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SUMMARY

The analysis of some properties for the equilibria of switched dynamic systems is addressed. In particular,
the geometric properties of the equilibrium region in state space and the algebraic properties of the equations
defining it are studied. Based on fundamental results from algebraic geometry the equilibria properties
of switched dynamic systems is analyzed. This alternative approach allows to obtain information about
the set of equilibrium points without explicitly computing it. This study is developed for three different
formulations of switched dynamic systems, revealing some interesting algebraic and geometric relations in
their corresponding equilibria. Some examples, including the case of a power converter, are presented for
illustration purposes. Copyright c© 2016 &

Received . . .

KEY WORDS: cyclic switched system; equilibrium; method of moments; Lagrange polynomials;
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1. INTRODUCTION

A starting point for the study of dynamic systems usually involves studying the set of steady
solutions that do not have a temporal evolution, which is called the equilibria. These steady solutions
provide valuable information for performing further analysis such as evaluating the stability of the
system. Thus, a unifying approach for analyzing the properties of the set of equilibrium points of
switched systems, regardless of the dimension or the number of operation modes, is needed.

Many different results have been obtained with respect to the stability and convergence properties
for equilibrium points for switched systems [1][2][3][4]. Most of these approaches rely on the
definition of multiple Lyapunov functions. [5] presents a method based on geometric intuition
for obtaining conic switching laws for stabilizing a switched system. [6] extends this method
for different equilibrium types. However, these approaches are limited for the treatment of two
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2 G. BECERRA ET AL.

dimensional problems with two subsystems. [7] introduces sufficiency conditions on the form of
linear matrix inequalities for stability of switched systems. In [8], it is shown that by fast switching,
convergence to a point in the convex hull of the equilibria can be achieved. [9] [10] present sufficient
conditions for the stability of switched systems in a region of state space. Computing a strategy that
stabilizes a switched system is a widely studied problem. However despite a lot of techniques, most
of them do not deal with equilibrium point study because they assume the different modes of the
switched system share a common equilibrium.

One of the main applications of equilibrium point analysis is to find admissible references in
dynamic switched systems but also to address the problem of no common equilibrium points of
some systems. Our contributions are related to the equlibrium study of the cyclic switched systems
based on different relaxed representations of switched systems. Thanks to a density theorem in
infinite time, it is possible to show that switching laws exist such that the trajectories of a relaxed
switched system can be approached as close as desired by the one of a switched system [11]. Indeed,
the relaxed representation of switched system in a quadratic optimal control problem yields a convex
optimal control problem in the control signal which is easier to solve [12] [13]. The work proposed
in this manuscript searches to find the equilibria proving that the original equilibrium points are
part of those of the relaxed formulation. This allows to design a control law for the relaxed system
and then apply it to the original system when an optimizer exists [14]. The analysis of the set
of equilibrium points is achieved by defining it as a region in state space with some particular
characteristics. The geometric structure of these regions and the algebraic properties of the defining
equations are the central topics. Tools from algebraic geometry are used for making inferences on
the geometry of the equilibrium regions by analyzing the corresponding algebraic parametrizations.
In particular, existence and inclusion properties for the set of equilibrium points are studied. This
method is general enough for the treatment of problems with more than two dimensions and more
than two subsystems. It also allows to find relationships between the different switched system
formulations introduced here, revealing an underlying common structure in them. With this new
approach, information about the geometry of the equilibrium region is obtained without explicitly
computing all equilibrium points.

This paper is organized as follows: section 2 introduces concepts and definitions for switched
systems, in section 3 three different formulations for switched dynamic systems are defined,
section 4 presents a parametric definition for the equilibria in each formulation and introduces
an implicitization algorithm, section 5 studies some of the algebraic and geometric properties of
equilibria for each formulation and section 6 presents some examples.

The following notation will be used throughout the paper: x(t) is an n dimensional vector
representing the system state in continuous time, {x1, . . . , xn} are the components of the state
vector. K[x1, . . . , xn] is the set of all polynomials defined in {x1, . . . , xn} (a commutative ring),
with coefficients in the field K. f, g, p, r, s are polynomials defined for different polynomial rings.
co(·) denotes the convex hull of a set. If A is a matrix, A � 0 (respectively A � 0) indicates that
matrix A is positive definite (respectively positive semidefinite).
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ALGEBRAIC AND GEOMETRIC PROPERTIES OF EQUILIBRIA IN CSDS 3

2. SWITCHED DYNAMIC SYSTEMS

We begin by introducing a general formulation for Switched Dynamic Systems (SDS), with a
notation based on that presented in [15]. A SDS can be characterized by a vector x(t) ∈ Rn which
corresponds to the continuous state, and a scalar q(t) ∈ Q = {q1, q2, . . . , qQ} that represents the
discrete state. Q is a set representing the different modes of operation. The continuous dynamics for
each mode are defined by linear differential equations ẋ(t) = Aqjx(t) + bqj , where Aqj ∈ Rn×n

and bqj ∈ Rn. Notice that continuous control signals are not defined for this system. Instead, the
dynamics are determined by the discrete control signal q(t). This is the meaning of having a system
with controlled switching. The continuous dynamics are determined only by the selected mode of
operation. Also, there is not an explicit dependence of time in the equations. We now proceed to
define the particular class of switched systems studied in the present paper.

