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Abstract

We present a brief derivation of the kinetic equation describing the secular evolution of point vortices in two-dimensional hydro-

dynamics, by relying on a functional integral formalism. We start from Liouville’s equation which describes the exact dynamics of

a two-dimensional system of point vortices. At the order 1/N, the evolution of the system is characterised by the first two equations

of the BBGKY hierarchy involving the system’s 1−body distribution function and its 2−body correlation function. Thanks to the

introduction of auxiliary fields, these two evolution constraints may be rewritten as a functional integral. When functionally inte-

grated over the 2−body correlation function, this rewriting leads to a new constraint coupling the 1−body distribution function and

the two auxiliary fields. Once inverted, this constraint provides, through a new route, the closed non-linear kinetic equation satisfied

by the 1−body distribution function. Such a method sheds new lights on the origin of these kinetic equations complementing the

traditional derivation methods.
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1. Introduction

There exist beautiful analogies between stellar systems and

two-dimensional (2D) vortices [1]. Stellar systems and 2D point

vortices undergo two successive types of relaxation. They first

reach a quasistationary state (QSS) due to a process of violent

collisionless relaxation. The concept of violent relaxation was

introduced by Lynden-Bell [2] in the case of stellar systems de-

scribed by the Vlasov equation and by Miller [3] and Robert

and Sommeria [4] in the case of 2D vortices described by the

2D Euler equation (see [5] for a description of the close link

between these two theories). These QSSs correspond to galax-

ies in astrophysics [6] or to large scale vortices (like Jupiter’s

great red spot) in geophysical and astrophysical flows [7]. On

a longer (secular) timescale, “collisions”1 between stars or be-

tween point vortices come into play and drive the system to-

wards a statistical equilibrium state described by the Boltzmann

distribution. This statistical equilibrium state was conjectured

by Ogorodnikov [8] in the case of stellar systems and by On-

sager [9, 10] and Montgomery and Joyce [11] in the case of 2D

point vortices. Actually, for collisional stellar systems such as

globular clusters the relaxation towards the Boltzmann statisti-

cal equilibrium state is hampered by the evaporation of stars [12]

and by the gravothermal catastrophe [13, 14]. In the case of 2D

point vortices, the statistical equilibrium state may present the

peculiarity to have a negative temperature as first noted by On-

sager [9].

1These “collisions” do not correspond to physical collisions but rather to -

possibly distant - encounters between the particles. They account for fluctua-

tions due to finite−N effects, i.e., for the granularity of the system.

To understand the dynamical evolution of these systems, we

need to develop a kinetic theory. The collisionless evolution of

stellar systems is described by the Vlasov [15] equation that

was first written by Jeans [16] in astrophysics.2 The collisional

evolution of stellar systems is usually described by the Fokker-

Planck equation introduced by Chandrasekhar [17] or by the

Landau [18] equation. These equations rely on a local approx-

imation (as if the system were spatially homogeneous) and ne-

glect collective effects (i.e., the dressing of the stars by their

polarisation cloud). A gravitational Landau equation that takes

into account spatial inhomogeneity through the use of angle-

action variables has been introduced in [19, 20, 21] and a grav-

itational Balescu-Lenard equation that takes into account spa-

tial inhomogeneity and collective effects has been introduced

in [22, 23]. These equations have recently been applied to stel-

lar discs in [24, 25, 26].

Exploiting the analogy between 2D vortices and stellar sys-

tems, a kinetic theory of point vortices has been elaborated by

Chavanis [27]. The collisionless evolution of point vortices is

described by the 2D Euler equation. When collective effects

are neglected, the collisional evolution of point vortices is de-

scribed by a Landau-type equation [27, 28, 29]. A Balescu-

Lenard-type equation taking collective effects into account has

been derived in [30, 31] for an axisymmetric distribution of

point vortices. It is equivalent to the one derived in [32] in the

similar context of non-neutral plasmas.

