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Secure Aggregation in Wireless Sensor Networks
—oOo—

Abstract

The Wireless Sensor Networks (WSNs) are composed of a huge number of sensor nodes.
The large number of nodes may lead to a huge amount of data in the network, causing
the network to degrade performance and shorten its lifetime. The data aggregation
techniques may be a solution to remane the redundancy of data and thereby reduce
the number of packets transmitted in the network. Nevertheless, the data aggrega-
tion causes some security vulnerabilities: impersonation, denying having received data,
dropping packets deliberately, alteration of the sensored readings and aggregation re-
sults... In this report, we compare the performances get by two secure aggregation
solutions: the Secure Aggregation for Wireless Networks (Hu et al. protocol) and the
Secure Aggregation Protocol for Cluster-Based Wireless Sensor Network (SAPC). The
analysis shows that Hu et al. protocol gives better performance than SAPC in terms
of number of exchanged messages but it is vulnerable to simple attacks. This report
describes both protocols and their performances and propose a new protocol based on
binary trees and delayed aggregation result checking to improve the performance of
SAPC.
Key-words: Security, wireless sensor network, aggregation, TinyOS, authentication.

Résumé

Les réseaux de capteurs sans fil sont composés d’un grand nombre de capteurs avec de
faibles ressources en énergie, en mémoire et en calcul. Dans le but d’étendre la durée
de vie de ces réseaux, l’agrégation des messages s’avère comme une bonne solution
pour diminuer le nombre de messages échangés dans le réseau en éliminant les données
redondantes et par suite l’énergie utilisée par les nœuds pour la communication. Mais
cette solution peut avoir des conséquences néfastes sur la sécurité du réseau: l’intégrité
des messages, l’authentification, la précision des mesures. . . Dans ce rapport, nous
comparons les performances obtenus par deux protocoles d’agrégation sécurisés: Secure
Aggregation for Wireless Networks (le protocole de Hu et al.) et le protocole Secure
Aggregation Protocol for Cluster-Based Wireless Sensor Network (SAPC). L’analyse
montre que le protocole de Hu et al. donne de bons résultats en terme de nombre
de messages, mais il est vulnérable à certaines attaques simples. Ce rapport décrit les
deux protocoles avec une analyse de leur performances et propose, en vue d’améliorer les
performances de SAPC, un nouveau protocole d’agrégation basé sur les arbres binaires
et la vérification retardé du résultat d’agrégation.
Mots-clés : Sécurité, réseau de capteurs sans fil, agrégation, TinyOS, authentification.
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Introduction

Nowadays, we are overwhelmed with a large number of data. Extracting relevant data and

eliminating redundant data is an important concern for researchers. Those techniques are

needed in wireless sensor networks, which contain a huge number of sensor nodes, each

one generating some sensory readings toward the base station. The data aggregation

extends the longevity of the wireless sensor networks as exchange messages are targeted,

but it makes the network more vulnerable. Many secure data aggregation protocols

have appeared in the literature. Our contribution is to implement and compare two

protocols for the secure data aggregation: The Secure Aggregation Protocol for Cluster-

Based wireless Sensor network (SAPC) [1] and Hu et al. protocol [2]. Then we propose a

solution to improve the SAPC performances.

This report is organized as follows: chapter 1 first introduces the wireless sensor

networks and the security threats. Chapter 2 gives the most important solutions for the

data aggregation in wireless sensor networks, and then some comparative experimental

results between SAPC and Hu et al. protocol. In chapter 4, we present a new aggregation

framework based on the binary trees to extend SAPC and improve its performances.

Finally we conclude this report with future research directions.
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1 Wireless sensor networks and

security issues

1.1 Introduction

The Wireless Sensor Network (WSN) is a term used to refer to a wide network composed

by a huge number of heterogeneous sensors deployed randomly and that communicate

through some wireless technologies. Generally, there is a special node called a base sta-

tion (BS) in the network that receives the data from the sensors, and forwards them to

the network operator. Most of the time, the network topology can not be predicted, and

is deployed in hostile or friendly environments. The development of microelectronics and

wireless communication technologies are leading to produce tinier and low cost sensors

although they still have limited energy, memory and computational resources. Wireless

Sensor Networks are widely used in various applications. The most important ones are:

Military: WSNs can be used to supervise the country frontier and enemy movement

during a war. As such various sensors can be placed in the network, to detect

movement of persons or vehicles, to detect sounds and to get some geographical

coordinates. They can be coupled with a camera to take photos and videos when

needed. For example, at the frontier between the United States and Mexico, a WSN

coupled with cameras, is deployed to detect person’s illegal penetration.

Environment: A WSN can be deployed to supervise air pollution, to detect forest fire,

and also to detect submarine earthquake to prevent disasters like Tsunamis. It can

be also deployed, for example, near a chemical factory to detect any emission of

poisonous substances in the air or in a lake.

Buildings: A WSN can be deployed in a building or a factory to manage automatically

air conditioning, electric lights. In addition, it is used in dams in Thailand to detect

the vibrations and pressure.

Health care: The application can detect and analyze patients health from bio sensors

which can collect pulse, temperature and blood pressure of the patient (figure 1.1).
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With this application, the doctors can remotely monitor, diagnose and prescribe the

patient when an emergency occurs [3].

Supply Chain: WSN can be used to monitor the cold chain, as studied in the project

CAPTEURS [4, 5] to which TELECOM SudParis participates in designing a secure

solution to supervise the goods temperature along the transportation.

Figure 1.1: Health care motes [6]

A sensor node or a mote is a component mainly composed by a micro-controller, a chip

for the wireless communication and one or more sensors to measure the physical quantities

(temperature, humidity, light, motion, vibration,...). There are various types of motes in

the market, but the most used ones in research are mica, mica2 and tmote. Figure 1.2

shows a comparison between different motes and the evolution of their capacities and

resources.

1.2 Operating Systems

There are two main operating systems used in wireless sensor networks: TinyOS and

Contiki. We discuss in this section the characteristics of each of them.

1.2.1 TinyOS

TinyOS is an open source operating system for wireless sensor networks, featuring a

component-oriented architecture. In addition, it minimizes the code size as required by

9



Figure 1.2: Evolution of motes [7]
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the severe memory constraints inherent to the sensor networks. TinyOS provides to de-

velopers different libraries like the network protocols, distributed services, sensor drivers,

and data acquisition tools – all of which can be used as-is or be further refined for a cus-

tom application. TinyOS’s event-driven execution model enables the fine-grained power

management yet allows the scheduling flexibility made necessary by the unpredictable

nature of the wireless communication and physical world interfaces [8].

Figure 1.3: Logo TinyOS

The development of TinyOS began in 1999 in Berkley university. The newest version

is TinyOS 2.1 launched in 2008. The system is developed in nesC, a C-like language.

Currently, the maintenance and development of the operating system is assured by an

international consortium, the TinyOS alliance.

The principal characteristics of the operating system are:

Event-driven: TinyOS is an event-driven operating system. A complete system config-

uration is formed by ’wiring’ together a set of components for a target platform and

application domain. Components are restricted objects with well-defined interfaces,

internal state, and internal concurrency. Primitive components encapsulate hard-

ware elements, e.g., radio, ADC, timer, or bus. Their interface reflects the hardware

operations and interruptions [9].

Components and Bidirectional Interfaces: A component has a set of bidirectional

command/ event interfaces implemented either directly or by wiring a collection

of subcomponents. The compiler optimizes the entire hierarchical graph, validates

that the program is free of race conditions and deadlocks [9].