Definition 1 (Cyclic Switched Dynamic System). Given a finite set of system modes Q =

{q1, q2, . . . , qQ}, a Cyclic Switched Dynamic System (CSDS) is defined by

ẋ(t) =

Q∑
j=1

γqj (q(t))
[
Aqjx(t) + bqj

]
(1)

where Aqj ∈ Rn×n,bqj ∈ Rn. The switching function γqj (·) is defined as

γqj (q(t)) =

1 if q(t) = qj

0 if q(t) 6= qj
(2)

with q(t) ∈ Q, such that x(t) converges to an almost-periodic cycle†.

Notice that there is a switching function γqj (·) dependent on the discrete control input for
selecting the active mode for each time t. Thus, the complete system dynamics are determined
by the mode selection given by the discrete control signal q(t). Eq. (2) guarantees that only one
mode is active at any time t since γqj ∈ {0, 1}. For the trivial case when q(t) = qj , ∀t, where
qj is any of the system modes, the behavior is that of the single selected mode with the system
state approaching the unique equilibrium point x̄ determined by Aqj x̄ + bqj = 0 (provided Aqj is
nonsingular). In general the equilibrium points for all individual system modes are different. Instead,
if some or all the system modes are selected alternatively in a certain periodic sequence during some
predetermined time intervals, the system state will show a cyclic behavior, approaching a steady
cycle. We will refer to this periodic sequence of modes as a switching regime. The average value of
x over the cycle corresponds to the operation point of the cyclic SDS.

†almost-periodic cycle is used here as defined in [16], definition 4.6.3.
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4 G. BECERRA ET AL.

3. CONVEX, LAGRANGE AND RELAXED FORMULATIONS FOR SDS

Let us define the average of x over this steady cycle, x̄ , as follows:

x̄(t) =
1

Tp

∫ t

t−Tp

x(τ)dτ (3)

where Tp is the period of the cycle. Dynamical model of x̄(t) is obtained by differentiating (3).
Nevertheless, this derivative is generally intractable or unusable because of its non-linear form. It
can be proven that if Tp is small compared to the system’s dynamics, the state xa corresponding to
a convex SDS (explained in the next subsection) approximates x̄ and x [11][17].

3.1. Convex SDS

The dynamics of the cyclic SDS can be approximated by an average model computed as the
weighted sum of the SDS system modes. In this case the equilibrium points of the average model
will correspond to the operation points of the cyclic system. A convex combination of subsystems
will be obtained, where the convexity characteristic refers to weighting each system mode by its
corresponding activation time interval. A definition for convex switched systems follows:

Definition 2 (Convex SDS). The Switched Dynamic System defined by differential equations

ẋa(t) =

Q∑
j=1

αqj (t)
[
Aqjxa(t) + bqj

]
(4)

is a convex Switched Dynamic System, where the switching functions γqj (·) from (1) are replaced
by parameters αqj (t) constrained by the convexity conditions

∑Q
j=1 αqj (t) = 1, αqj (t) ∈ [0, 1], ∀t.

Remark 3.1. Notice that the value of each parameter αqj lies in the convex hull of the range set for
the switching functions (2), co({0, 1}), and equals the duty cycle of the switching function γqj (·)
for the corresponding mode. By changing the switching regime the system can be driven towards
different regions in state space. Thus, these parameters are the control signals for the convex SDS.

3.2. Lagrange SDS

An alternative formulation for the SDS can be obtained in terms of a basis of Lagrange polynomials.
These polynomials are commonly used for interpolation, but in this context they are used to
formulate the switching functions. We present now the definition for this form.

Definition 3 (Lagrange SDS). Given a finite set of system modesQ = {q1, q2, . . . , qQ}, qj ∈ R, the
system described by

ẋL(t) =

Q∑
j=1

lqj (q(t))
[
AqjxL(t) + bqj

]
(5)
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ALGEBRAIC AND GEOMETRIC PROPERTIES OF EQUILIBRIA IN CSDS 5

is called a Lagrange Switched Dynamic System, where the lqj (·) functions correspond to a basis of
Lagrange polynomials

lqj (q(t)) =

Q∏
i=1
i 6=j

q(t)− qi
qj − qi

, q(t) ∈ co(Q) (6)

The system is represented as a combination of the different modes, but in this case the weighting
parameters are given by the basis of Lagrange polynomials. Notice that q(t) corresponds to the
control signal for the Lagrange SDS, since its value determines how the modes combine. It also
determines the location in state space where the trajectory will reach a steady cycle. The control
signal q(t) is defined in the convex hull of the set Q, allowing partial activation of system modes.
The difference here is that only one parameter determines how the active modes combine. There
are Q− 1 terms in each Lagrange basis polynomial. After distributing and reorganizing terms as
powers of q(t), Eq. (5) yields a Q− 1 polynomial in q as follows:

ẋL(t) =

Q−1∑
i=0

[
Q∑

j=1

cij
[
AqjxL(t) + bqj

]]
qi(t), (7)

where cij are constants. Since the terms in the inner sum are functions depending only on the system
state xL(t), Eq. (7) can be rewritten as

ẋL(t) =

Q−1∑
i=0

Γi(xL(t))qi(t) (8)

Notice the nonlinearity due to the presence of powers of the control signal. A method for
transforming a nonlinear, nonconvex optimal control problem into an equivalent linear, convex
problem has been presented in [14]. This method is used here for obtaining a moment relaxation
for the Lagrange SDS given in definition 3. The obtained form is more suitable for performing
numerical computations such as obtaining an optimal control, as shown in [13]. The main ideas in
the method of moments are presented [18][19][20].

3.3. Relaxed SDS

Theorem 3 in [14] is used for transforming the Lagrange SDS from definition 3 into a new relaxed
formulation, where the nonlinear terms introduced by the powers qi of the control signal are replaced
by new variables mi corresponding to the algebraic moments. This alternative form is presented
next.

