).
This procedure can be done both analytically and nu-

merically, by simulating a single extended collision with
n = 1. Analytically, this results in Eq. (10) where γ1 is
given by Eq. (5), the parameters α and β are given by:

α = −NvF

∫
1− 4 sin2 θ

8
(θ′(ρ))2dρ, (18)

β = −NvF

∫
1

4
(θ′(ρ))2dρ. (19)

In the case of small angle scattering when θ ≪ 1, we have
β = 2α and C1 = C2. Also, γ1 = 3γ0.
Numerical simulation allows the calculation of α and β

in the general case of arbitrary ∆, when the coefficients
α and β in Eq. (10) become functions of ∆2. Fig. 3(a)
presents the results for the coefficients C1 and C2 in
Eq. (17) as functions of ∆/r0. The physical reason for the
reduction of the contribution of recollisions with n = 1
is that for large microwave power, when ∆/r0 & 1, the
electron can miss the second impact with the impurity.
Nonlinear effects. We extend our numerical simula-

tions to study MIRO at elevated microwave power.
The results in Fig. 3(c) (obtained for a microwave

power 10 times greater than that in Fig. 1), qualitatively
reproduce the main features observed experimentally, see
e. g. Ref. [22]. At high magnetic field, Fig. 3(c) shows
oscillations at fractional values of ω/ωc, also observed
experimentally [23, 24].
Since we are considering effects that are linear in the

dc electric field, |∆0| ≪ |∆1| and ∆2 ≈ ∆2
1. As seen

from Eq. (1), ∆2
1 is time-independent (this property ex-

ists for circular polarization only) and is an oscillating
function of ω/ωc, equal to zero for integer values of this
ratio (Fig. 3(b)).
Thus, the n = 1 contribution to MIRO is suppressed

between integer values of ω/ωc, which pushes the extrema
to integer values. For ω/ωc & 2, we obtain a good agree-
ment between numerical experiment and the prediction
of Eq. (17), shown by the dashed line in Fig. 3(c), if
the values of the coefficients C1 and C2 are taken from
Fig. 3(a, b).
In summary, we have demonstrated that MIRO and

related phenomena can be very well understood as clas-
sical memory effects caused by the action of the ac and dc

fields during extended collisions, at least for some types
of disorder. (This applies to the displacement mecha-
nism. In contrast, the “inelastic” mechanism [4], not
considered here, strongly relies on Landau quantization
and thus is truly quantum.) We have proposed a classi-
cal Drude-like equation, Eq. (2), in which the relaxation
term is modified to take account of an arbitrary number
of recollisions. To our knowledge, such an approach has
never been used previously.
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We have verified that the analytical results on MIRO,
obtained by solving Eq. (2), perfectly agree with the re-
sults of corresponding numerical Newton dynamics sim-
ulations (and also qualitatively agree with experiment).
It turns out that extended collisions in the presence

of external dc and ac electric fields are characterized not
only by the transport cross-section, but also by addi-
tional parameters (our α and β) that cannot be expressed
through the differential cross-section.
Apart from minor differences, most of our physical

results were previously obtained in many papers de-
voted to the displacement mechanism by laborious quan-
tum calculations employing advanced theoretical tech-
niques [4, 7]. It appears, that such theories, in fact,
translate into quantum language the classical physics
contained in Eq. (2). Indeed, in many cases the final
results do not contain the Planck constant ~ [25].
The situation is reminiscent of the conventional Drude

approach to magnetotransport, which works quite well
unless truly quantum phenomena, like e. g. Shubnikov-
de Haas oscillations or weak localization, are involved.
However, the only parameter in the Drude equation, τtr
is expressed through the scattering cross-section, the cal-
culation of which may, or may not, require Quantum
Mechanics, depending on the relation between the de-
Broglie wavelength λ and scatterer radius r0.
Similarly, our generalization of the Drude equation ac-

counting for extended collisions is likely to be valid what-
ever is the relation between λ and r0. We have evaluated
the parameters of collision with one return using classical
mechanics (λ ≪ r0). In the opposite case, the calcula-
tion of α and β should be done quantum-mechanically.
Since α and β are not expressed through the differential
cross-section, the problem of their quantum-mechanical
evaluation remains open.
In any case, the isolated problem of finding the param-

eters of extended collisions with a given mismatch ∆ is
complementary to the classical Eq. (2).
This work was partially supported by the Russian

Foundation for Basic Research (project no. 15-02-01575).
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