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ABSTRACT
At present, almost all leading steganographic techniques for
still images use a distortion minimization paradigm, where
each potential change is assigned a cost ci and the change
probabilities πi chosen to minimize the average total cost∑
i πici. However, some detectors have exploited knowl-

edge of this adaptivity and the embedding cannot be con-
sidered optimal. In this work we prove a theoretical result
suggesting that, against a knowing attacker, the embedder
should simply minimize

∑
i π

2
i ci instead, for the same costs

ci, which is the minimax and equilibrium strategy. This
aligns with some special case results that have appeared in
recent literature. We then test some simple steganographic
methods in theoretical and real settings, showing that naive
(average cost) adaptivity is exploitable, but the equilibrium
probabilities cannot be exploited. However, it is essential to
determine statistically well-founded costs ci.
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1. INTRODUCTION
Even the first steganographers knew that not all embed-

ding changes are equal: some are more detectable than oth-
ers. Early steganographic literature [27, 15] tried various
approaches to what we now call adaptive embedding, but it
was with the discovery of Syndrome Trellis Codes [6] that
adaptive steganography became practical. In the theory of
additive optimal embedding, each change is independent and
has some distortion cost ci

1 that can be computed from the
cover, and aims to make that change with probability πi to
minimize the average total cost∑

i

πici. (1)

1A common notation for a cost is ρi, but we prefer to reserve
Greek letters for the strategies of the embedder and detector.
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When embedding is not binary, the sum becomes
∑
i,j π

j
i c
j
i ,

where cji is the cost of applying change option j to loca-

tion i, and πji the corresponding probability. Note that the
hypothesis of additive distortion can be extended to local in-
teractions between neighbouring distortions, and computed
using Gibbs sampling over disjoint sublattices [5].

At present, the leading steganographic embedding meth-
ods for digital images employ this method: HUGO [18],
WOW [9], the UNIWARD family [10], HILL [17]. But in
the last two years some detectors have been published that
exploit the adaptivity: by placing more weight on parts of
the image where it is estimated more likely to contain pay-
load, the performance of the detector can be improved [25,
4, 3]. The first version of UNIWARD [10] was exploited to
the extent that it would have been better to use an older
embedding method instead, and the cost function had to be
altered [3]. A somewhat similar bug was present in the first
version of HUGO, exploited in the BOSS contest [8], but
this can better be explained by the cost function omitting
important information rather than the detector exploiting
its values.

If circumstances exist under which additive adaptive em-
bedding can be exploited by a knowing detector (one who
has knowledge of the distortion costs) then the adaptivity
cannot be optimal. In part the suboptimality is because de-
tectability is a property of cover and stego distributions, and
cannot be determined from minimizing distortion in a single
images; in part because the knowing detector can exploit
the adaptivity. Hence we call embedding that optimizes (1)
naive adaptivity2. We will argue that the embedder should
minimize an alternative total cost,∑

i

π2
i ci (2)

for the same ci as before. When embedding is not binary,
this becomes

∑
i,j,k π

j
i c
j,k
i πki , where cj,ki is a matrix defined

by cost interactions at location i. We call this equilibrium
adaptivity, because it is the equilibrium strategy of a zero
sum game between the embedder and detector (in this work
also called the attacker), in a suitably simple theoretical
setting. And since it is a minimax strategy, the embedder
has optimized against the worst case: the knowing attacker.

Our result certainly has limitations: it assumes indepen-
dence of pixels or pixel groups, and that each embedding
changes only one element. The former is common in the

2Note that in some other work [21], naive adaptivity was
used for an even weaker embedding that always picks the
location with lowest cost.



theory of steganography and has not prevented theoretical
results from predicting practical performance [14], but the
latter is an important consideration for further work on prac-
tical equilibrium adaptivity, as changing one pixel typically
affects multiple measurements [4].

The structure of the paper is as follows. In Section 2 we
give the theoretical justification for equilibrium adaptivity
in models of covers where the pixels are independent. We
make comparisons with existing literature using embedding
costs in Section 3 and note that our result generalizes some
special cases that have appeared recently, where squared
probabilities can also be found; we also discuss how (2) can
be optimized in practice. In Section 4 we test the theory
against artificially-generated binary covers matching the bi-
nary model, and in Section 5 we examine the original ver-
sion of S-UNIWARD, whose adaptivity was exploitable, and
show that equilibrium mitigates this effect. However, since
UNIWARD costs are not statistically founded, we do not
optimize the embedding in this case. We draw conclusions
in Section 6.

