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Abstract—In this paper, a discussion is made on the optimiza-
tion methods that can solve the low autocorrelation sidelobes
problem for polyphase sequences. This paper starts with a de-
scription and a comparison of two algorithms that are commonly
used in the literature: a stochastic method and a deterministic
one (a gradient descent). Then, an alternative method based on
the Random Walk Metropolis-Hastings algorithm is proposed,
that takes the gradient as a search direction. It provides better
results than a steepest descent alone. Finally, this autocorrelation
question is handled differently, considering a mismatched filter.
We will see that a mismatched filter performs impressively well
on optimized sequences.

Index Terms—Aperiodic autocorrelation – Optimization algo-
rithms – Gradient descent – Mismatched filter

I. INTRODUCTION

Since 1950, sets of sequences with some properties (auto-
correlation, cross-correlation) have been sought. In radar for
instance, they are often of interest, because a signal with a
"good" autocorrelation property may be distinguished from
a time-shifted version of itself, while the cross-correlation
property enables a signal to be set apart from another signal.

In terms of radar detection, the autocorrelation function is
usually referred to a "matched filter". If the matched filter
presents high sidelobes, it may be problematic in the presence
of multiple targets. In that case, weak targets can be hidden
by a stronger one. Hence, one should find sequences with low
autocorrelation sidelobes. This is the objective of this paper.

Searching for those sequences can be seen as an optimiza-
tion problem, the minimization of a function called "energy".
This energy quantifies the autocorrelation sidelobe level of
a sequence, like the Merit Factor introduced by Golay [1].
There exists a lot of methods that can provide suboptimal
solutions to this optimization problem. Stochastic methods
are usually helpful, as no hypothesis on the cost function
is required ([2], [3], [4], [5]); their convergence to a global
minimum is almost certain theoretically. A gradient descent,
also known as a steepest descent, is a fast algorithm for finding
a local minimum of a function [6]. In this paper, we propose
another stochastic method, based on the Metropolis-Hastings
algorithm. It generates random variables, but in the descent
direction defined by the gradient.

Furthermore, this autocorrelation problem can be handled
differently using mismatched filters. A mismatched filter may
highly reduce the sidelobe level, at a cost of some SNR

(Signal-to-Noise Ratio) loss. As it is possible to obtain nu-
merically the optimal mismatched filter [7], we will try to
make some connections between the autocorrelation level of
a sequence and the gain that can be obtained with the optimal
mismatched filter.

This article only deals with polyphase sequences. But it
is possible to extend the following procedure for binary se-
quences (usually referred as "LABS" for Low Autocorrelation
Binary Sequence in the literature), and for sets of sequences
with "good" autocorrelation and cross-correlation ([8], [9]).

This paper is organized as follows. Section II describes and
compares two algorithms, a random search and a steepest
descent, in order to solve the low autocorrelation sequence
problem. Section III suggests another algorithm, based on the
Metropolis-Hastings algorithm, that combines the two above-
mentioned ones. The last section studies the efficiency of a
mismatched filter on an optimized-or-not sequence.

II. COMPARISON OF TWO OPTIMIZATION METHODS IN THE
LOW AUTOCORRELATION SIDELOBES PROBLEM

In order to search for sequences with low autocorrelation
sidelobes, the procedure employed in this article is inspired
from a recent article (Baden et al. [6]). It is based on a real
function, called "energy", that quantifies the energy present in
the autocorrelation sidelobes of a given sequence. Hence, this
search is equivalent to a minimization problem.

Let us consider a polyphase sequence a of length N and of
constant modulus, i.e. a = [a1, ..., aN ]T =

(
e j2παi

)
i∈J1,NK.