2The kinetic theories of stellar systems and neutral Coulombian plasmas

have been developed in parallel (and often independently) by astrophysicists

and plasma physicists.
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One can understand the collisional evolution of stellar sys-

tems and 2D point vortices heuristically by analogy with the

Brownian motion. A star has a diffusive motion due to the

fluctuations of the gravitational force but it also experiences a

dynamical friction [33]. Similarly, a point vortex has a diffu-

sive motion due to the fluctuations of the velocity field and also

experiences a systematic drift [27]. The diffusion can be un-

derstood by considering the statistics of the gravitational force

created by a random distribution of stars [34] or the statistics

of the velocity created by a random distribution of point vor-

tices [35]. The dynamical friction experienced by a star and

the systematic drift experienced by a point vortex can be under-

stood from a polarisation process and a linear response theory

(see [36] for stellar systems and [37] for point vortices). The

friction and drift coefficients are related to the diffusion coeffi-

cient by a form of Einstein relation. Further analogies between

the kinetic theory of stellar systems, 2D vortices, and systems

with long-range interactions in general are discussed in [20].

There are many methods to derive kinetic equations for sys-

tems with long-range interactions. The most popular are the

BBGKY hierarchy based on the Liouville equation (see [38, 39]

for plasmas, [40, 41, 42, 22, 21] for stellar systems and [29, 31]

for point vortices), the quasilinear theory based on the Klimon-

tovich equation (see [43] for plasmas, [44, 23] for stellar sys-

tems and [32, 30, 29] for point vortices), and the projection op-

erator technique also based on the Liouville equation (see [45]

for stellar systems and [27] for point vortices). One can also

derive kinetic equations from a field theory. This method was

introduced by Jolicoeur and Le Guillou [46] to derive the homo-

geneous Balescu-Lenard equation of plasma physics. Recently,

this method was generalised to stellar systems in [47] to derive

the inhomogeneous Landau equation. Owing to the analogy be-

tween stellar systems and 2D point vortices, it is of interest to

show how this method can be used to derive the Landau equa-

tion for axisymmetric point vortices.

The present letter is organised as follows. Section 2 presents

a brief derivation of the relevant BBGKY hierarchy in the con-

text of the kinetic theory of 2D point vortices. Section 3 details

the functional integral formalism introduced in [46] and applied

in [47] for inhomogeneous long-range systems. Section 4 illus-

trates how this formalism may be used to obtain the Landau

equation describing the secular evolution of axisymmetric 2D

point vortices. Section 5 discusses the limitations of our ap-

proach and its possible extensions. Finally, section 6 wraps up.

2. Derivation of the BBGKY hierarchy

In this section, we briefly recover the evolution equations

describing the dynamics of point vortices and the associated

BBGKY hierarchy. We consider a 2D system made of N point

vortices of individual circulation γ=Γtot/N. The individual dy-

namics of these vortices is entirely described by the Kirchhoff-

Hamilton equations which read [48]:

γ
dxi

dt
=
∂H

∂yi

; γ
dyi

dt
= −
∂H

∂xi

, (1)

where we introduced the coordinates r= (x, y), as well as the

Hamiltonian H=γ2
∑

i< j ui j, where ui j=−1/(2π) ln(|ri−r j|) is

the potential of interaction between two vortices. We may now

introduce the N−body probability distribution function (PDF)

PN(r1, ..., rN , t), which describes the probability of finding the

vortex 1 at position r1, vortex 2 at position r2, etc. We normalise

PN such that
∫

dr1...drN PN(r1, ..., rN , t)=1. The evolution of PN

is then governed by Liouville’s equation which reads

∂PN

∂t
+γ

N
∑

i=1

Vi ·
∂PN

∂ri

= 0 , (2)

where we defined the velocity Vi=
∑

j,iVi j=
∑

j,i −ez×∂ui j/∂ri.

Here, Vi j denotes the exact velocity induced by the vortex j on

the vortex i. We now introduce the reduced distribution func-

tions (DF) fn as

fn(r1, ..., rn, t) = γ
n N!

(N−n)!

∫

drn+1...drN PN(r1, ..., rN , t) . (3)

Integrating equation (2) w.r.t. (rn+1, ..., rN), one obtains a BBGKY-

like hierarchy of equations as

∂ fn

∂t
+

n
∑

i=1

n
∑

k=1,k,i

γVik ·
∂ fn

∂ri

+

n
∑

i=1

∫

drn+1 Vi,n+1 ·
∂ fn+1

∂ri

= 0 . (4)

We are interested in the contributions arising from the correla-

tions between particles, and therefore introduce the cluster rep-

resentation of the DF. Indeed, we define the 2− and 3−body

correlation functions g2 and g3 as

f2(r1, r2) = f1(r1) f1(r2)+g2(r1, r2) ,

f3(r1, r2, r3) = f1(r1) f1(r2) f1(r3)