2. THEORETICAL RESULTS
In the game theory of steganography, the detector wishes

to optimize some performance metric of their hypothesis test
for

H0: object under consideration is a cover, vs.

H1: object under consideration is stego.

In the results below, we will be able to make a large-sample
approximation, so that the detection is based on a statistic
` with Gaussian distribution under either hypothesis. We
will define

µ0 = EH0 [`], µ1 = EH1 [`],

σ2
0 = VarH0 [`], σ2

1 = VarH1 [`].

In this work we choose the detector’s payoff as the true
negative rate when the false negative rate is 50%. The em-
bedder’s payoff is the inverse, the false positive rate when
the true positive rate is 50%, which is a benchmark we have
advocated in [19] for high-accuracy steganalysis. The game
is zero sum (i.e. the gain on the detector’s side is exactly
balanced by the losses on the embedder’s side).

Without loss of generality we may assume µ0 < µ1. For
50% true positives, the detection threshold for ` is the me-
dian value of ` in hypothesis H1, which is µ1 (and does not
depend on σ1). The detector’s payoff is PH0 [` < µ1] = Φ(δ),
where Φ is the Gaussian cumulative density function and δ
is the deflection

δ =
µ1 − µ0√

σ2
0

. (3)

Since Φ is increasing, we can assume that the detector aims
to maximize, and the embedder to minimize, δ.

This payoff function is a Neyman-Pearson criterion: the
detector optimizes one type of error against a fixed limit on
the other. In case the reader would prefer a different choice,
for example the equal-prior error rate which is often used in
steganographic game theory [20], we mention that this pro-
vides an asymptotically equivalent ranking since in the large
sample limit the square root law [14] would force πi → 0,
hence σ2

0 ∼ σ2
1 . Then equal-prior error has a monotone rela-

tionship with any Neyman-Pearson criterion. The deflection

has appeared in other work (in which the cover models are
restricted) on optimality against a knowing attacker [23, 22],
and can be found as the payoff in steganographic games even
as far back as [11]. It has also been justified by empirical
evidence from steganographic likelihood ratio tests, in [2].

2.1 Binary Embedding in Binary Covers
To illustrate the calculations we begin with the simplest

possible cover, consisting of n independent binary pixels. If
they had equal probability distribution there would be no
adaptivity, so we define pi as the probability that pixel i
takes value 1. We assume that these are known to the de-
tector. Embedding must flip pixels, and we define the em-
bedder’s strategy as (π1, . . . , πn) where πi is the probability
of flipping pixel i; this is the adaptivity that we may (or
may not) grant to the detector. Therefore in a stego object
the probability that pixel i takes value 1 is

(1− πi)pi + πi(1− pi) = pi + πi(1− 2pi).

We know the form of an optimal detector for these hy-
potheses; the Neyman-Pearson Lemma states that we should
reject the null hypothesis (give a positive detection) if the
log-likelihood ratio

log
∏
i

(
pi + πi(1− 2pi)

)xi(1− pi − πi(1− 2pi)
)1−xi

pxii (1− pi)1−xi

= c+
∑
i

xi
[
log
(

1 + πi
(
1−2pi
pi

))
− log

(
1− πi

(
1−2pi
1−pi

))]
,

where xi denotes the observed value of pixel i, exceeds a
threshold.

We do not need to analyze the likelihood ratio; it is suffi-
cient to note that it is a constant plus3

`(xi, ωi) =
∑
i

xiωi

where (ωi) defines the detector’s strategy (the weight they
give to each observation). Because likelihood ratio tests are
an optimal subclass of all hypothesis tests under a Neyman-
Pearson criterion (such as the false positive rate at 50% true
positives), it is sufficient to consider detectors of this type,
seeking equilibrium between (πi) and (ωi).

Asymptotically for large n and constant payload size, the
Central Limit Theorem says that the distribution of `(xi, ωi)
is Gaussian in either null or alternative hypothesis, with
µ0 =

∑
piωi, µ1 =

∑(
pi+πi(1−2pi)

)
ωi, and σ2

0 =
∑
pi(1−

pi)ω
2
i . So by (3), the detector’s payoff is monotone increas-

ing in the deflection∑
i πi(1− 2pi)ωi√∑
i pi(1− pi)ω2

i

= δ(πi, ωi, di, ei)

where di = (1− 2pi), ei = pi(1− pi), and

δ(πi, ωi, di, ei) =

∑
i πidiωi√∑
i eiω

2
i

. (4)

It may easily be verified that

∂δ

∂ωj
∝ (
∑
ieiω

2
i )πjdj − (

∑
iπidiωi)ejωj . (5)

3We use `(xi, ωi) as shorthand to mean a function of all xi’s
and ωi’s.