Split-phase operations: are a typical use of bidirectional interfaces. A higher-level

component issues a command to initiate activity in a hardware or software com-

ponent. The command returns immediately, indicating the status of the request,

even though the operation takes some time to complete. When done, the operat-

ing component signals an event to the components that will take further action.

Meanwhile, the processor may service other tasks and events, or sleep if no tasks

are pending. Thus, interleaved execution and power management is provided sys-

tematically throughout the entire set of TinyOS components [9].
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Hardware Abstraction Architecture: The most important advantages of TinyOS is

its compatibility with multiple platforms, at least nine platforms. It is also not that

complicated to add or modify the platforms. TinyOS 2.0 uses a three-tier Hardware

Abstraction Architecture that combines the strengths of the component model with

an effective organization in the form of three different levels of abstraction. The top

level of abstraction fosters portability by providing a platform-independent hard-

ware interface, the middle layer promotes efficiency through rich hardware-specific

interfaces and the lowest layer structures access to hardware registers and inter-

rupts [10].

Scheduler: Two types of blocks compose the programs in TinyOS: tasks and event han-

dlers. Tasks are not preemptive but an event preempts the task execution. The

semantics of the tasks in TinyOS 2.x are different than those in 1.x. In 1.x, the

task queue has a limited length and can include the same task multiple times. In

2.x, each task has its reserved place in the queue so it can have one or none in-

stance there. The scheduler executes the tasks one by one until the queue becomes

empty [11].

Timers: TinyOS 2.x offers a rich timer system. Three fundamental properties of timers

are precision, width and accuracy. Three precision skills are defined : TMilli (1024

ticks per second), T32khz (32768 ticks per second) and TMicro (1048576 ticks per

second). The width for the timer interfaces is 32-bits. The accuracy reflects how

closely a component conforms to the precision it claims to provide. Accuracy is

affected by issues such as clock drift and hardware limitations.

TinyOS defines five types of timer interfaces like Counter, LocalTime and Alarm [12].

Communication: TinyOS 2.1 does not support the TCP/IP stack but the next version

will do. The majority of the platforms uses the norm 802.15.4 to define both physical

and media access layers. Different network protocols are available like the collection,

dissemination and Tymo (adapted version of DYMO).

Power Management: Energy is a critical concern in wireless sensor networks and hence

it is a concern for TinyOS. The node goes on a sleep mode when no task is executed;

also the TinyOS lets developers to active/disable the radio communication’s chip or

to use the low power listening. In addition, TinyOS generates a small binary code

so it needs low power to memorize it in RAM [13].

nesC language: nesC is an extension to C designed to embody the structuring concepts

and execution model of TinyOS [14]. nesC adds support to components, envents

handling and tasks to the C language.
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TOSSIM: TinyOS simulator. TOSSIM allows to compile TinyOS applications into a

simulation framework, where developers can perform reproducible tests and debug

their code with the standard development tools.

1.2.2 Contiki

Contiki [15] is a small, open source, highly portable, multitasking computer operating

system developed for use on a number of memory-constrained networked systems ranging

from 8-bit computers to embedded systems on micro-controllers, including sensor network

motes. Contiki provides multitasking and a built-in TCP/IP stack, it implements also a

µIPv6 stack [16].

Contiki supports dynamic loading of programs and multi-threading programming [17].

It comes with a graphical simulator COOJA [18].

1.3 Sensor security problems

The WSNs are different from the computer networks as many constraints make the adap-

tation of existing security solutions more difficult. So, it is important to understand those

constraints to design more efficient security mechanisms [19]:

1.3.1 Very limited resources

The integration of the security mechanisms into the applications generates a memory

overhead, computational overhead and more larger packets. This overhead should consider

those two constraints:

Limited Memory and Storage Space: As depicted in figure 1.2, the sensor nodes

have limited program memory, RAM, and non volatile storage space. So it is neces-

sary to limit the code size of the security algorithm. For example Telos motes [20]

have 60 KB as program memory, 2 KB as RAM memory and 128 KB for non volatile

storage.

Power limitation: The energy is a scarce resource for a sensor node since the battery is

almost not easily replaced or recharged. Therefore, the battery charge taken with

the sensor node to the field must be kept to extend its life time and as a result

the entire sensor network longevity. When implementing a cryptographic function

or protocol within a sensor node, the energy impact of the added security code

must be considered. For example, RC5 (Table 1.1) presented better performance

in terms of CPU elapsed time (1.50 ms) while using only 11,059.2 CPU cycles and

consuming 36.00 micro-joules to cipher a payload. It (Table 1.2) consumes 49.92 µJ

to authenticate 29-BYTE packet.
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Algorithm Time (ms) CPU cycles Energy (µJ)
SkipJack 2.16 15,925.2 51.84
RC5 1.50 11,059.2 36.00
RC6 10.78 79,478.7 258.72
TEA 2.56 18,874.4 61.44
DES 608.00 4,482,662,4 14,592.00

Table 1.1: The impact of 29-BYTES payload cipher on CPU consumption [21]

Algorithm Time (ms) CPU cycles Energy (µJ)
SkipJack 2.99 22,044.6 71.76
RC5 2.08 15,335.4 49.92
RC6 15.84 116,785.2 380.16
TEA 5.07 37,380.1 121.68
DES 1,208.00 8,906,342.4 28,992.00

Table 1.2: The impact of calculating 29-BYTE packet MAC on CPU consumption [21]

1.3.2 Unreliable Communication

The sensor network uses wireless communications so it inherits the unreliability of the

communications. This technology is characterized by sharing the same media, air, which

has a high error rate and a concurrent access, consequently some frequent collisions hap-

pen. In addition, the multi-hop nature of the network makes the synchronization between

the nodes difficult due to the time needed in each hop to treat the message and forward

it. This may be a problem for some security protocols that use a cryptographic key

distribution protocol like µtesla [22].

1.3.3 Unattended Operation

Depending on the application of the sensor network, sensor nodes may be left unattended

for a long period of time. There are three main caveats to unattended sensor nodes:

Exposure to Physical Attacks The sensor may be deployed in an environment open

to adversaries, may be affected by bad weather, and so on. The likelihood that

a sensor suffers from a physical attack in such an environment is therefore much

higher than the typical PCs, which are located in a secure place and mainly face

attacks from the network [19].

Remote Management Remote management of a sensor network makes it virtually im-

possible to detect physical tampering (i.e., through tamperproof seals) and physical

maintenance issues (e.g., battery replacement). Perhaps the most extreme example

of this is a sensor node used for the remote reconnaissance missions behind the en-
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emy lines. In such a case, the node may not have any physical contact with friendly

forces after deployment [19].

No Central Management Point A sensor network is like a distributed network with-

out a central management point. If designed incorrectly, it will make the network

organization difficult, inefficient, and weak.

Passive information gathering An intruder can eavesdrop the exchanged messages in

the network by positioning malicious nodes or a powerful receiver in the network.

False Node An intruder can maliciously disrupt the network operations for example by

injecting a false node so their he is able to drop the packets, inject false data, or

modify the contents of a message and hence corrupt the integrity of the message [23].

Node Malfunction A node may become defective for ordinary reasons and, therefore,

output wrong data. This can be more dangerous if the node is an aggregator or a

cluster head.

Node outage In addition to malfunctioning, a sensor may stop responding completely,

for example if its battery is empty.

1.4 Security Goals and Challenges

In order to defend against some attacks, many security mechanisms have been proposed.

The goal of each one is to achieve some or all of the following security goals [24]:

Confidentiality or privacy Confidentiality means that only the authorized parties can

access the data. For example the confidentiality is a big concern in some cases like

military applications or when exchanging the security keys between nodes.