+ f1(r1)g2(r2, r3)+ f1(r2)g2(r1, r3)+ f1(r3)g2(r1, r2)

+g3(r1, r2, r3) . (5)

It is then straightforward to check that one has the normalisa-

tions
∫

dr1 f1(r1)=γN ;

∫

dr1dr2 g2(r1, r2)=−γ2N ,

∫

dr1dr2dr3 g3(r1, r2, r3)=2γ3N . (6)

Since the individual circulation scales like γ∼1/N, one imme-

diately has | f1|∼1, |g2|∼1/N, and |g3|∼1/N2. In order to con-

sider quantities of order 1, we introduce the system’s 1−body

DF F, and 2−body correlation function C as

F = f1 ; C =
g2

γ
. (7)

When truncated at the order 1/N, one can easily show that the

first two equations of the hierarchy from equation (4) become

∂F

∂t
+

[

∫

dr2 V12F(r2)

]

·
∂F

∂r1

+γ

∫

dr2 V12 ·
∂C(r1, r2)

∂r1

= 0 , (8)

and

1

2

∂C(r1, r2)

∂t
+

[

∫

dr3 V13F(r3)

]

·
∂C(r1, r2)

∂r1

+V12 ·
∂F

∂r1

F(r2)

+

[

∫

dr3 V13C(r2, r3)

]

·
∂F

∂r1

+(1↔2) = 0 , (9)
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where (1↔2) stands for the permutation of indices 1 and 2, and

applies to all preceding terms. The two equations (8) and (9)

form a system of two coupled evolution equations involving F

and C, and are at the centre of the upcoming functional integral

formalism.

3. Functional integral formalism

When introducing their application of the functional inte-

gral formalism in the context of classical kinetic theory, [46]

showed how two coupled evolution equations such as equa-

tions (8) and (9) may be rewritten under a functional form.

As an illustration of this approach, let us consider a dynamical

quantity f depending on the time t and defined on a phase space

Γ. We assume that this quantity satisfies an evolution equation

of the form [∂t+L] f =0, where L is a differential operator. In-

troducing an auxiliary field λ defined on the same space as f ,

the evolution constraint on f can be rewritten under the form

(see [46] and [47] for more details)

1 =

∫

D fDλ exp

[

i

∫

dtdΓ λ
[

∂t+L
]

f

]

. (10)

In equation (10), we define the action S [F, λ]= i
∫

dtdΓ λ[∂t+L] f

as the argument of the exponential. One should finally note that

the evolution equation satisfied by f corresponds to the quantity

by which the auxiliary field λ is multiplied in the action.

When considering the two coupled equations (8) and (9)

involving F andC, one may proceed to a similar transformation.

Indeed, introducing two auxiliary fields λ1(t, r1) and λ2(t, r1, r2)

respectively associated with F and C, equations (8) and (9) can

be rewritten under the functional form

1 =

∫

DFDCDλ1Dλ2 exp

{

i

∫

dtdr1 λ1(A1F+B1C)

+
i

2

∫

dtdr1dr2 λ2(A2C+D2C+S 2)

}

. (11)

In equation (11), we introduced the operators A1, B1, A2, D2,

and S 2 as

A1F =

[

∂

∂t
+

[

∫

dr2 V12F(r2)

]

·
∂

∂r1

]

F(r1) ,

B1C = γ

∫

dr2 V12 ·
∂C(r1, r2)

∂r1

,

A2C =

[

∂

∂t
+

∫

dr3 F(r3)

[

V13 ·
∂

∂r1

+V23 ·
∂

∂r2

]]

C(r1, r2) ,

D2C =

[

∫

dr3 V13C(r2, r3)

]

·
∂F

∂r1

+(1↔2) ,

S 2 = F(r2)V12 ·
∂F

∂r1

+(1↔2) . (12)

The prefactor 1/2 in equation (11) was only added for later con-

venience and does not play any role on the final expression of

the evolution equations, since it was added as a global prefactor.