Assume that ai = 0 for i < 1 and i > N .
The discrete aperiodic autocorrelation, denoted by c = a∗a,

is the sequence:

cm =
N∑
i=1

aia
∗
i+m (−N < m < N) , (1)

where we note (.)∗ the complex conjugate operator. By
including some weighting w to allow shaping of the sidelobes,
and an exponent p ∈ N to control the peak sidelobe, the
autocorrelation sidelobe energy Ea is defined by:

Ea(a) =
N−1∑

m=−N+1

wm (cmc∗m)p . (2)

Finding the minimum of Ea, the cost function throughout
this paper, is a difficult task. Indeed, it is a non convex problem



(because of the constant modulus hypothesis) that must be
optimized over a large set of variables (of size equal to the
length N of the sequence). Suboptimal approaches are usu-
ally considered in the literature: stochastic and deterministic
methods.

Hence, in this section, we recall quickly two well-known
optimization methods, one from each approach: a random
search and a gradient descent [6]. We compare then their
performances on the optimization problem mentioned earlier.
The next section will propose an original alternative that mixes
some aspects of the two previous-cited methods.

A. Stochastic Methods

Stochastic methods ([2] to [5]) are characterized by the
presence of randomness in the optimization process. The
iterative process can be divided into two steps, specific to each
method. A generation step creates candidates by mutation or
exploration of the domain. A selection step evaluates these
candidates through the cost function. One can notice that the
mutation operator is quite sneaky, as the linear combination
of two sequences with low autocorrelation sidelobes does not
necessarily provide another one with better sidelobes... Com-
mon stochastic methods for designing polyphase sequence
includes genetic algorithms [4], evolutionary strategies [5],
tabu search [3], etc.

The principle of a stochastic method is described in the table
1, with the most basic algorithm, the random search.

Algorithm 1 Random Search
1: random initialization a
2: repeat
3: generation of a candidate b
4: if Ea(b) < Ea(a) then
5: a = b
6: end if
7: until a stop criterion is met

Like most methods, stochastic methods have some advan-
tages and some drawbacks. A short list is given below.
Advantages
• Stochastic methods can be used to solve every optimiza-

tion problem, as they don’t need any hypothesis on the
cost function (smoothness, convexity...).

• Their global convergence is almost certain theoretically...
Drawbacks
• ... but it cannot be established in practice.
• The longer the sequence is, the slower the algorithms are.

B. Gradient Descent

The gradient descent is a fast algorithm for finding a local
minimum of a function. It starts with an initial guess of the
solution, and as many times as needed, moves it towards the
opposite direction of the gradient at that point. Table 2 gives
its procedure. Pros and cons of a gradient descent are the
following:
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Figure 1. Optimization of the autocorrelation of a polyphase sequence of
length N = 127

Advantages
• It is pretty fast.
• The more information we have on the cost function, the

more accurate the gradient descent can be (cf. Quasi-
Newton methods for instance)

Drawbacks
• It needs some hypothesis on the cost function (existence

of partial derivatives at least)
• The algorithm is only guaranteed to converge to a local

minimum.

Algorithm 2 Gradient Descent
1: parameter initialization: step γ
2: random initialization: sequence a
3: repeat
4: while f(a− γ∇E(a)) > f(a) do
5: reduce γ
6: end while
7: a = a− γ∇E(a)
8: until a stop criterion is met

Partial derivatives of the energy function Ea, with respect
to the phase angle of a, denoted α exist; their calculation
is detailed in [6], and the result (3) is given below, with η
a sequence that depends on c. So it makes sense to use a
gradient descent.

∂Ea
∂αj

= −2p= [aj((η ◦ c∗) ∗ a)j ]

− 2p= [aj((η ◦ c) ∗ ar)N+1−j ] , (3)

There are other deterministic algorithms, like the CAN algo-
rithm, introduced by Stoica et al., and described in [10]. This
algorithm expresses the problem in the frequency domain, and
solves it with a minimization-majoration technique. However,
it suffers from a high computational complexity, due to the
use of singular value decompositions (SVD).