Integrity It means that the transmitted data have not been altered during transit by

unauthorized parties.

Authentication It means that the received data are really sent by the claimed sender

instead of being injected by someone else.

Availability It means that the network should consistently and continually provide the

service that it promises despite the existence of any attacks [23].

Freshness It means that the data are fresh and current. It guarantees that the messages

are not replayed or injected by any adversary.
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1.5 Attacks on the wireless sensor networks

The attacks, their classes and their classification by the layer are further discussed in [25].

The most important attacks in WSN are:

1. Passive information gathering see 1.3.3.

2. Node subversion By compromising a node, an attacker can get the program, the

secret cryptographic keys thereby it becomes possible to inject false messages from

this node. [26] demonstrates that compromising a Mica2 ’s node is done in one

minute. For some applications, it becomes necessary to design the tamper resistant

nodes. For example, a node should delete its program memory content and its secret

keys once the node capture occurs.

3. Fake node see 1.3.3.

4. Node malfunction see 1.3.3.

5. Node outage see 1.3.3.

6. Message corruption The integrity of a message is compromised when an attacker

modifies its content.

7. Traffic analysis Even if the message is encrypted in WSN, an attacker can anal-

yse the communication patterns and detect which nodes are important in the net-

work (e.g. cluster heads, aggregators,...) and focus on them to cause more harm to

the network.

8. Routing loops An attacker can alter and replay routing information messages,

thus some error messages are generated in the network. The routing loops attract

or repel the network traffic and increase the node to node latency.

9. Selective forwarding If all the nodes participate in routing messages, an attacker

can drop certain messages instead of forwarding them all. The percentage of dropped

messages and the distance from the malicious node to the base station determine

the effectiveness of this attack.

10. Sinkhole attacks The attacker places a malicious node in a key point (close to

the base station). The node drops all the received messages instead of forwarding

them to the base station. The result of this attack is more disrupting if there is a

unique BS in the network.

11. Sybil attacks In this attack, a node declares multiple illegitimate identities either

by forging or stealing the identities of legitimate nodes. This attack can be used

against routing algorithms, topology maintenance and voting scheme.
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Network layer Attacks Defenses
Physical Jamming Spread-spectrum, priority messages, lower

duty cycle, region mapping, mode change
Tampering Tamper-proofing, hiding

Link
Collision Error-correcting code
Exhaustion Rate limitation
Unfairness Small frames

Network
and
Routing

Neglect and greed Redundancy, probing
Homing Encryption
Misdirection Egress filtering, authorization, monitoring
Black holes Authorization, monitoring, redundancy

Transport
Flooding Client puzzles
Desynchronization Authentication

Table 1.3: Sensor network layers and denial-of-service defenses

12. Node replication The attack is made by adding a node, with a replicated (copied)

ID of an existing node, to the targeted sensor network. The attacker can copy also

cryptographic keys in the malicious node. This attack can result in a disconnected

network, false readings

13. Wormhole An attacker records the packets at one location in the network, tun-

nels them (possibly selectively) to another location, and retransmits them into the

network. This attack can form a serious threat against the routing protocols and

the location-based wireless security systems [27].

14. Hello flood attack The malicious node broadcasts a HELLO message with a

strong transmission power and pretends that it is coming from the base station.

The receiving nodes assume that the malicious node is the closest one to the BS,

so they send their data through it. In this attack, the responding nodes to HELLO

floods waste their energy.

15. DoS attacks DoS appears as any event that diminishes or eliminates a network

capacity to perform its expected function (Hardware failures, software bugs, resource

exhaustion, environmental conditions, or their combination; or intentional attack).

This attack targets the availability (which ensures that the authorized parties can

access data, services, or other computer and network resources when requested)

by preventing the communication between the network devices or by preventing a

single device from sending the traffic [28].
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1.6 Conclusion

WSNs become widely used in many applications and the security becomes a key concern

to those networks. The traditional security approaches in wirelined and wireless networks

are not merely applicable to WSN due to the resource limitation of the nodes and obstacles

encountered by those networks.

This report focuses on data aggregation. In the next chapter, we discuss the interest

for aggregation technique as well as we list some security protocols supporting the data

aggregation.
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2 Secure data aggregation

approaches in Wireless Sensor

Networks

2.1 Introduction

WSNs are composed by a huge number of sensor nodes. Figure 2.1(a) shows an important

number of messages exchanged inside a network in response to a query sent by the BS.

The large number of nodes may lead to a huge amount of data in the network, causing

the network to degrade its performance and shorten its lifetime. The data aggregation

techniques may be a solution to remove the redundancy of data and thereby reduce

the number of packets transmitted in the network. For those reasons, some nodes can

have the responsibility of aggregating data (messages) before transmitting them to BS.

Figure 2.1(b) shows a network where the cluster heads (CH) have the data aggregation

capability. We remark that the number of messages is significantly decreased when using

the aggregator nodes in the network. Nevertheless, the data aggregation causes some

security vulnerabilities: impersonation, denying having received data, dropping packets

deliberately, alteration of sensory readings and aggregation results,...

Many security solutions have been proposed in the literature to secure the aggregation

process, the most important ones are depicted in this chapter.

2.2 Secure Aggregation for Wireless Networks

In [2], Hu et al. present a secure aggregation protocol for the wireless sensor networks, it

is the first article that handles this problem. In this protocol we consider the existence

of one powerful node called a base station (BS) which can broadcast messages to all the

nodes directly. The other nodes are all identical and organized in a binary aggregation

tree rooted by the BS. Some are acting as leaves (nodes A-D in Figure 2.2) and they are

responsible for the sensing activities, and the others are acting as intermediate nodes. The

aggregation is done only in intermediate nodes and BS. The protocol evolves in two steps:
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(a) Without data aggregation. (b) With data aggregation.

Figure 2.1: Forwarding packets with and without data aggregation

delayed aggregation and delayed authentication. Exchanged messages are authenticated

with temporary keys. The temporary key is computed by encrypting a counter value

using a key shared between the node and the BS. For example KAS is the key shared

between the node A and the BS, and KA0 = E(KAS, 0) is a temporary key of A. After

the aggregation phase, the BS reveals the temporary keys to enable other sensor nodes to

authenticate messages transmitted by nearby sensors. The counter is incremented after

each cycle. The processing of aggregation is done as follows (see the network presented

in Figure 2.2):

1. Each leaf node N transmits a message to its parent containing its unique identifier

and its sensory reading; the message is authenticated by a secret key KNi only

known at that moment N and BS. For example :

A→ E : RA|IDA|MAC(KAi, RA)

2. Upon receiving the messages from its children, the parent node cannot verify their

authenticity, so it has to store the messages and verify them later when receiving

KNi. It waits until receiving all its children messages or the waiting timer expiration

and then it sends a message to its parent that retransmits that sensory readings

and MACs, along with a computed MAC over the calculated aggregate value. For

example :

E → G : RA|IDA|MAC(KAi, RA)

|RB|IDB|MAC(KBi, RB)
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Figure 2.2: Data aggregation illustration

|MAC(KEi, Aggr(RA, RB))

Note that E does not send IDE to G since G knows enough about the network

topology.