One may now rewrite the functional integral from equation (11)

under the form

1 =

∫

DFDCDλ1Dλ2 exp

{

i

∫

dtdr1 λ1(r1) A1F(r1)

+
i

2

∫

dtdr1dr2 λ2(r1, r2) G(r1, r2)

−
i

2

∫

dtdr1dr2 C(r1, r2) E(r1, r2)

}

, (13)

where it is important to note that all the dependences w.r.t. C

were gathered in the prefactor of the third line. In equation (13),

we introduced the quantity G(r1, r2) as

G(r1, r2) = V12 ·

[

F(r2)
∂F

∂r1

−F(r1)
∂F

∂r2

]

, (14)

where we used the relation Vi j=−V ji. In equation (13), we also

introduced the quantity E(r1, r2) given by

E(r1, r2)=A2λ2(r1, r2)+

∫

dr3

[

V13λ2(r2, r3)+V23λ2(r1, r3)

]

·
∂F

∂r3

+γV12 ·

[

∂λ1

∂r1

−
∂λ1

∂r2

]

, (15)

obtained thanks to integrations by parts. In order to invert the

time derivative ∂C/∂t present in the term λ2A2C from equa-

tion (11), we assumed t∈ [0; T ], where T is an arbitrary tempo-

ral bound, along with the boundary conditions C(t=0)=0 (the

system is initially uncorrelated), and λ2(T )=0 (we are free to

impose a condition on λ2). As presented in [47], we will now

neglect collective effects, i.e., neglect contributions associated

with the term D2C in equation (11). As a consequence, equa-

tion (15) becomes

E(r1, r2) = A2λ2(r1, r2)+γV12 ·

[

∂λ1

∂r1

−
∂λ1

∂r2

]

. (16)

In order to obtain a closed kinetic equation involving F only, the

traditional approach would be to start from equation (11) and

proceed as follows. By functionally integrating equation (11)

w.r.t. λ2, one gets a constraint of the form (A2C+D2C+S 2)=0,

which effectively couples C and F. This must then be inverted

to give C=C[F]. Using this substitution in equation (11) and

functionally integrating it w.r.t. λ1, one finally obtains a ki-

netic equation involving F only. This is the Landau equation (or

Balescu-Lenard equation when collective effects are accounted

for). However, based on the rewriting from equation (13), [46]

suggested a different strategy. By functionally integrating equa-

tion (13) w.r.t. C, one gets a constraint of the form E[F, λ1, λ2]=0.

When inverted, this constraint leads to a relation of the form

λ2=λ2[F, λ1]. Substituting this expression in equation (13),

one then obtains a functional equation which only involves F

and λ1. When functionally integrating this equation w.r.t. λ1,

one finally obtains a closed kinetic equation involving F only.

In [47], we illustrated how this approach may be used in the

context of inhomogeneous systems and recovered the inhomo-

geneous Landau equation. In the present letter, we show how

this same approach naturally applies in the context of axisym-

metric systems of point vortices, when collectives effects are

neglected, and recover the results from [27, 28, 29].

3
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Figure 1: Illustration of the axisymmetric system of 2D point vortices

considered in section 4. For clarity, only a subset of the vortices is

represented: the considered system would have a much larger value of

N. Each vortex has the same circulation γ. The mean flow is azimuthal

and characterised by the angular velocity Ω.

4. Application to systems of vortices

4.1. Axisymmetric systems

In order to obtain an explicit kinetic equation, we will now

place ourselves in the simplified geometry of an axisymmetric

distribution of point vortices, as illustrated in figure 1. Such

a geometry is straightforwardly a steady state of the 2D Euler

equation, i.e., a stationary state of the collisionless dynamics.

Introducing the polar coordinates r= (r, θ), one can assume that

F, C, and their associated auxiliary fields have the dependences

F(r1) = F(r1) ; C(r1, r2) = C(r1, r2, θ1−θ2) ,

λ1(r1) = λ1(r1) ; λ2(r1, r2) = λ2(r1, r2, θ1−θ2) . (17)

Within the same simplified geometry, the mean axisymmetric

flow satisfies

∫

dr2 V12F(r2) = Ω(r1) r1 eθ ; Ω(r1) =
1

r2
1

∫ r1

0

dr2 r2 F(r2) , (18)

where Ω(r1) is the local angular velocity. Thanks to these as-

sumptions, one can rewrite the operators introduced in equa-

tion (13) under a simpler form. Indeed, one has

A1F =
∂F

∂t
. (19)