Definition 4 (Relaxed SDS). Given a finite set of system modes Q = {q1, q2, . . . , qQ}, qj ∈ R, the
system described by

ẋR(t) =

Q−1∑
i=0

[
Q∑

j=1

cij
[
AqjxR(t) + bqj

]]
mi(t) (9)

is called a Relaxed Switched Dynamic System, where the set {mi} forms a sequence of algebraic
moments representing a probability measure supported on the real line. This sequence is constrained
to form a positive semidefinite Hankel matrix Hn(m) � 0, m0(t) = 1.

Copyright c© 2016 & (2016)
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6 G. BECERRA ET AL.

In this formulation mi(t) corresponds to the control signal, since its values determine how the
different system modes qj combine. The relaxed form (9) is represented as an affine function of
the control signals mi. Furthermore, the positivity constraint on the sequence of algebraic moments
yields a convex set in parameter space (m0,m1, . . . ,mQ−1) ∈ RQ. The convexity of the feasible set
is a desirable property for performing numerical computations such as those required for obtaining
an optimal control. In the following section the equilibria for each SDS formulation presented here
is studied.

4. EQUILIBRIA FOR SWITCHED DYNAMIC SYSTEMS

For each of the three formulations presented here a set of equations in explicit form will be obtained
that describe the corresponding equilibria. These equations will be important for understanding the
algebraic and geometric properties of the equilibria in the three SDS formulations. Results from
algebraic geometry introduced in the next section will provide the tools for studying the set of
equilibrium points based on these equations. Let us now introduce equilibrium points, as presented
by [21].

4.1. Convex equilibria

The set of equilibrium points for the convex SDS is given by

X̄ [C] =

{
xa ∈ Rn :

Q∑
j=1

αqj

[
Aqjxa + bqj

]
= 0

}
(10)

with the αqj constrained by the convexity conditions given in definition 2. Distributing terms and
reorganizing we can solve for xa

X̄ [C] =

xa ∈ Rn : xa = −

[
Q∑

j=1

αqjAqj

]−1 Q∑
j=1

αqjbqj

 . (11)

on the condition that A =
∑Q

j=1 αqjAqj is a full rank matrix. Eq. (11) corresponds to a parametric
representation of X̄ [C] since each point in the set is determined by some values in the parameters
αqj . Because of the matrix inversion, the parametric representation for the convex equilibria will
take the general form of rational polynomial functions.

4.2. Lagrange equilibria

Similarly, for the Lagrange SDS presented in definition 3 the equilibria is given by

X̄ [L] =

{
xL ∈ Rn :

Q∑
j=1

lqj (q)
[
AqjxL + bqj

]
= 0

}
. (12)

Copyright c© 2016 & (2016)
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Solving for x we obtain the explicit representation

X̄ [L] =

xL ∈ Rn : xL = −

[
Q∑

j=1

lqj (q)Aqj

]−1 Q∑
j=1

lqj (q)bqj

 (13)

where the lqj (q) are a basis of Lagrange polynomials (2) whose values are determined by the
single parameter q ∈ co(Q), and the matrix A =

∑Q
j=1 lqj (q)Aqj is full rank. The intuition that

a parametric representation defined by a single parameter yields a one dimensional curve will prove
true for this case. This representation also has the form of rational polynomial functions.

4.3. Relaxed equilibria

In the case of the Relaxed SDS presented in definition 2, the equilibria set can be expressed as

X̄ [R] =

{
xR ∈ Rn :

Q−1∑
i=0

[
Q∑

j=1

cij
[
AqjxR + bqj

]]
mi = 0

}
. (14)

The explicit representation obtained by solving for x becomes

X̄ [R] =

xR ∈ Rn : xR = −

[
Q−1∑
i=0

Q∑
j=1

cijmiAqj

]−1 Q−1∑
i=0

Q∑
j=1

cijmibqj

 . (15)

with the condition on matrix A =
∑Q−1

i=0

∑Q
j=1 cijmiAqj being full rank. In this case the

parameters defining the representation are the moments mi, restricted by the semidefinite condition
on the Hankel matrix. The constants cij depend only on the system modes.

5. ALGEBRAIC AND GEOMETRIC PROPERTIES OF EQUILIBRIA

5.1. Implicitization

Algorithms based on results from algebraic geometry can be applied on the rational parametric
representations presented so far for studying the equilibria properties of each formulation. Algebraic
geometry deals with the relation between certain classes of algebraic and geometric objects. In
the context of this paper, algebraic geometry provides a way to study the geometric properties of
equilibrium regions in state space for a SDS by performing computations on some particular sets of
algebraic equations. The results obtained from such computations provide insights into the structure
of the equilibrium regions. [22][23][24][25] present the basic concepts from algebraic geometry
used next. They are also presented in the appendix.

The following result shows how implicitization can be done for a rational polynomial
parametrization. This result will be used later in this article.

Copyright c© 2016 & (2016)
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8 G. BECERRA ET AL.

Theorem 5.1 (Polynomial Implicitization). Given K an infinite field, let F : Km → Kn represent
the polynomial parametrization given by

x1 = p1(t1, t2, . . . , tm)

x2 = p2(t1, t2, . . . , tm)

...

xn = pn(t1, t2, . . . , tm)

Let I be the ideal I = 〈x1 − p1, . . . , xn − pn〉 ⊂ K[t1, . . . , tm, x1, . . . , xn] and let Im = I ∩
K[x1, . . . , xn] be the mth elimination ideal. Then V(Im) is the smallest variety in Kn containing
F (Km).