3. Upon receiving the messages from E and F, node G calculates the aggregation result

of its grandchildren sensory readings through each child. It then associates the ag-

gregation result of its grandchildren and its children’s ID and MAC values in a mes-

sage; along with a MAC that it computes with its secret key KGi over the next ag-

gregate result, Aggr(RA, RB, RC , RD) = Aggr(Aggr(RA, RB), Aggr(RC , RD)),and

it sends the message to its parent. For example the message sent from G to its

parent is:

IDE|Aggr(RA, RB)|MAC(KEi, Aggr(RA, RB))

|IDF |Aggr(RC , RD)|MAC(KFi, Aggr(RC , RD))

|MAC(KGi, Aggr(RA, RB, RC , RD))

4. The processing described in (3) is recursively repeated upstream until reaching the

BS. So, in our case, node H receives the messages from its children, and sends the

aggregate message to the BS.
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5. Upon receiving the messages from its children, the BS calculates the final aggre-

gation result. Then it broadcasts the authentication keys used by all the nodes in

this aggregation round to let them verify the authenticity of the already received

messages. Then the nodes verify the MACs and trigger an alarm if it does not

match.

This protocol guarantees the authenticity of the messages for the networks where two

consecutive nodes are not compromised. So, the compromising of two nodes as closest

as possible to the BS, makes the attacker more powerful to falsify the final aggregation

result.

We had implemented and tested this protocol, the results of this work are discussed

in 3.3.2.

2.3 SHIA

Secure hierarchical in-network aggregation in sensor networks (SHIA) [29] is a secure

SUM aggregation protocol. This protocol is useful for sum, count, average and median

calculations. It has three main phases : query dissemination, aggregation commit and

result checking.

2.3.1 Query dissemination

The base station broadcasts a query to the network. An aggregation tree is established if

it is not already present. The query message contains a nonce value N to prevent replay

of messages and it is authenticated.

2.3.2 Aggregation commit phase

Sensory data and aggregation results are included in a data structure called label. Label’s

format is < count, value, complement, commitment > where count is the number of leaf

vertices in the subtree rooted at this vertex; value is the SUM aggregate computed over

all the leaves in the subtree; complement is the aggregate over the COMPLEMENT of

the data values; and commitment is a cryptographic commitment. The labels are defined

inductively as follows: There is one leaf vertex us for each sensor node s, which we call

the leaf vertex of s. The label of us consists of count = 1, value = as where as is

the sensory value of s, complement = r − as where r is the upper bound on allowable

data values, and commitment is the node’s unique ID. Internal vertices represent the

aggregation operations, and have labels that are defined based on their children. Suppose

an internal vertex has child vertices with the following labels: u1, u2, · · · , uq, where

ui =< ci, vi, vi, hi >. Then the vertex has label < c, v, v, h >, with c =
∑
ci, v =

∑
vi,
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v =
∑
vi and h = H[N ||c||v||v||u1||u2||...||uq]. Two approaches are described in this phase

the naive approach and the improved approach:

2.3.2.1 Naive approach

Leaf nodes in the aggregation tree (e.g. node G in the figure 2.3) send their leaf vertex

to their parent. The internal node (like A in figure 2.3) aggregates all the received labels

and its leaf vertex, and sends the resulted label to its parent.

Figure 2.3: Aggregation and naive commitment tree in network context

2.3.2.2 Improved approach

This approach aims to improve the congestion cost in forming balanced aggregation trees.

The difference from the last approach is that nodes aggregate only labels with the same

depth (count). The leaf sensor nodes in the aggregation tree originate a single label

which they then communicate to their parent sensor nodes. Each internal sensor node

s originates a similar single label. In addition, s also receives labels from each of its

children. s receives one or more label from each of its direct children. It then combines

all the labels (its single label and the received ones) to form a new set of labels as follows.

Suppose s wishes to combine q labels L1, · · · , Lq. We let the intermediate result be

SL = L1 ∪ · · · ∪ Lq, and repeat the following until no two labels have the same count

in SL: Let c the smallest count such that more than one label in SL has count c. Find

two labels Li and Lj of count c in SL and merge them into a label of count (2 × c) by

creating a new label that is the parent of both Li and Lj. When no two labels have the

same count in SL, node s sends the set of labels SL to its parent. This process in node

A is described in figure 2.4.
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Figure 2.4: Process of node A (from Figure 2.3) deriving its commitment forest from the
commitment forests received from its children
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2.3.3 Result-checking phase

This phase lets each sensor s verify that its sensory data as were added into the SUM

aggregate and the complement (r−as). Each sensor verifies that its label was included in

the calculation of the final root label. Thus by inspecting the inputs and the aggregation

operations in the commitment tree. This phase is split into five steps:

2.3.3.1 Dissemination of final commitment values

After the BS has received the final set of labels, it sends each of these labels to the entire

sensor network using an authenticated broadcast.

2.3.3.2 Dissemination of off-path values

To enable verification, each leaf vertex must receive all its off-path values. Each internal

node sends any labels received from its parent to all its children. It sends also the set of

labels received from its child u to all its other children (Figure 2.5).

Figure 2.5: Dissemination of off-path values: t sends the label of u1 to u2 and vice-versa;
each node then forwards it to all the vertices in their subtrees

2.3.3.3 Verification of inclusion

When the node us receives all the labels of its off-path vertices, it may then verify the

labels until obtaining the root set of labels and verify that the received from the BS and

the calculated ones are equal.

2.3.3.4 Collection of confirmations

After the successful verification of inclusion, each sensor node s sends an acknowledgment

to the BS with form MACks(N ||OK) to the BS. Those messages are XOR-ed hop by hop.

Nodes with failed verification of inclusion send nothing.
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2.3.3.5 Verification of confirmations

When the BS receives the XOR-ed acknowledgments, it calculates an XOR-ed acknowl-

edgment and verifies that the received and the calculated ones are equal.

2.4 SAPC

In the Secure Aggregation Protocol for Cluster-Based wireless Sensor network (SAPC) [1],

nodes are organized into disjoint cliques (clusters), thanks to Sun et al. protocol [30],

where each node is one-hop away from the remaining nodes of the cluster. Then nodes

in each cluster elect a Cluster-Head (CH) from them to act as a CH and an aggregator,

to communicate with the BS, and roots other CHs messages to BS. The organization of

the network is described in figure 2.6. In addition, the nodes share a secret key with the

BS, initially loaded before deployment. Also, each pair of nodes within the same clique

shares a pairwise key to authenticate their messages. To authenticate its locally broadcast

messages, each node u generates a one-way key chain {Kn
u}, and u sends the commitment

key of the key chain to each neighbor, authenticated with the pairwise key.

Figure 2.6: Cluster-based wireless sensor network

The aggregation is done in each cluster, and all the nodes participate in its calculation.

The BS, which knows the list of sensors per cluster, can check whether the aggregation
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result of a cluster was approved by cluster members or not. An aggregation round is

described by four main steps, the lth aggregation round in the cluster C headed by node

CHi (CCHi
) is done as follows :

1. Each node u in the cluster broadcasts its sensory reading Ru authenticated with the

current key Kj
u of its key chain

u→ ∗ : Ru‖MACKj
u
(Ru)‖Kj

u

2. Each node v ∈ CCHi
receives all the broadcasted reading messages of u (∀u ∈

CCHi
\{v}). For each received message, v verifies it by following those steps :

(a) verify the authenticity of the key Kj
u (Kj−1

u = H(Kj
u)), if succeeded then

(b) verify the MAC field

If the two conditions are accepted, node v stores the key Kj
u (to use it to verify the

u’s reading message in the next round). Note that this key is used once, so it is

never used to authenticate another message.

After receiving all the reading messages, the node calculates the aggregation result :

AGRv = f(Ru/∀u ∈ CCHi
).

Then node v prepares a double authenticated message, the first MAC is generated

by the pairwise key KBS,v, shared between node v and BS, over the aggregation

AGRv and counter Cv where Cv is a counter shared between node v and BS and

it is used to protect BS from replay attacks. The second MAC is calculated over

AGRv and the first MAC with the pairwise key shared between node v and CHi.