C. First results: Comparison of the two methods

In this part, a random search and a steepest descent are
applied in order to find sequences with low autocorrelation
sidelobes. Figure 1 shows the improvements we can get from
a random sequence of length N = 127.
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Figure 2. Optimization of the autocorrelation of a polyphase sequence, of
length N = 1024

In this example, one can observe that both methods perform
well: around 15 dB are gained from a random initialization,
with a little more for the random search. That gives us a
PSL (Peak Sidelobe Level) at around 36 dB. Notice that this
result is consistent, compared to other stochastic methods
[11] described in the literature. Although the computational
time is not really a reliable indicator (as it depends on a
lot of parameters), the difference between the two methods
is quite impressive: the gradient descent has converged in a
few seconds, while it has been about minutes for the random
search.

The procedure is repeated in figure 2, with a sequence
of length N = 1024. This time, the trend is reversed in
favour of the gradient descent: a difference of 3.5 dB can
be observed between the two methods. As a random search
explores "naturally" the whole domain, the increasing number
of degrees of freedom implies a lengthier computation time.
However, for practical reasons, the iteration process has to be
stopped after a finite reasonable amount of time, thus implying
a degradation of performance for high length sequences.

III. AN ALTERNATIVE METHOD BASED ON THE GRADIENT

A steepest descent is a deterministic algorithm. Since this al-
gorithm will converge to the first local optimum on the descent
path, its performance strongly depends on the initialization.
Hence, it may be interesting to study the performance of a
multi-start gradient, or to use a gradient descent during the
generation process of a stochastic method, as suggested in
[11]. On the other side, stochastic methods are not trapped by
local minima, and may thus explore the whole search domain,
at the cost of extra computational time.

In this section, we propose an alternative method for mini-
mizing the energy Ea. It combines two aspects of the methods
described earlier: the exploration of the heuristics, and the fast
convergence of a steepest descent. Our method is based on
the Random Walk Metropolis-Hastings algorithm, originally
proposed by Metropolis et al. in 1953. It allows the evaluation
of the cost function in different areas of the search domain. The
generation process in the solution we propose is not done on
the neighbourhood, but on the line defined by the gradient. The
step parameter (just like the one in a descent) is determined
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Figure 3. Comparison of the convergence rate, according to the sequence
length and its associated PSL-objective (logarithmic scale)

pseudo-randomly, avoiding to fall into a local minimum. Table
3 describes this algorithm, where rand(x, y) denotes a random
number between x and y. Its main feature is on the choice
of the generation step. The proposed iterative process faces
three possible cases: if the cost function at the new proposed
candidate is improved, this candidate is accepted, and we
randomly increase the descent step in order to possibly go
further in the descent direction (case (a)). If the new candidate
does not provide an improvement, then it may still be accepted
with some probability P (δ) (b). Finally, if it is not accepted
(c), we propose to decrease the step in order to increase the
probability to accept a new candidate at the next iteration.

Algorithm 3 Proposed Method
1: input: selection law P , initial step γ0

2: random sequence initialization a
3: step initialization, γ = γ0

4: repeat
5: if δ := E(a− γ∇E(a))− E(a) < 0 then
6: a = a− γ∇E(a)
7: γ = γ0 + rand(0, γ0) . (a)
8: else if P (δ) < rand(0, 1) then
9: a = a− γ∇E(a) . (b)

10: else
11: γ = γ0 − rand(0, γ0) . (c)
12: end if
13: until a stop criterion is met

Figure 2 provides an overview of the efficiency of the
proposed algorithm. A gain of 3.5 dB – in terms of PSL –
is obtained, compared to a standard gradient descent. Figure 3
compares the convergence rate of the two methods by setting
a PSL-objective to reach. As the gradient descent can be
computed in O(N log(N)) operations [6], one can see that it is
also the case for the proposed algorithm, up to a multiplicative
factor.

Thus, the proposed method offers better results, at the cost
of a reasonable computational cost. So it is appropriate to use
it for designing long polyphase sequences.