Theorem 5.1 provides a procedure for finding the defining equations of the smallest variety
containing the given polynomial parametrization. An analogous result provides this procedure for
a rational parametrization. In order to find the smallest variety a possibility consists in controlling
the denominators, the ideal I is slightly modified by using an extra dimension characterized by
a variable, noted y. Let us consider the polynomial ring K[y, t1, . . . , tm, x1, . . . , xn], the product
s = s1 · s2 · · · sn and the ideal J = 〈s1x1 − r1, . . . , snxn − rn, 1− sy〉.

Theorem 5.2 (Rational Implicitization). Given K an infinite field, let F : Km −W → Kn represent
the rational parametrization given by

x1 =
r1(t1, t2, . . . , tm)

s1(t1, t2, . . . , tm)
, . . . , xn =

rn(t1, t2, . . . , tm)

sn(t1, t2, . . . , tm)

where W = V(s1 · s2 · · · sn) ⊂ Kn defines the vanishing locus of denominators. Let J be the ideal
J = 〈s1x1 − r1, . . . , snxn − rn, 1− sy〉 ⊂ K[y, t1, . . . , tm, x1, . . . , xn] where s = s1 · s2 · · · sn and
let Jm+1 = J ∩K[x1, . . . , xn] be the (m+ 1)th elimination ideal. Then V(Jm+1) is the smallest
variety in Kn containing F (Km −W ).

Theorem 5.2 of rational implicitization implies a procedure for obtaining an implicit
representation, which will be useful for analyzing the existing relations between the equilibria for
the presented formulations. This procedure is presented in algorithm 1.

Algorithm 1 Implicitization for rational parametrization

1: Given a rational parametrization x1 = r1(t1,...,tm)
s(t1,...,tm) , . . . , xn = rn(t1,...,tm)

s(t1,...,tm) , where {r1, . . . , rn}
are polynomials and [x1, . . . , xn] are the state components,

2: Define ideal J = 〈sx1 − r1, . . . , sxn − rn, 1− sy〉.
3: Compute a Groebner basis for ideal J with respect to lexicographic ordering y > t1 > · · · >
tm > x1 > · · · > xn.

4: Let Jm+1 be generated by the generating elements of J not involving y, t1, . . . , tm.
5: V(Jm+1) is the smallest variety containing the rational parametrization.

We are interested in the study of the geometric properties of the equilibrium regions in affine
space determined by the set of defining equations. The strategy here is to describe such geometric
properties by studying the structure of the algebraic counterpart. Ideals play a central role here as
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ALGEBRAIC AND GEOMETRIC PROPERTIES OF EQUILIBRIA IN CSDS 9

they provide a language for computing with varieties. There are some geometric properties for the
equilibrium region of a given SDS formulation that provide us with some insights on the system
structure. Each of these properties will be analyzed by studying its algebraic structure.

5.2. Consistency

Definition 5 (Consistency of Equilibria). Given a SDS of the form (4) (respectively (5), (9)),
equilibria is said to be consistent if the set of equilibrium points (10) (respectively (12), (14)) is
nonempty.

The term consistency refers to the fact that a set of inconsistent defining equations does not vanish
simultaneously for any point in affine space. The relevant question here from the point of view of
control systems can be posed as: given a SDS of the forms described before, does it have at least
one point in state space about which a stable switching cycle can be established? It will be shown
that this is always the case.

Lemma 5.1. Given a SDS of the form (4) (respectively (5), (9)) where a parametrization (11)
(respectively (13), (15)) exists, the equilibria is always consistent; that is, the set of equilibrium
points is a nonempty set.

Proof
The proof comes by contradiction. Assume that the set of equilibrium points is empty; that
is, it corresponds to the affine variety X = ∅. Also assume K is an algebraically closed field.
By the Weak Nullstellensatz, the ideal satisfying X = V(I) = ∅ corresponds to the whole ring
I = K[x1, . . . , xn], which implies that the constant polynomial 1 ∈ I . By the definition of ideal,
I = 〈1〉, which is clearly an inconsistent set of equations. On the other hand, from theorem 2, chapter
3 of [22], the smallest variety containing X = F (Km −W ) (where the map F corresponds to Eq.
(10), (12) or (14)) is V(Jm+1). Because of the explicit form of the map F , the constant polynomial 1

can not be in the ideal: 1 /∈ Jm+1. Since I corresponds to the whole ring of polynomials, Jm+1 ⊆ I
implying 1 /∈ I , which yields a contradiction. Therefore, the set of equilibrium points must be
nonempty.

5.3. Inclusions

In section 4, different equilibria parametrizations have been presented. It was shown before that
there is an important connection between algebraic and geometric objects. Thus we would expect
that these parametrizations yield similarities in the geometry of the equilibria. This is indeed the
case, as it is shown in the following result.

Lemma 5.2. Given a Lagrange SDS as presented in definition 3, the set of its equilibrium points
described by the defining equations (12) is a subset of the affine variety determined by the defining
equations (10) of the corresponding convex SDS given by Definition 2.