Node v sends this message to CHi:

v → CHi :

1︷ ︸︸ ︷
AGRv‖MACKBS,v

(AGRv, Cv) ‖MACKCHi,v
(1)

3. The CHi verifies all the received messages using the secret pairwise keys. Unauthen-

ticated messages are ignored. Logically all the messages contain the same aggrega-

tion result, but it might exist some malicious or faulty nodes (less than the majority

in the cluster), or some nodes which have not received all the reading messages due

to collisions. Anyway, the cluster adopts the majority aggregation result AGR, it

XORs the MACs for BS from the messages with the aggregation result equal to

AGR, and finally it authenticates the message with its shared pairwise key with BS

and sends it to BS. Node IDs with different aggregation results are included in the

message.
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CHi → BS :

2︷ ︸︸ ︷
AGR‖

⊕
v∈CCHi

MACKBS,v
(AGRv, Cv) ‖MACKBS,CHi

(2)

4. Upon receiving the message sent by CHi, the BS verifies its authenticity using

KBS,CHi
. If authenticated, BS proceeds in the verification of the XOR-ed MAC

by calculating a set of MACs using the set of its shared keys with cluster nodes

and then XOR them. If the calculated and received MACs are equal, the result

is authenticated, otherwise it is rejected (Note that BS excludes the MACs of the

nodes which sent a different aggregation result to CHi).

2.5 A trust based framework for Secure data Aggre-

gation in Wireless Sensor Network

2.5.1 System model

In this framework [31], we consider those assumptions:

• a static sensor network composed of a large number of densely deployed sensors

which are organized into clusters

• in the network model, all the nodes are similar but they have three different behav-

iors :

– sensor nodes send their sensory reading values to an aggregator

– aggregator collects readings, aggregates them and sends a report to CH

– CH aggregates the received reports from the aggregators and forwards the

aggregated results to the BS (sink)

• in one cluster, all the sensor nodes including the CH and aggregators are physically

close to each other and hence their sensory data are highly correlated

• every sensor node has a pairwise key with its one-hop neighbors, and uses it in a

MAC for authentication.

2.5.2 Threat model

In this model, the attacker can inject/replay messages, compromise a sensor node either

physically by capturing the node or by spreading a malicious code, and obtain all the

secret materials.
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2.5.3 Josang’s Belief Model

Josang’s model [31] proposes a belief metric to express an opinion about an aggregation

result. It defines a quadruple w = (b, d, u, a) where b is belief, d is disbelief, u is un-

certainty, a is relative atomicity; a, b, d, u ∈ [0, 1] and b + d + u = 1. The opinion O is

calculated as

O = E(w) = b+ au (2.1)

This model is suitable to capture the uncertainty in data aggregation in WSNs since

the sensory data and aggregation results are infiltrated with uncertainties due to the

unavoidable sampling errors, false data injected by either compromised source nodes or

aggregators.

2.5.4 A trust based framework against false data injection

The aggregation process in the protocol is as follows:

Figure 2.7: Abstract architecture of the framework [31]

• Each sensor node reports its sensory data to its corresponding aggregator. The

sensory data should be protected by a MAC with the pairwise key shared between

the node and its aggregator.

• Upon receiving reports from sensor nodes, the aggregator does those steps :

– It eliminates sample values significantly deviated from the median

– The sensing data of the sensor nodes follow a normal distribution : N(µ, σ),

where µ is the mean and σ is the standard deviation. In a long run, if the

sampling is independent between each round, the probability of one node’s
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sensory data falling in [µ−σ, µ+σ] should be 0.68, this is ideal node frequency

(fideal) distribution. Some aggregators calculate the parameters µ and σ, then

they update each actual node frequency (fa).

– The aggregator calculates the Kullback-Leiber (KL) distance between the ideal

and actual distributions for each node. The KL distance D is calculated as

follows :

D = (1− fa)log2(
1− fa

1− fideal

) + falog2(
fa

fideal

)

– Aggregator calculates the reputation of each sensor node as
1

1 +
√
D

– Aggregator dynamically classifies sensor nodes, according to their reputation,

into K groups with the K-Means partition algorithm.

– After classifying the nodes, the aggregator calculates the average (x) of sensory

values of nodes in the highest reputation group as well as the standard deviation

(σ) as its aggregation result in this round.

– The aggregator counts the number of nodes having their sensory values within

[x−σ, x+σ] and treats those nodes as trustworthy for this aggregation round.

– The aggregator A formulates its opinion wA
X = {bA, dA, uA, aA} about the ag-

gregation result X as follows:

∗ bA: percentage of nodes fall in [x− σ, x+ σ]

∗ uA = 1− bA

∗ aA : average reputation of the uncertain nodes

∗ dA = 0

∗ the expectation of the aggregator’s opinion about aggregation result X is

OA
X = bA + aAuA

– The aggregator sends its report, composed by aggregation result and opinion,

to the cluster head.

• Upon receiving reports from aggregators, cluster head compares its own sensing data

with the received aggregation results. It formulates an opinion about aggregators

on two steps:

– It opts for the majority value and considers nodes with this value as honest

and treats the rest as dishonest.

– The number of times the aggregator A is considered as honest by the cluster

head (H) is noted by kH
A ; and lHA is the contrary. The cluster head opinion

about aggregator A, wH
A = (bHA , d

H
A , u

H
A , a

H
A ) is obtained by:

bHA =
kH

A

kH
A + lHA + 2

, dH
A =

lHA
kH

A + lHA + 2
, uH

A =
2

kH
A + lHA + 2
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OH
A like defined in equation (2.1).

• This step is known as belief discounting, in which the cluster head formulates an

opinion about each aggregator report X. This by discounting of wA
X (the aggre-

gator A opinion about its aggregation result X which is included in its emitted

report) by wH
A (opinion of cluster head H about aggregator A) to obtain wHA

X =

(bHA
X , dHA

X , uHA
X , aHA

X ) where

bHA
X = bHA × bAX , dHA

X = bHA × dA
X ,

uHA
X = dH

A + uAH + bAH × uA
X , aHA

X = aA
X .

The expectation of the cluster head’s opinion about the aggregator’s report is OHA
X =

bHA
X + aH

A × uHA
X .

• Finally, as the cluster head receives a report from each aggregator, suppose that they

are two aggregators, the final aggregation result is calculated by X = ω1X1 +ω2X2,

where ω1 and ω2 are weighting factors defined as

ω1 =
OHA1

X

OHA1
X +OHA2

X

, ω2 =
OHA2

X

OHA1
X +OHA2

X

The cluster heads send its report to the base station.

In addition to its role of sensing and reporting data to its aggregator, the sensor

node overhears the transmitted reports by aggregators and cluster head to update their

reputations. The cluster members can reselect an aggregator or cluster head either if their

reputation drops below a certain threshold or to balance energy consumption between

nodes by rotating periodically the roles.

2.6 Conclusion

In this chapter, we show different approaches to secure data aggregation in WSNs. In the

next chapter we compare two protocols SAPC and Hu et al.
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3 Implementation and Tests

3.1 Introduction

Many secure aggregation protocols are proposed in the litterature, as described in the pre-

vious chapter. It exists two types of protocols: some protocols perform local aggregation

in the clusters [1, 31] and the others perform hop-by-hop data aggreagtion [2, 29]. We

selected two protocols from the two different types for implementing and testing which

are SAPC [1], the protocol proposed by our laboratory, and Hu et al. [2] protocol. The

evaluation of the performance is based on two criteria: the message complexity and the

computation time. The message complexity is defined as a measure where the overhead of

the protocol is measured in terms of number of messages needed to satisfy the protocol’s

request [32]. The computation time is measured on a tmote sky [33] sensor node which

uses a 16-bit, 8MHz Texas Instruments MSP430 microcontroller with only 10 KB RAM,

48KB Program space, 1024 KB External flash, and which is powered by two AA batteries.