IV. MISMATCHED FILTERING

From here, this article has only been focused on the autocor-
relation function of a sequence, that is to say on the matched
filter. Such a procedure is thus limited to exactly N degrees
of freedom (the length of the sequence) to obtain the best
possible PSL. However it is possible to replace the matched
filter by a different filter, that will not be optimal in terms of
Signal-to-Noise Ratio (SNR) but may provide a better PSL.
Using such a mismatched filter provides additional degrees of
freedom in order to optimize the PSL, thus allowing to obtain
better PSL performance at the cost of a controllable loss in
processing gain. The number of additional degrees of freedom
will be equal to the length of the mismatched filter, that can
be chosen to be longer than the considered sequence.

Let f be a mismatched filter of length Nf . The output of
the mismatched filter is the sequence d = a ∗ f , where:

dm =
Nf∑
i=1

aif
∗
i+m (−Nf < m < Nf ) . (4)

Apart from the Peak-to-Sidelobe Ratio (PSLR), the effi-
ciency of a mismatched filter can be measured by the Signal-
to-Noise Ratio (SNR) and the loss in processing gain (LPG).
These quantities are defined by:

SNR = 10 log10(|aHf |) , (5)

LPG = 10 log10

(
(|aHf |)2

(aHa)(fHf)

)
(6)

A recent article [7] explains how to generate the optimal
mismatched filter. The procedure is based on the resolution of
an optimization problem, the minimization of the PSLR. The
latter can be cast as a Quadratically Constrained Quadratic
Program (QCQP). This proposed QCQP is shown to be
convex, so it is possible – for instance by using an interior
point method – to find the global minimum, and thus i.e. the
optimal mismatched filter. In this procedure, the LPG can also
be constrained to a given value.

In this section, we suggest to inspect the efficiency of the
optimal mismatched filter, according to the initialization. So,
we consider two sequences of length N = 127: a random one,
and the same sequence, optimized with the proposed method
in section III. Their optimal mismatched filter, of length Nf =
3N − 1 is computed and applied; results are shown figure 4,
on the top and the bottom respectively.

We first notice that, interestingly, the matched filter of
the optimized sequence presents a better PSLR than the
mismatched filter of the initial random sequence, with a dif-
ference of approximately 6 dB. Of course, the PSLR provided
by the mismatched filter for the optimal sequence is much
better. Note also that surprisingly the gain provided by the
mismatched filter compared to the matched filter is better for
the optimized sequence than for the initial sequence.

Hence, in order to obtain a sequence with low sidelobes
in autocorrelation, it seems interesting to start with an op-
timization of the sequence itself, with methods like the one
suggested in the previous section, and then employ an optimal
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Figure 4. Matched filter and mismatched filter for a initial sequence of
length N = 127. On top: non-optimized sequence. On the bottom: optimized
sequence.

mismatched filter on it. Following this procedure, the figure 4
shows that it is possible, for a sequence of length N = 127,
to obtain sidelobes with a really flat profile at -52 dB, and
with a loss of only 0.3 dB. Such a level is very interesting,
especially for sequences with such length!

V. CONCLUSION

In this paper, a method for finding a sequence with low
sidelobes in autocorrelation has been presented. It explores
a lot of candidates, because of the random feature of the
Metropolis-Hastings algorithm, but good ones, as they are
chosen in the direction of the gradient. Obtained results are
better than what we can obtain with a steepest descent, at the
cost of some additional but reasonable computational time.
This method can be extended to obtain sets of sequences with
low sidelobes in both autocorrelation and cross-correlation.

By definition, a mismatched filter provides a gain on the
Peak to Sidelobe Ratio, at a cost of a loss in processing gain.
We have observed that this gain is higher on sequences that are
optimized than those that are not. The procedure that consists
in an optimization of a sequence, and an application of the
optimal mismatched filter on it seems promising.

Ongoing work will be focused on:
• Studying the connection between the length of the se-

quence, its optimal mismatched filter and the PSL (Peak
Sidelobe Level)

• Jointly optimizing the code and its mismatched filter
• Applying these methods on the coherent MIMO ambigu-

ity function case
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