Proof
Let X̄ [L] be the set of equilibrium points of the Lagrange SDS, defined by the rational
parametrization (13). For simplicity, let us unify the notation by expressing the switching functions
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10 G. BECERRA ET AL.

lqj as parameters tj :

x̄[L] = −

[
Q∑

j=1

tjAqj

]−1 Q∑
j=1

tjbqj

with t1 = lq1(q), . . . , tQ = lqQ(q). This is in the form of rational functions x̄[L]
i = r

[L]
i /s

[L]
i defined

by polynomials r[L]
i , s

[L]
i ∈ K[t1, . . . , tQ]. This parametrization defines the ideal:

J [L] = 〈s[L]
1 x1 − r[L]

1 , . . . , s[L]
n xn − r[L]

n , 1− s[L]y, t1 − lq1 , . . . , tQ − lqQ〉 (16)

where s[L] = s
[L]
1 s

[L]
2 · · · s

[L]
n . This ideal can be written in a more general form as:

J [L] = 〈f1(t1, . . . , tQ, x1), . . . , fn(t1, . . . , tQ, xn),

fn+1(t1, . . . , tQ, y), g1(t1, q), . . . , gQ(tQ, q)〉 (17)

a subset of the polynomial ring K[q, y, t1, . . . , tQ, x1, . . . , xn]. Similarly, for the set (11) of
equilibrium points in the convex SDS X̄ [C], the switching parameters αqj can be expressed also
as parameters tj :

x̄[C] = −

[
Q∑

j=1

tjAqj

]−1 Q∑
j=1

tjbqj . (18)

This equation also has the form of rational functions x̄[C]
i = r

[C]
i /s

[C]
i defined by polynomials

r
[C]
i , s

[C]
i ∈ K[t1, . . . , tQ]. The ideal corresponding to parametrization (18) is

J [C] = 〈s[C]
1 x1 − r[C]

1 , . . . , s[C]
n xn − r[C]

n , 1− s[C]y〉 (19)

where s[C] = s
[C]
1 s

[C]
2 · · · s

[C]
n just as in the previous case. Also, this ideal can be presented more

generally as:

J [C] = 〈f1(t1, . . . , tQ, x1), . . . , fn(t1, . . . , tQ, xn),

fn+1(t1, . . . , tQ, y)〉 (20)

a subset of the polynomial ring K[y, t1, . . . , tQ, x1, . . . , xn].
Any polynomial p1 in the ideal J [C] can be written as p1 = h1f1 + · · ·+ hn+1fn+1, where

h1, . . . , hn+1 ∈ K[y, t1, . . . , tQ, x1, . . . , xn], and the set of generating polynomials for ideal J [C]

is {h1, . . . , hn+1}. Since the first n+ 1 generating polynomials for ideals (17) and (20) are equal,
p1 can be also be written in terms of the representing equations from ideal J [L] as p1 = h1f1 +

· · ·+ hn+1fn+1 + h
′

1g1 + · · ·+ h
′

QgQ where h1, . . . , hQ ∈ K[q, y, t1, . . . , tQ, x1, . . . , xn], and all
h

′

1, . . . , h
′

Q are the zero polynomial. Therefore, J [C] ⊂ J [L].
On the other hand, let p2 be any polynomial in the ideal J [L]. It can be writ-

ten as p2 = h1f1 + · · ·+ hn+1fn+1 + h
′

1g1 + · · ·+ h
′

QgQ where h1, . . . , hn+1, h
′

1, . . . , h
′

Q ∈
K[q, y, t1, . . . , tQ, x1, . . . , xn]. Assume p2 can also be written in terms of the generating
polynomials from ideal J [C] as p2 = h1f1 + · · ·+ hn+1fn+1 with f1, . . . , fn+1, h1, . . . , hn+1 ∈
K[y, t1, . . . , tQ, x1, . . . , xn]. But since p2 ∈ K[q, y, t1, . . . , tQ, x1, . . . , xn], it may have terms
depending on q. Then, it can not be written as sums of products of polynomials in
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K[y, t1, . . . , tQ, x1, . . . , xn]. Therefore J [C] 6⊃ J [L]. Thus from the ideal-variety correspondence
(theorem 7 in chapter 4 of [22]), since J [L] ⊃ J [C], then V(J [L]) ⊂ V(J [C]).

6. ILLUSTRATING EXAMPLES

6.1. Buck-Boost power converter

Power converters are a particular case of SDS and are important, for instance, in portable electronic
devices such as laptop computers or mobile phones for supplying power to electronic circuits from
batteries. Several approaches have been proposed for stability and control of power converters such
as [26] [27] [28]. Fig. 1 presents the schematic of a Buck-Boost power converter. This system is a
type of DC-DC converter where the output voltage can take a range of different values by the action
of the switch q, drawing power from input voltage source E. Depending on the state of the switch,
the system will have two modes of operation. The dynamics for this system are given by:

ẋ(t) =

Aq1x(t) + bq1 if q(t) = q1 (Closed switch)

Aq2x(t) + bq2 if q(t) = q2 (Open switch)
(21)

with x(t) = [iL vC ]T representing the state variables: inductor current and capacitor voltage. The
system matrices are given by

Aq1 =

[
0 0

0 − 1
RC

]
,bq1 =

[
E
L

0

]
,

Aq2 =

[
0 1

L

− 1
C − 1

RC

]
,bq2 =

[
0

0

]
.