Results of this work are the concern of this chapter.

3.2 Implementation

We implemented SAPC and Hu et al. protocols in TinyOS 2.x to test and analyze them.

The memory spaces occupied in a tmote sky sensor by a node (not a BS) program are

described in the table 3.1. In this implementation, we use CBC-MAC RC5 to authenticate

the messages as it requires minimum CPU cycles and execution time [21].

Memory space SAPC Hu et al.

ROM (bytes) 29124 26364
RAM (bytes) 3308 3215

Table 3.1: Memory space occupation in SAPC and Hu et al. protocols
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3.3 Tests

3.3.1 SAPC

Let’s start with the analysis of the number of messages sent in the SAPC protocol. The

node in the cluster should send at least two messages in each round of the aggregation

and the CH should broadcast one message containing its reading and another to the

BS containing the aggregation result, but the CH should also forward the aggregation

messages of other CHs to the BS. So in the optimized case, a CH sends two messages

when it is a leaf in the routing tree or when all CHs are one hop away from the BS. The

figure 3.1 compares the maximum and minimum numbers of messages sent or forwarded

by a CH. For example in a network of 400 nodes, the maximum number of messages is

37. If we calculate the total number of messages in the network by adding the number

of messages sent or forwarded by each node in one round, the maximum number is 1430

messages and the minimum is 800 (Figure 3.2).

Figure 3.1: Number of messages sent by CH

Figure 3.2: Minimum and maximum number of messages in the network

Now let us evaluate the calculation time needed by a simple node (neither CH nor BS)

to accomplish its tasks (figure 3.3), i.e. to:

• prepare a message containing the sensored reading and authenticate it
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• receive other reading messages, verify the authentication key (Kj
u = H(Kj−1

u )) and

then verify the MAC

• calculate the aggregation result and authenticate this message with two MACs

For this node, it takes 146.4 ms to accomplish those tasks in a cluster formed of

11 nodes. The distribution of this time between different tasks is described in figure 3.3.

The CH, in addition to the previous tasks has to receive the aggregation messages,

verify them and calculate the final aggregation result. The final aggregation result compu-

tation includes XORing the MACs of all the nodes having the same result, authenticating

the message and finally sending it to the BS. To accomplish those tasks in a cluster formed

of 11 nodes, it takes a total calculation time of 187,5 ms in a CH. The distribution of this

time between different tasks is described in figure 3.4.

Figure 3.5 compares the calculation cost for a CH vs a simple node, according to

the total number of nodes in the network. Note that the two calculation costs are close

although a simple node implements fewer functions than a CH. We can deduce that the

position of the node in the hierarchy has little impact on the calculation cost.

Figure 3.3: Calculation time in a normal node

Figure 3.4: Calculation time in CH
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Figure 3.5: Calculation cost comparison for CH vs simple node

3.3.2 Hu et al.

In this protocol we can differentiate between three kinds of nodes: (1) leaf nodes, (2)

aggregator nodes with leaf nodes descendants and (3) aggregator nodes with aggregators

descendants.

The leaf node generates a message containing its reading (sensored data) and sends it

to its parent. The aggregator of types (2) or (3) receives two messages from its descendants

and then it sends a message to its parent. In fact, each node in this protocol sends one

message but the aggregators should receive two others; this is independent of the number

of nodes in the network and if we suppose that our network is organized into a binary

tree.

In our implementation, each node uses its authentication key once and sends it with the

message. The authenticity of the key is verified before the verification of the authenticity

of the message.

A node of type (1) needs 4,0283 ms to prepare the message containing the sensored

data and to perform the authentication. Nodes of type (2) need 19,683 ms to verify the

authenticity of the keys and received messages, to calculate the aggregation result and to

authenticate it. Nodes of type (3) need 44,616 ms to verify the authenticity of the three

keys and the three MACs in each received message, to calculate the aggregation result

and authenticate it.

3.4 Conclusion

We remark that in the Hu et al protocol, the number of messages is constant, and equal

to the number of nodes in the network. Each node sends a unique message whatever its

type. In SAPC, the number of messages depends on the number of nodes, the position

and role of the node. So, it is constant for a simple node and equal to 2; but it is variable

for the CH; it is in the range of 2 to 11 in a 40 node network and in the range of 2 to 37

in a 400 node network. The length of the data messages used in the implementation is
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52 bytes in Hu et al, and 30 bytes in SAPC.

The verification of the reading messages consumes most of the time in SAPC. It takes

90% of the total execution time in a simple node and 70% in the CH. An attack with

replayed or forged reading messages might cause an important calculation overhead in the

sensor node. The security of the Hu et al. aggregation result can be altered if there are

two consecutive malicious nodes not being detected.

In the next chapter, we present a new aggregation protocol to enhance the perfor-

mances of SAPC by aggregating the exchanged messages. In addition to the local cluster

aggregation, we propose a solution to do the hop by hop aggregation based on the binary

distributed commitment tree.
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4 SeBTIA: Secure binary tree

in-network aggregation

4.1 Introduction

A node in a wireless sensor network sends its measurements to a BS and it can route

the messages of other nodes. If it has not direct communication with the BS, it sends

them to an intermediate node. So the network is organized like a tree: BS is the root,

and the sensor node is a leaf if it does not route other nodes messages otherwise it is

an intermediate node. Each node knows its direct children and its parent which is BS

or an intermediate node. A distributed algorithm can be used to build this tree like the

described one in [34]. The BS knows the organization of the tree, and each rearrangement

should be authorized by the BS. We call this tree an aggregation tree.

The hop-by-hop data aggregation is an interesting way to reduce the communication

overhead and energy expenditure of the sensor nodes. Although, the data aggregation

can let malicious or faulty nodes deviate the result, we propose in this chapter a protocol

that lets the sensor nodes and the BS verifying the final aggregation result to eliminate

the malicious nodes. The protocol has two phases: an aggregation-commitment phase to

collect sensory data and aggregate them hop-by-hop, and a verification phase in which the

sensor nodes verify that their sensory data have been included in the aggregation result.

If there is a negative acknowledgment, the BS eliminates the suspected malicious nodes.

4.2 Commitment tree

4.2.1 Notations

• BS : Base Station

• Ot: Ordered aggregation tree

• Bt: commitment tree or binary tree

• |D(Ot, A)|: number of vertex A’s children in Ot
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• D(Ot, A, i): the child number i of A in Ot (children are numerated from left to right)

• P (Ot, A): A’s parent in Ot

• LA
i : label i of node A. Its form is organized in < N,A, i, nA, vA, commitment >

– N : a value to guarantee the freshness of the messages, it can be a nonce value

included in the query disseminated by the BS or a counter incremented in each

round of aggregation. It is a unique value used by all the nodes during the

aggregation round.

– A: the node’s identifier

– i: a value in the range [0..2]

– nA: the number of nodes in the subtree rooted by A

– vA: the aggregation result of the subtree

– commitment: cryptographic value. This field is noted next as hA

• f: is the aggregation function (max, min, mean, . . . ) with two parameters as inputs

for function like max or min or with four parameters as inputs for functions like

mean (f(vB, vA, nB, nA) =
vB × nB + vA × nA

nB + nA

)

• H: the hash function used to calculate the commitment value

• F : L× L → L

LA
i+1 = F (LB

j , L
A
i )

=< N,A, i+ 1, nB + nA, f(vB, vA), H(N,A, i+ 1, nB + nA, f(vB, vA), hB, hA) >

where L is the set of all possible labels

• KA−B: a pair wise key used to authenticate messages between nodes A and B

• KA: a pair wise key used to authenticate the messages between node A and the BS

4.2.2 Ordered tree

The obvious method that a vertex can use to order its children is based on their identifier.