The detector wants to maximize the value of δ in (4). An
ignorant detector4 must proceed as if all πi are equal to a
constant π. Therefore (5) yields in this case

ωj ∝ πdje−1
j .

Note that multiplying the weights ωi by a constant does not
change the detector. The stationary point can be verified to
be a maximum as long as all pi are not equal to zero or one,
but we omit the routine calculation. Substituting into (4)
gives

δ(πi, di, ei) =

∑
i ππid

2
i e
−1
i√∑

i π
2d2i e

−1
i

,

the π terms cancel (hence it does not matter whether the
ignorant detector is granted knowledge of the payload size,
which would reveal π), and the denominator is constant,
leaving

δ ∝
∑
i

πici, (6)

where:

ci = d2i e
−1
i =

1− 2pi
pi(1− pi)

, (7)

turns out to be the true statistical cost of flipping pixel i.
The best counter-strategy for the embedder minimizes this

value of δ, subject to a payload constraint
∑
iH(πi) = m,

where H is the binary entropy function. This is the familiar
“optimal embedding” scenario, where the total costs are lin-
ear in the embedding probabilities; the standard solution can
be found using the method of Lagrange multipliers, which
gives λcj = H ′(πj) and hence the well-known solution

πi =
e−λci

1 + e−λci
(8)

for some constant λ determined by the payload constraint.
A knowing detector wants to maximize the value of δ,

given complete knowledge of πi. From (5), δ is maximized
when

ωj ∝ πjdje−1
j (9)

in which case the numerator of (4) is the square of the de-
nominator, so that

δ2 ∝
∑
i

π2
i ci (10)

where again ci = d2i e
−1
i . Note that the payoff depends on the

squared embedding probabilities, but the costs are identical
to the standard optimal embedding scenario. This time the
solution satisfies λcj = H ′(πj)/πj , which does not have a
closed form. See Subsection 3.2 for a discussion of how (πi)
should be found; for now we simply draw attention to the
difference between optimization for an ignorant attacker (6)
and a knowing attacker (10).

Since the two player game is zero sum, the minimax solu-
tion (πi, ωi) is an equilibrium [26].

2.2 q-ary Embedding in Arbitrary Covers
Now consider a model where n pixels take values in some

finite alphabet {a1, . . . , al}. We still assume that they are

4Recall that the detector is ignorant of the individual values
of πi, but still granted knowledge of pi, hence di and ei.

independent of each other, and a fixed independent embed-
ding operation, but this can be arbitrary, and the pixels can
take arbitrary and different distributions.

We define pki = P[Xi = ak] as the distribution of cover
pixel i, and gather it into a vector pi.

5 When a pixel is used
for embedding, it changes from value aj to ak with prob-
ability qkj gathered into a matrix Q (for convenience, our
matrix is organized in columns). Such matrices can describe
LSB Replacement or Matching, Ternary or Pentary Embed-
ding, etc. Note that pi and Q are parameters of the game,
known to the detector.

As before, the embedder’s strategy is the probability that
each pixel is used (πi). The unconditional distribution of
stego pixels is therefore given by qi = (1− πi)pi + πiQpi.

This time the log-likelihood ratio is of the form

c+
∑
i

∑
k

[xi = k] log(1 + πi
qki −p

k
i

pki
)

where [A] is the Iverson bracket taking value 1 when A is
true. For the same reasons as before it is sufficient to con-
sider detectors, parameterized by the detector’s strategy ωki
(i = 1, . . . , n, k = 1, . . . , l), of the form

`(xi, ω
k
i ) =

∑
i

∑
k

[xi = k]ωki . (11)

We collect the detector’s strategy into n vectors ωi. Rou-
tine calculation gives

µ1 − µ0 =
∑
i

πid
T
i ωi,

where di = (Q− I)pi, and

σ2
0 =

∑
i

pTi Eipi,

whereEi = ∆pi−pip
T
i , ∆pi representing a diagonal matrix.

Thus the detector’s payoff is monotone increasing in

δ(πi,ωi,di,Ei) =

∑
i πid

T
i ωi√∑

i ω
T
i Eiωi

. (12)

Employing some vector calculus,

∂δ

∂ωj
∝ (
∑
iω

T
i Eiωi)πjdj − (

∑
iπid

T
i ωi)Ejωj . (13)

For an ignorant detector, δ is maximized when Ejωj ∝
dj . Then (12) simplifies to

δ ∝
∑
i

πici, (14)

where ci = dTi E
−1
i di.