It is assumed that the power converter will operate in continuous conduction mode all the time. For
simplicity, the system constants are defined as R = L = C = E = 1.

a b c d

e

Figure 1. Buck-Boost converter

The parametric description of equilibria in the form of Eq. (11) is:

X̄ [C] =

{
(x1, x2) ∈ R2 : x1 =

α2
q1 + αq1αq2

α2
q2

, x2 = −αq1αq2

α2
q2

}
(22)

Fig. 2 presents the trajectories followed by the switched power converter for three different
switching regimes, with initial condition x(0) = [0 0]T . Since the switching regimes are constant,
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12 G. BECERRA ET AL.

the system reaches a stable cycle around a point in the equilibrium region. As mentioned in section
3.1, the cyclic SDS can be approximated by an average model (Convex SDS) computed from the
weighted combination of system modes. Fig. 2 also presents the trajectories for this average model,
which converge to the same points in the equilibrium region as the cyclic SDS. In the figure detail it
can be observed that the trajectory for the cyclic SDS oscillates around the average model trajectory.
The parametric description for the equilibria as represented by Eq. (13) is:

iL

-1 0 1 2 3 4 5 6 7 8

v C

-3

-2

-1

0

1

αq1 = 0.5, αq2 = 0.5, q = 1.5
αq1 = 0.6, αq2 = 0.4, q = 1.4

αq1 = 0.7, αq2 = 0.3, q = 1.3

convex

cyclic

equilibria

Figure 2. Phase portraits for Buck-Boost power converter: mode q1 (blue), mode q2 (green). Trajectories
of the cyclic SDS (red) and convex SDS (yellow) for different values in the control parameters. Set of

equilibrium points (gray). Switching frequency 10 Hz.

X̄ [L] =

{
(x1, x2) ∈ R2 : x1 =

−q + 2

q2 − 2q + 1
, x2 =

q2 − 3q + 2

q2 − 2q + 1

}
(23)

Even though parametrizations (22) and (23) seem different, they represent the same curve in state
space. It is easy to check that for any SDS with only two operation modes, the corresponding convex
and Lagrange formulations have the same implicit representation. Fig. 2 also shows the equilibria for
the Lagrange parametrization, and specifies the value for the control parameter q which achieves the
equilibrium points specified in the previous case. It is also interesting to notice that the equilibrium
points are located in regions of state space where the trajectories for the two phase portraits have
opposite directions. This is a consecuence of having the field ẋ vanish at these points. The magnitude
will be “canceled out” by the weighting given by the αqj parameters.

If the Buck-Boost converter is represented using the Lagrange formulation in the form of Eq. (7),
the powers of the control signal obtained are qi(t), q = {0, 1}. In this case, a relaxed formulation
in the form of Eq. (9) can not be obtained, since the smallest nontrivial Hankel matrix that can be
constructed requires moments up to the second order. So, a limitation in this method for obtaining
a relaxed formulation such as presented in definition 4 is that a system with at least three operation
modes is required.
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6.2. A general three mode cyclic SDS

The following example presents a general cyclic SDS as defined in 1 with three modes {q1, q2, q3}
and three state variables {x1, x2, x3}. The matrices defining it are the following:

Aq1 =

−5 −2 −2

−3 −4 1

4 1 −2

, bq1 =

−2

−2

−2

, Aq2 =

−1 3 −3

−2 −5 4

−2 −5 −1

,

bq2 =

−2

0

1

, Aq3 =

−2 −5 4

3 −5 −1

0 2 −5

, bq3 =

 2

−2

1



The set of equilibrium points for the convex form of this system is as presented in Eq. (11) for
αq1 , αq2 , αq3 . Recall from theorem 2, chapter 3 of [22], that the ideal defining the smallest variety
that contains a given parametrization can be computed by elimination. Algorithm 1 presents the
specific procedure for performing this computation.

The most important step in the implicitization algorithm is the computation of a Groebner basis
for the ideal J . Because of the properties of Groebner bases and the monomial ordering used
when computing it, the polynomials found gradually depend on fewer variables, eliminating the
auxiliary variable y and the parameters αq1 , αq2 , αq3 . Thus, some of the polynomials in the set
only depend on the variables x1, x2, x3. These polynomials will form the generating set for the
ideal J [C]

4 . The region of affine space where these polynomials vanish corresponds to the affine
variety containing the initial parametrization. The ideal corresponding to the convex parametrization
is J [C] = 〈s[C]x1 − r[C]

1 , s[C]x2 − r[C]
2 , s[C]x3 − r[C]

3 , 1− s[C]y〉. Using a computer algebra system,
the elimination ideal J [C]

4 obtained by computing the Groebner basis consists of only one generating
polynomial: J [C]

4 = 〈g1(x1, x2, x3)〉. Now, formulating the system as a Lagrange SDS, the set
of equilibrium points has a parametrization of the form (13). The ideal associated with this
parametrization is J [L] = 〈s[L]x1 − r[L]

1 , s[L]x2 − r[L]
2 , s[L]x3 − r[L]

3 , 1− s[L]y〉. When algorithm 1
is applied for the Lagrange case, the elimination ideal J [L]

2 obtained has a generating set with seven
polynomials, which are not dependent on variables y and q.

J
[L]
2 =〈g1(x1, x2, x3), g2(x1, x2, x3), g3(x1, x2, x3),

g4(x1, x2, x3), g5(x1, x2, x3), g6(x1, x2, x3),

g7(x1, x2, x3)〉

The polynomials which generate J [L]
2 are not reproduced here since the coefficients are too big to

fit the page. However, what matters is that g1(x1, x2, x3) equals the only polynomial that generates
the elimination ideal J [C]

4 . As discussed in lemma 5.2, if J [C]
4 is a subset of J [L]

2 then V(J
[L]
2 ) is a

subset of V(J
[C]
4 ). Then, the affine variety corresponding to the Lagrange SDS equilibria lies in the

affine variety associated with the convex equilibria. Fig. 3 presents both the convex and Lagrange
equilibria for this particular case.