In our protocol, we are going to use three parameters. First, the vertex orders them

decreasingly based on their number of descendants. This order is not total; the vertex

can have some children with equal number of descendants. Second, it can rearrange them

increasingly based on the depth of the subtree rooted by those nodes. This order is not

total too; finally children with equal numbers of descendants and depth are ordered based

on their unique identifier.

When each node in the aggregation tree orders its children, we obtain an ordered

aggregation tree.
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4.2.3 Formation of the commitment tree (binary tree)

There is a one-to-one mapping between the general ordered trees and binary trees, which

in particular is used by Lisp to represent general ordered trees as binary trees [35]. Each

node N in the ordered tree corresponds to a node N ′ in the binary tree; the left child

of N ′ is the node corresponding to the first child of N, and the right child of N ′ is the

node corresponding to N’s next sibling (the next node in order among the children of the

parent of N). For example figure 4.1, in the left tree, A has the 6 children B,C,D,E,F,G.

It can be converted into the binary tree on the right.

Figure 4.1: Encoding n-ary trees as binary

We apply this algorithm on an ordered aggregation tree as defined in paragraph 4.2.2

to form a commitment tree. This formation is distributed in each intermediate node,

which knows only its children, and is able to organize them and send the result to its

parent. So the real structure of the tree is not known by any node, only the BS knows the

organization of nodes and then of the commitment tree. An example of a commitment tree

is the right tree in figure 4.2, the left tree is an ordered (routing) tree. Before describing

the commitment tree formation process in section 4.3, we describe how to represent the

tree nodes and labels in a graph.

4.2.4 Logical representation of the commitment tree

In the commitment tree, a node can at most have three links. Each link means a label

calculation. The logical representation of the commitment tree is represented in figure 4.3.

• ID: Identifier of the node, for example the identifier of the highlighted node in bold

is 23

• L23
0 : Label 0 of node 23 represents the initial node label < N, 23, 0, 1, v23, h23 >
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Figure 4.2: Formation of the commitment tree

• L23
1 : Label 1 of node 23 is the result of function F applied on L38

2 and L23
0 . L23

1 =

F (L38
2 , L

23
0 ). The node sends Label 1 to its parent. If a node has no child in the

routing tree, its Label 1 will be equal to its Label 0.

• L23
2 : Label 2 of node 23 is the result of function F applied on L15

2 and L23
1 . This

Label is calculated by the parent of node 23 in the routing tree. If a node has not

a right child in the commitment tree (e.g. has not a right sibling in the ordered

routing tree), its Label 2 is equal to its Label 1.

Note that all the labels of a leaf node (in the commitment tree) are equal.

Figure 4.3: Logical representation of the commitment tree
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4.3 Protocol description

4.3.1 Query Dissemination

Our protocol may be used first to aggregate the nodes responses to a query disseminated

by the BS. This query can be authenticated by using an authentication protocol like

µ-tesla [22] or H2BSAP [36]. Second, if nodes should periodically send a report contain-

ing their measurements of some physical phenomenon to the BS, those reports can be

aggregated thanks to our protocol.

4.3.2 Cryptographic Security

Exchanged messages between nodes are authenticated by a pairwise key. When a node

receives a message, it verifies that N ′ used in the label is equal to N used in the current

aggregation round. Then it verifies the number of descendants (each node knows the

number of descendant of its children). Finally it verifies the message authentication code

with the corresponding pairwise key.

4.3.3 Aggregation-Commitment phase

The algorithm of this phase is described in figure 4.5. In the beginning, each node prepares

its initial label L0.

Figure 4.4: An ordered aggregation tree of a network

If node M has no child in the routing tree, its labels L1 and L0 are equal. M sends L1

to its parent.

If M has one or more child, it waits until receiving all its children labels or until the

expiration of a waiting timer. If timer expires before receiving all labels, identifiers of
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nodes missing labels are included in the message routed to the BS; this parent and its

children are marked by BS.

Based on the ordered aggregation tree defined in paragraph 4.2.2; the last M’s child

on the right has not right child in the binary tree, so its label L2 is equal to its label L1.

If M has more than one child, it calculates label L2 of next children one by one from the

left to the right until calculating L2 of the first child on the left. After the calculation of

label L2 of the M’s first child on left, or if M has only one child: M calculates its label

LM
1 and sends it to its parent if it has a parent otherwise it is the root (BS).

An execution sample of this algorithm in the network presented in figure 4.4 is illus-

trated in Table 4.1.

19: L19
1 = L19

0

19→ 15 : L19
1 ,MACK19−15(L

19
1 )

15: L19
2 = L19

1

15: L15
1 = F (L15

2 , L
15
0 )

26: L26
1 = L0

26

5: L5
1 = L5

0

15→ 7 : L15
1 ,MACK7−15(L

15
1 )

26→ 7 : L26
1 ,MACK7−26(L

26
1 )

5→ 20 : L5
1,MACK20−5(L

5
1)
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7: L26
2 = L26

1

7: L15
2 = F (L26

2 , L
15
1 )

7: L7
1 = F (L15

2 , L
7
0)

20: L5
2 = L5

1

20: L20
1 = F (L5

2, L
20
0 )

2: L2
1 = L2

0

7→ 1 : L7
1,MACK7−1(L

7
1)

20→ 1 : L20
1 ,MACK20−1(L

20
1 )

2→ 1 : L2
1,MACK2−1(L

2
1)

1: L2
2 = L2

1

1: L20
2 = F (L2

2, L
20
1 )

1: L7
2 = F (L20

2 , L
7
1)

1: L1
1 = F (L7

2, L
1
0)

1: L1
2 = L1

1

⇒ L1
2 is the final label of the aggregation

Table 4.1: An example of the Aggregation-commitment

phase execution in the network shown in figure 4 (“X: Y”

signifies that the instruction Y is executed in node X)
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Figure 4.5: The aggregate-commit algorithm
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4.3.4 Result-checking Phase

The BS broadcasts securely the final label in the network using a secure broadcast pro-

tocol.

To let each node verify that its label has been included in the aggregation process, it

needs some labels to build the aggregation tree until obtaining the root label and verifying

that the received and calculated labels are equal. For example in the aggregation tree,

figure 4.6, the root label is L1
2. The node 15 needs some labels, which are highlighted on

green, to build the commitment tree.

Figure 4.6: Needed labels by node 15 to build the commitment tree

So, each internal node A in the aggregation tree should send some information to its

children:

• All labels that A receives from its parent

• its label 0 (LA
0 )

• If A has more than one child, it sends to its first child B on the left in Ot, the label

2 of B’s next sibling in Ot

• To its child B, the Labels 1 of all B’s left siblings and Label 2 of B’s next sibling if

B is not the last.

When the node receives all the necessary data to build the commitment tree, it verifies

that its label has been included in the aggregation process by verifying that the received

and the calculated final labels are equal.

Then each node sends an authentication code to the BS:

• if the verification is successful: MACKs(N‖Ok); let us refer to as OK − ACK
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• otherwise MACKs(N‖No); let us refer to as NO − ACK

Ok and No are unique message identifiers; and Ks is a pairwise key shared between

the BS and node s. To minimize the amount of data sent to the BS, each node XOR its

authentication code with its children and sends the result to its parent.