Similarly, the term G(r1, r2) from equation (14) now reads

G(r1, r2) =
1

r1r2

[

r2

∂u12

∂θ1
F(r2)

∂F

∂r1

+r1

∂u21

∂θ2
F(r1)

∂F

∂r2

]

. (20)

Finally, the constraint E(r1, r2) from equation (16) becomes

E(r1, r2) =
∂λ2

∂t
+Ω(r1)

∂λ2

∂θ1
+Ω(r2)

∂λ2

∂θ2

+γ

[

1

r1

∂u12

∂θ1

∂λ1

∂r1

+
1

r2

∂u21

∂θ2

∂λ1

∂r2

]

. (21)

4.2. Inverting the constraint

In order to invert equation (21), we rely on Bogoliubov

ansatz (adiabatic approximation) by assuming that the fluctu-

ations (such as C and λ2) evolve on a much shorter timescale

than the mean dynamical quantities (such as F and λ1). As a

consequence, on the timescale for which λ2 evolves, one can

assume F and λ1 to be frozen, while on the timescale of secu-

lar evolution, one can assume λ2 to be equal to the asymptotic

value associated with the current values of F and λ1.

We introduce the azimuthal Fourier transform as

f (r1, r2, θ1−θ2) =
∑

n

ein(θ1−θ2) fn(r1, r2) ,

fn(r1, r2) =
1

2π

∫

dθ e−inθ f (r1, r2, θ) . (22)

Multiplying equation (21) by 1/(2π)2ein(θ1−θ2) and integrating

w.r.t. θ1 and θ2, we obtain

∂λ−n

∂t
− in∆Ωλ−n − γinu∗n(r1, r2)

[

1

r1

∂λ1

∂r1

−
1

r2

∂λ1

∂r2

]

= 0 , (23)

where we used the notations λ−n=λ−n(r1, r2), ∆Ω=Ω(r1)−Ω(r2),

and relied on the fact that un(r2, r1)=u−n(r1, r2)=u∗n(r1, r2). Thanks

to the boundary condition λ2(T )=0 used in equation (15), equa-

tion (23) can straightforwardly be solved as

λ−n(t) = −γu∗n(r1, r2)

[

1

r1

∂λ1

∂r1

−
1

r2

∂λ1

∂r2

]

1−ein∆Ω(t−T )

∆Ω
. (24)

In order to consider only the forced regime of evolution, we

now assume that the arbitrary temporal bound T is large com-

pared to the time t, so that we place ourselves in the limit T→+∞.

We recall the formula

lim
T→+∞

eiT∆ω−1

∆ω
= iπδD(∆ω) , (25)

so that equation (24) immediately gives

lim
T→+∞

λ−n(t)=−iπγ
n

|n|
u∗n(r1, r2)

[

1

r1

∂λ1

∂r1

−
1

r2

∂λ2

∂r2

]

δD(Ω(r1)−Ω(r2)) ,

(26)

where we used the property δD(αx)=δD(x)/|α|. Equation (26)

illustrates how the Bogoliubov ansatz allowed us to invert the

constraint E[F, λ1, λ2]=0 from equation (16) so as to obtain

λ2=λ2[F, λ1].

4.3. Recovering the Landau collision operator

We now substitute the inverted expression from equation (26)

into equation (13), which then only depends on F and λ1. The

remaining action term S [F, λ1] takes the form

S[F, λ1]=i

∫

dtdr1λ1(r1)A1F(r1)+
i

2

∫

dtdr1dr2λ2[F,λ1]G(r1,r2) . (27)

4



Thanks to the expressions of A1 and G from equations (19)

and (20), and using the Fourier transform introduced in equa-

tion (22), equation (27) takes the form

S [F, λ1] = i

∫

dtdr1 λ1(r1)
∂F

∂t
−

i

2
(2π)2

∫

dtdr1dr2

×
∑

n

nIm

[

λ−n(r1, r2) un(r1, r2)

][

r2F(r2)
∂F

∂r1

−r1F(r1)
∂F

∂r2

]

. (28)

Thanks to equation (26), we immediately have

Im

[

λ−n(r1, r2)un(r1, r2)

]

= − πγ
n

|n|
|un(r1, r2)|2δD(Ω(r1)−Ω(r2))

×

[

1

r1

∂λ1

∂r1

−
1

r2

∂λ2

∂r2

]

. (29)

Introducing the notation χ(r1, r2)=
∑

n |n||un(r1, r2)|2, equation (28)

then becomes

S [F, λ1] = i

∫

dtdr1 λ1(r1)
∂F

∂t
+

i

2
(2π)2πγ

∫

dtdr1dr2 χ(r1, r2)

× δD(Ω(r1)−Ω(r2))

[

1

r1

∂λ1

∂r1

−
1

r2

∂λ1

∂r2

][

r2F(r2)
∂F

∂r1

−r1F(r1)
∂F

∂r2

]

.