The surface represents the equilibrium region for the convex SDS with αqj ∈ [0, 1], j = 1, 2, 3

and the curve corresponds to the equilibrium region for the Lagrange SDS with q ∈ [1, 3]. Notice
that both regions have three points in common, which are the equilibrium points for the individual
system modes. The curve lies in a region “beyond” the surface but seems to be somehow related
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−1

0

1

a

−0.5

0.0

0.5

b

−0.5

0.0

0.5

1.0

c

−1

0

1
a

−0.5

0.0

0.5

b

−0.5

0.0

0.5

1.0

c

Figure 3. Two different views for the equilibrium region defined for convex (yellow surface) and Lagrange
(red curve) parametrizations.

to it. The dimension for the convex equilibria is 2 since it corresponds to a surface in state space.
This happens because the parametrization defining it is determined by two free parameters (the
convexity constraint from definition 2 determines the value for the third). The Lagrange equilibria
has dimension 1 as it corresponds to a curve in state space, which is determined by a single
parameter.

−2

0

2

a

−2

0

2

b

−2

0

2

c

Figure 4. Affine variety corresponding to ideal J [C]
4 . Embedded convex and Lagrange equilibria.

Plotting the implicit equation found by applying algorithm 1 to the convex parametrization reveals
the complete geometric structure for the equilibria, beyond the region limited by the αqj taking
values on the interval [0, 1], as shown in fig. 4. An interesting form emerges, which shows that both
the convex and the Lagrange equilibria are embedded in the same affine variety. In this particular
case, two conic branches and one sheet extend towards infinity.
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This surface corresponds to all equilibrium points determined by the constraint
∑

j αqj = 1. The
polynomials in a Lagrange basis also satisfy this constraint, but are not required to have positive
values. The region beyond the convex equilibria represents equilibrium points reachable by allowing
some of the switching parameters to take negative values.

Since the relaxed formulation is derived from the Lagrange SDS, there are also different equilibria
parametrizations for the relaxed case, depending on the original order relation defined. Here we
present only the first one, where the modes correspond to q1 = 1, q2 = 2, q3 = 3. In order to find
the implicit equations for each parametric representation of the equilibria for the relaxed SDS,
algorithm 1 must be applied. The elimination ideal obtained after the implicitization process is
J
[R]
3 = 〈g1(x1, x2, x3)〉, for any of the three different relaxed parametrizations. This ideal is the same

that was obtained for the implicitization of the convex parametrization. The importance of this result
is that since all three representations are algebraically related, they are also geometrically related. In
particular, three different parametrizations for the equilibria yield the same implicit representation.
This is illustrated in figure 5.

(a) (b) (c)

Figure 5. Relaxed SDS equilibria for three different system mode orderings: (a) q1 = 1, q2 = 2, q3 = 3, (b)
q1 = 2, q2 = 3, q3 = 1, (c) q1 = 3, q2 = 1, q3 = 2, with corresponding Lagrange equilibria (cyan).

7. CONCLUSIONS

The structure of a SDS imposes difficulties in its treatment, due to the nonlinearity and nonconvexity
associated with the presence of a switching behavior. By finding convex relaxations of these
nonlinear dynamics, more manageable forms can be found. Furthermore, a relaxed approximation
found by the method of moments allows to find an affine form determined by convexity
constraints. These characteristics are desirable for performing computations based on semidefinite
programming, such as finding an optimal control.

The implicitization algorithm is the specific tool that establishes a procedure for computing an
implicit representation for the equilibria regions in each SDS formulation, independent on the
values of the defining parameters. This approach allows to perform a direct comparison on these
regions. All three formulations have a common geometric structure, suggesting the possibility
of transforming a convex system into a relaxed form that may be more suitable for performing
mathematical programming computations.
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Two different examples are presented for illustrating the geometrical interpretation of the results.
A Buck-Boost power converter is introduced for presenting the relationship between the convex
and Lagrange SDS formulations. It would be interesting to simulate and implement in a real power
converter the different switching regimes and compare the equilibrium points reached by the system
with the parametrizations computed using the corresponding system parameters. It is shown that
a relaxed formulation can not be presented in this case, since the power converter has only two
operation modes. In the second example, a three mode, three dimensional system is presented for
illustrating how the relaxed formulation is related to the convex and Lagrange formulations.

The ideas presented here set a starting point for further investigations on other relevant geometric
properties of the equlibria such as the dimension of the equilibrium region for higher order systems,
the presence of singularities (equilibrium points reachable for different switching regimes) and the
relationship between the space dimension and the number of system modes required to reach certain
regions. Also, the development of methods for computing an optimal control law for the relaxed
SDS introduced here is a path that can be explored. Finally, it would be important to investigate if
the information gained regarding the properties of the equilibrium region is useful for computing an
optimal control.

APPENDIX A SOME CONCEPTS FROM ALGEBRAIC GEOMETRY

In this appendix, some basic definitions are presented.

Definition 6 (Affine Variety). Let K be a field, f1, . . . , fs be polynomials in the ring K[x1, . . . , xn].
The set

V(f1, . . . , fs) = {(a1, . . . , an) ∈ Kn : fi(a1, . . . , an) = 0, ∀i ∈ {1, . . . , s}}

is called the affine variety defined by f1, . . . , fs.

Thus, an affine variety corresponds to the set of points in n-dimensional affine space Kn

where all fi polynomial functions vanish simultaneously. Some familiar geometric objects such
as the line, the plane, the circle and the ellipse correspond to affine varieties. The set of defining
equations f1 = · · · = fs = 0 define an implicit representation of the affine variety. An alternative
representation for the set of solutions known as a parametrization may also be available. In this
representation the variables x1, . . . , xn are defined explicitly as functions of some parameters:
x1 = p1(t1, t2, . . . , tm), . . . , xn = pn(t1, t2, . . . , tm), where each pi is a polynomial or rational
polynomial function defined for the set of parameters {t1, t2, . . . , tm}. It is not always possible
to obtain a parametric representation for an affine variety, given its defining implicit equations.
However, the opposite process of finding the implicit representation given a parametrization can be
done using elimination theory. Before reviewing this, the main algebraic object must be introduced,
which is related to the parametric and implicit representations just discussed.