The BS verifies the consistency of the aggregation result by calculating

MACK1(N ||Ok)XOR · · ·XORMACKn(N ||Ok)

and then it verifies that the calculated and the received values are equal.

4.3.5 Elimination of malicious or faulty nodes

In this protocol we proceed differently from the method proposed in [37]. In the latter

case, they use two adversary localizer schemes to mark and eliminate misbehaved nodes.

In result-checking phase, they use an XORed MAC for each level in the commitment tree

and in the second scheme they use big encrypted messages. The major weakness of this

protocol is big messages which are very dependent on the network size and architecture.

In our protocol we proceed by branch in the aggregation tree so we explore branches

where there is a NO-ACK. By exploring the branch, we can find the node N that has NO-

ACK so we mark it and its parent M. If M is not already marked, it becomes a leaf. Its

descendants (S : the set of M’s descendants) become roots of their subtree. An algorithm

to rearrange the tree is triggered. The BS requests nodes in S to seek for a new parent;

a HELLO message is sent by each node in S and add responding nodes to the list of its

possible parents (nodes in S should not respond to the HELLO message). Then each node

sends its list to the BS; the BS reorganizes the tree by choosing the new parent of the

nodes in S. Different and not marked parents are the most preferred.

Nodes marked twice and those which do not send the potential parent list are elimi-

nated from the network. The children of eliminated nodes are added to S.

For example in figure 4.7, A is the BS. A receives XORed MAC from all its children,

it verifies it and it finds that in E’s branch there is a NO-ACK. So the BS demands from

E its Ack and the XORed MACs of its children. E has an OK-ACK, so BS asks the E’s

children to send ACKs and the XORed MACs of their children. A discover that K has a

NO-ACK so it marks E and K. E becomes a leaf, K and L seeks for a new parent that is

preferably not already marked.

4.4 Congestion complexity

In the aggregation commitment phase, each node sends one label to its parent for whatever

the number of its children. In the result-checking phase, each node needs some off-path
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Figure 4.7: Exploration of tree branches

labels to generate the aggregation tree and obtain the final label. Let’s define the depth

of a node in the commitment tree by the minimum number of hops from it to the root

plus one. So the root depth is one. Node 15 depth, in figure 4.6, is three. The number of

labels needed by each node, except the root, is in the range [n-1, 2(n-1)], where n is the

node depth.

Proof: The extreme number of messages in the range [n-1, 2(n-1)] are reached when the

commitment tree is a full binary tree.

• Depth n=2: the tree is composed of one root and two child like figure 4.3.

– node 38 needs L23
0 and L15

2 : 2× (2− 1) = 2

– node 15 needs only L1
23: 2− 1 = 1

• Suppose that a node in extreme left needs 2(n-1) labels and a node in extreme right

needs (n-1) labels.

• Demonstrate it for nodes in depth n+1 (range [n,2n])

– As described in 4.3.4, a node A in extreme left with depth (n+1) has a parent B

in extreme left too with depth n. B sends to A the labels that it has already

received, LB
0 and label 2 of A sibling. So A receives 2 × (n − 1) + 2 = 2 × n

labels

– As described in 4.3.4, a node C in extreme right with depth (n+1) has a

parent D in extreme right too with depth n. D sends to C the labels that it

has already received, LD
1 . So C receives (n− 1) + 1 = n labels.
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Analysis and comparison

As we see, each node sends a unique label in each aggregation round; but it needs between

(n − 1) and 2(n − 1) labels to verify the aggregation result authenticity, where n is the

node depth in the binary tree.

The positive point of this protocol SeBTIA is: the aggregation result is received rapidly

by the BS because the transmission of one message is pretty expensive with 12ms duration

and the number of messages sent in the aggregation-commitment phase is optimized. The

BS obtains the aggregation result and then it verifies its authenticity. If malicious nodes

are detected, they are eliminated by executing the algorithm described in section 4.3.5.

Let N be the number of nodes in the network, and ∆ be the maximum degree of any

node in the aggregation tree [29]. In the aggregation commitment phase, each node using

SHIA can send more than one label. Moreover, SHIA uses SUM and COMPLEMENT

aggregation functions which make labels voluminous. In the result checking phase, SHIA

induces O(∆log2(N)) maximum node congestion in the aggregation tree [29]. Suppose

that the maximum node congestion in SeBTIA is 2(N − 1) (that can not happen). To

compare the two congestion functions: O(∆log2(N)) and 2(N − 1), let’s do that for

different values of ∆ according to the total number of nodes in the network. We remark

in figure 4.8 that for a value of ∆, there is a limit N1 where ∀x < N1, 2(x−1) < ∆1log
2(x).

Figure 4.8: Comparison of SHIA and SeBTIA messages complexity

SeBTIA becomes more efficient when we limit the number of N . That can be done

by associating SeBTIA to a local aggregation protocol like SAPC which aggregates the

messages locally in the cluster. Thus the CH aggregates the data of the cluster nodes,

then it aggregates the messages that it receives from other CHs. Finally, it sends a unique

message to its parent, the BS or another CH, in the aggregation tree.
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4.5 Implementation and tests

We implemented the aggregation protocol of SeBTIA in TinyOS 2.x to test and analyse

it. The memory space occupied in a tmote sky sensor by the program is described in the

table 4.2:

Memory space

ROM (bytes) 31928
RAM (bytes) 2572

Table 4.2: Memory space occupation in SeBTIA

The authenticity verification of each received label takes 3,68ms. The generation of

L0 in each node takes also 3,68ms. The preparation of LA
1 depends on the number of A’s

children. The figure 4.9 describes the execution time needed to prepare label L1 by a

node according to the number of its children.

Figure 4.9: Execution time needed to prepare L1

4.6 Conclusion

In this chapter, we discussed a new aggregation protocol that enhances the security along

the aggregation phase while minimizing the number of labels needed to check the aggre-

gation result. Compared with SHIA, our protocol is independent from the aggregation

function, it generates smaller labels and each node sends a unique label in the aggregation

phase.
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Conclusions & perspectives

In this report, we focus on securing data aggregation in wireless sensor networks from

outsider attacks. We compare two protocols, SAPC and Hu et al.; and we propose a

new aggregation protocol SeBTIA. It enhances the performance of SAPC and it is more

scalable and efficient than SHIA in several aspects. It is also applicable on random network

topologies.

There are other solutions proposed in the literature to secure the data aggregation

which are not based on cryptographic functions. As surveyed in chapter 2, in [31], the

security is assured mainly by the probabilistic functions and trust. Thus it can reduce

the calculation cost in the sensor nodes.

The tests of SAPC, in chapter 3, show that it is time consuming especially for the

verification of reading messages. It causes also the exchange of many messages inside the

cluster. We plan to further investigate the mathematical functions to enhance the per-

formances in the cluster local aggregation. Game Theory is a possible way to accomplish

security without cryptographic functions. In fact, the aggregation process in the cluster

can be viewed as a game between the cluster members.

In chapter 4, we describe the SeBTIA protocol which is a secure and rapid solution

for hop-by-hop data aggregation. It uses a delayed verification of the aggregation result

and it gives a mechanism to detect and eliminate the malicious nodes. The association of

this protocol to a more adapted local aggregation protocol will enhance its performances.

We plan to investigate this track by associating it to a local aggregation protocol based

on the Game Theory.

TinyOS 2.x does not support an advanced query language, secure query dissemination

and user rights. Those are also possible subjects for future works.
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Figure A.1: Component diagram of the SAPC application
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Figure A.2: Component diagram of the Hu et al. application
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Figure A.3: Component diagram of the SeBTIA application
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