(30)

The final step of the calculation is to rewrite the second term

of equation (30) under the form
∫

dtdr1λ1(r1).... Using an inte-

gration by parts, and accordingly permuting the indices 1↔2,

this is a straightforward calculation. Finally, when changing the

integration domain, one has to rely on the property

∫

dr1 f (r1) =

∫

dr1

1

2π

1

r1

f (r1) . (31)

After calculation, equation (30) can easily be rewritten as

S [F, λ1] =i

∫

dtdr1 λ1(r1)

{

∂F

∂t

−2π2γ
1

r1

∂

∂r1

[

∫

dr2 r2 χ(r1, r2) δD(Ω(r1)−Ω(r2))

×

[

1

r1

∂

∂r1

−
1

r2

∂

∂r2

]

F(r1)F(r2)

]}

. (32)

By integrating functionally equation (32) w.r.t. λ1, one finally

obtains a closed form expression for the kinetic equation as

∂F

∂t
= 2π2γ

1

r1

∂

∂r1

[

∫

dr2 r2 χ(r1, r2) δD(Ω(r1)−Ω(r2))

×

[

1

r1

∂

∂r1

−
1

r2

∂

∂r2

]

F(r1)F(r2)

]

. (33)

Using the functional integral formalism presented in section 3,

we were therefore able to recover the collisional secular evo-

lution of an axisymmetric system of point vortices, when col-

lective effects are neglected, in full agreement with what was

obtained in [27, 28, 29]. We refer to [28] for a discussion of the

properties of equation (33), its numerical resolution, and some

physical applications.

5. Discussion

In this section, we discuss the assumptions made in our pa-

per to obtain the kinetic equation (33), and how such assump-

tions can be overpassed.

5.1. Collective effects

We neglected collective effects. In principle, collective ef-

fects could be taken into account in our functional integral for-

malism at the price of more complicated calculations. How-

ever, inverting equation (15), when collective effects are ac-

counted for, does not appear as straightforward. These effects

can be taken into account in the quasilinear and BBGKY for-

malisms [30, 31, 32]. This leads to the Balescu-Lenard equation

[see Eq. (63) in [31]] instead of the Landau equation (33). It is

found that collective effects do not alter the physical structure of

the kinetic equation. One only has to replace the Fourier trans-

form of the bare potential of interaction un(r1, r2) by a dressed

potential of interaction. This changes the form of the function

χ(r1, r2) in equation (33) without changing the structure of this

equation.

In the case of plasmas, collective effects [38, 39] are respon-

sible for Debye shielding (a charge is surrounded by a cloud of

opposite charges that shields the Coulombian interaction) and

they regularise the large-scale logarithmic divergence appear-

ing in the Landau equation [18] when they are ignored. In the

case of stellar systems, collective effects [22, 23] are responsi-

ble for anti-shielding (a star is surrounded by a cloud of stars

that increases the gravitational interaction) and they can reduce

the relaxation time by several orders of magnitude with respect

to the case where they are not taken into account, as shown

in [25] for stellar discs. In the case of 2D point vortices, the

importance of collective effects is more difficult to estimate.

Collective effects are less crucial than in plasma physics since

the Landau equation of point vortices (33) that ignores them

is well-behaved mathematically (it does not present any diver-

gence). On the other hand, when a test particle approach and

a (thermal) bath approximation are implemented, one can show

that collective effects become negligible in the expression of

the diffusion and drift coefficients entering in the Fokker-Planck

equation [30, 31]. Finally, we emphasise that what really mat-

ters in the kinetic equation (33) is the condition of resonance

encapsulated in the δD function. This condition implies that the

kinetic equation reduces to ∂F/∂t=0 when the profile of angu-

lar velocity is monotonic, which is the generic case for Euler

stable axisymmetric flows.3 This is independent of whether or

not collective effects are taken into account. For an axisym-

metic distribution of point vortices with a monotonic profile of

angular velocity, the relaxation time towards the Boltzmann dis-

tribution is then longer than Ntdyn [30, 31], as it is due to higher

order correlations.