Definition 7 (Ideal). A subset I ⊂ K[x1, . . . , xn] is an ideal if it satisfies:

1. 0 ∈ I (The zero polynomial is in the ideal)
2. If f, g ∈ I , then f + g ∈ I (Closure property under addition for the elements of the ideal)
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3. If f ∈ I and h ∈ K[x1, . . . , xn], then hf ∈ I (Absorbent property for multiplication by an
element in the ideal)

The ideal generated by the set of polynomials f1, . . . , fs is represented by

〈f1, . . . , fs〉 =

{
s∑

i=1

hifi : h1, . . . , hs ∈ K[x1, . . . , xn]

}
. (24)

Notice here that a set of polynomials f1, . . . , fs can be used both for defining the locus of an affine
variety (def 6) or for specifying the generating set for an ideal (def 7). This fact represents just a
small part in the deep relationship existing between affine varieties and ideals.

Theorem A.1 (Ideal-Variety Correspondence). Let K be an arbitrary field. If I1 ⊂ I2 are ideals,
then V(I1) ⊃ V(I2) and similarily, if V1 ⊂ V2 are varieties, then I(V1) ⊃ I(V2).

The properties presented in this lemma are a direct consequence of the Nullstellensatz [22], and
will be useful in the following sections for comparing the geometric structure of equilibria for the
different SDS described before.
Another important result known as the Hilbert Basis Theorem states that every ideal in
K[x1, . . . , xn] is generated by a finite set (a basis) of polynomials. There can be many different
bases for a given ideal, but there is a special one known as the Groebner basis whose properties are
very useful for characterizations and computations with ideals.

Definition 8 (Groebner Basis). Given a monomial order on K[x1, . . . , xn], a finite subset G =

{g1, . . . , gt} of an ideal I is said to be a Groebner basis if and only if the leading term on any
element of I is divisible by the leading term of one of the gi.

This definition may not clearly illustrate the importance of these bases as good generating sets
for ideals. When a polynomial f is divided by a Groebner basis as f = a1g1 + · · ·+ atgt + r,
the remainder r is uniquely determined. The condition that the remainder r is zero if and only if
f ∈ I is useful for testing the membership of the polynomial f to the ideal I . Another application
for Groebner bases is in finding the implicit representation of a set of parametric equations by
eliminating the parameter variables. The concept of an elimination ideal becomes relevant here.
An important application for Groebner bases is in finding the implicit representation of a set of
parametric equations by eliminating the parameter variables. The concept of an elimination ideal
becomes relevant here.

Definition 9 (Elimination ideal). Given I = 〈f1, . . . , fs〉 ⊂ K[x1, . . . , xn], the lth elimination ideal
Il is the ideal of K[xl+1, . . . , xn] defined by Il = I ∩K[xl+1, . . . , xn].

We present now the theorem that allows to perform the elimination step for obtaining the implicit
representation for an affine variety.

Theorem A.2 (Elimination Theorem). Let I ⊂ K[x1, . . . , xn] be an ideal and let G be a Groebner
basis of I with respect to lexicographic order where x1 > x2 > · · · > xn. Then, for every 0 ≤ l ≤ n,
the set Gl = G ∩K[xl+1, . . . , xn] is a Groebner basis of the lth elimination ideal Il.

The relevance of this theorem is that by computing a Groebner basis an elimination ideal can
be found that does not involve any of the parameters that are to be eliminated. Eliminating the
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parameters is called implicitization, that is, obtaining a set of implicit defining equations given a
parametric representation.
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26. Diego Patino, Mihai Bâja, Pierre Riedinger, Hervé Cormerais, Jean Buisson, and Claude Iung. Alternative control

methods for dc–dc converters: An application to a four-level three-cell dc–dc converter. International Journal of
Robust and Nonlinear Control, 21(10):1112–1133, 2011.

27. H. Sira-Ramirez, R. Marquez-Contreras, and M. Fliess. Sliding mode control of dc-to-dc power converters using
integral reconstructors. International Journal of Robust and Nonlinear Control, 12(13):1173–1186, 2002.

28. M. Lazar, W. P. M. H. Heemels, B. J. P. Roset, H. Nijmeijer, and P. P. J. van den Bosch. Input-to-state stabilizing
sub-optimal nmpc with an application to dc–dc converters. International Journal of Robust and Nonlinear Control,
18(8):890–904, 2008.

Copyright c© 2016 & (2016)
Prepared using rncauth.cls DOI: 10.1002/rnc


	1 Introduction
	2 Switched Dynamic Systems
	3 Convex, Lagrange and Relaxed formulations for SDS
	3.1 Convex SDS
	3.2 Lagrange SDS
	3.3 Relaxed SDS

	4 Equilibria for Switched Dynamic Systems
	4.1 Convex equilibria
	4.2 Lagrange equilibria
	4.3 Relaxed equilibria

	5 Algebraic and Geometric properties of Equilibria
	5.1 Implicitization
	5.2 Consistency
	5.3 Inclusions

	6 Illustrating examples
	6.1 Buck-Boost power converter
	6.2 A general three mode cyclic SDS

	7 Conclusions
	Appendices
	Appendix A SOME CONCEPTS FROM ALGEBRAIC GEOMETRY