3When the profile of angular velocity is initially non-monotonic, but never-

theless dynamically (Euler) stable, one can show that the effect of distant colli-

sions between point vortices is precisely to make it become monotonic [28].
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5.2. Axisymmetric flows

We restricted ourselves to the case of axisymmetric flows

in which the point vortices follow circular orbits. In terms of

mathematical simplicity, this situation is the counterpart of spa-

tially homogeneous self-gravitating systems in which the stars

have rectilinear trajectories. The difference between these two

systems comes from the fact that, in an axisymmetric flow, a

vortex has the tendency to rotate due to the influence of the

other vortices while, in a homogeneous medium, a star has the

tendency to follow a straight line due to its inertia. A formal

kinetic equation of point vortices valid for arbitrary flows has

been obtained in [27] [see Eq. (128)] and confirmed in [49, 29].

Explicit approximate expressions of this formal kinetic equa-

tion for non-axisymmetric flows have been obtained in [27] [see

Eq. (137)] and in [50] under different assumptions. It would be

interesting to develop a rigorous kinetic theory of point vortices

for arbitrary flows by introducing the analogue of the angle-

action variables used to treat spatially inhomogeneous stellar

systems [22, 23]. It may also be interesting to consider the

kinetic theory of point vortices on a sphere where it can have

potential applications to geophysical flows (see, e.g., [51] for

the development of the Miller-Robert-Sommeria [3, 4] statisti-

cal theory on a sphere).

5.3. Multi-species system

We have considered a single species point vortex gas. The

kinetic theory of point vortices can be generalised to the case

where the vortices have different circulations [52, 28].4 When

the circulations have the same sign, the validity of the kinetic

equation is the same as the one derived in this paper. However,

when vortices have different signs, the situation is more com-

plicated. First of all, in generic situations, the system is not

axisymmetric but consists of two large vortices (macroscopic

dipole), one blob with a positive circulation and one blob with

a negative circulation, or in three large vortices (macroscopic

tripole), one blob with a positive circulation surrounded by two

blobs of negative circulation (or the opposite). In that case, the

kinetic theory must be generalised to non-axisymmetric flows.

Point vortices can also form microscopic dipoles, pairs (+,−)

of positive and negative vortices, that have a ballistic motion

and escape to infinity. In that case, there is no equilibrium state.

They can also form microscopic tripoles (+,−,+) or (−,+,−).

These structures, corresponding to nontrivial correlations, are

not taken into account in the kinetic theory developed in our

paper. The formation of these structures may be negligible in

the thermodynamic limit N→+∞ considered here, but these

structures may initially be present in the flow. Similarly, the

presence of vortex pairs (+,+) or (−,−), similar to binary stars

in astrophysics, is not taken into account here. Kinetic equa-

tions for a vortex gas viewed as a coupling, via the Liouville

equation, between monopoles, dipoles and tripoles have been

derived in [54, 55]. Kinetic theory of three-body collisions

(dipoles hitting monopoles) with application to the context of

4The equilibrium statistical mechanics of a multi-species gas of point vor-

tices is treated extensively in [53].

2D decaying turbulence has also been developed in [56]. There

is finally also the possibility that point vortices split in three

vortices (offsprings of a point vortex), a process reverse to the

three point vortex collapse, offering the possibility of a statisti-

cal mechanics approach with a varying number of vortices [57].

6. Conclusion

Relying on the functional integral formalism introduced in [46],

we illustrated how one may use this approach to derive the ki-

netic equation describing the long-term evolution of an axisym-

metric distribution of point vortices when collective effects are

neglected. We believe that such calculations allow for addi-

tional insights on the origin of these kinetic equations and com-

plement the usual methods of derivation. Rewriting kinetic the-

ories for N−body systems with long-range interactions under a

functional form allows for insightful connections with standard

field theory methods such as the Martin-Siggia-Rose functional

method for classical stochastic systems in the Jensen path in-

tegral formulation [58]. A next step of the current approach

would be to show how the same methodology may be used

when collective effects or higher order correlation terms are ac-

counted for. This will be the subject of a future work.
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