For a knowing detector, (13) implies that they should
choose (ωi) so that

Ejωj ∝ πjdj

which, similarly to before, leads to

δ2 ∝
∑
i

π2
i ci (15)

for the same ci. Again, compare (14) with (15).

5We will use boldface lowercase letters for vectors, and bold-
face uppercase for matrices.



We will not solve these optimization problems, but pro-
ceed to a more general problem in the following subsection.

(There is a little wrinkle that has been obscured by our
use of vector notation. The matrices Ei, which are covari-
ance matrices of a multinomial distribution, are all deficient.
This does not affect the correctness of the calculations, as
long as all pki are positive, since then rank(Ei) = l − 1 and∑
k d

k
i =

∑
k p

k
i − qki = 0 also has one degree of redundancy.

Thus Ejωj ∝ πjdj does define ωj uniquely up to a constant
multiple, and ci = dTi E

−1
i di is well-defined.)

2.3 Arbitrary Embedding
Consider now a fully arbitrary embedder, who can ap-

ply different embedding operations to each pixel. The cover
model is still defined by pi, but it makes sense to consider
the embedder’s strategy to be exactly their output at pixel
i, the vectors πi = (π1

i , . . . , π
l
i); we do not need to know

what the embedder does with the cover pixel, merely what
they output.

All pixels are potentially used (this does not stop the em-
bedder from outputting cover pixels, of course). The cal-
culations are therefore the same as the previous subsection
with πi = 1, but now

di = πi − pi

as what was previously called qi becomes the embedder’s
move in the game, rather than a parameter known to the
detector.

The detector’s strategy is of the same form as before, (ωi),
but there is no optimal detector who is ignorant of πi. They
cannot perform a likelihood ratio test without knowing the
ratio, and we postpone to future work investigation of a gen-
eralized likelihood ratio test in this model. However, against
any fixed detector the ωi can be considered constants; there-
fore so is the denominator of the deflection (12), which in
this case reduces to

δ ∝
∑
i

(πi − pi)Tωi.

The payload constraint is the familiar∑
i

H(πi) = m

where H(πi) represents the entropy of the vector πi, with
the additional constraint that

∑
k π

k
i = 1. Using vector

calculus6 and Lagrange multipliers (omitting routine calcu-
lation of this standard result) we reach

λωi = ln(µiπi)

where ln(µiπi) applies the logarithm pointwise to the vector.
This has the well-known q-ary optimal embedding solution

πki =
e−λω

k
i∑

k e
−λωk

i

. (16)

On the other hand, for a knowing detector, we still have

Ejωj ∝ πj − pj ,

and so

δ2 ∝
∑
i

(πi − pi)TE−1
i (πi − pi). (17)

6Note that ∂
∂πi

H(πi) ∝ 1 + lnπi.

In this situation the embedder should minimize a quadratic
form, the multidimensional analogue of the squared proba-
bilities in (10). The solution satisfies

λE−1
i πi = ln(µiπi) (18)

for a constant λ determined by the payload constraint, and
µi to ensure that

∑
k π

k
i = 1. For a brief discussion of how

this is solved, see Subsection 3.2.

3. RELATION TO OTHER WORK
There have been a few contributions on embedding against

a knowing detector, and some recent work has produced
results that have superficial similarities with ours. In this
section we make the connections more explicit.

3.1 Related Work on Optimality
Most distortion costs in the literature are derived directly

from the cover content. They are built on the rationale that
the distortion should be low for samples that are difficult
to predict (e.g. pixels located in textures of an image) and
high for samples that can be easily predicted (e.g. edges
or homogeneous areas). For example the schemes UNI-
WARD [10] and WOW [9] use high-pass wavelet subbands,
while HILL [17] uses a succession of high-pass and low-pass
filters. Theses schemes approximate the local noise power
in the image, and the cost is akin to a (stego-)signal to (im-
age self-)noise ratio. For all these schemes the distortion
minimized is of the form

∑
i πici.

The cost derived in HUGO [18] is a “hybrid” in the sense
that its distortion uses weights directly computed from the
image content (the successive differences between neighbour-
ing pixels), but the algorithm also attempts to preserve a
global distortion model between the entire cover and stego
image. The model is derived from co-occurrence matrices of
image residuals. Again, the distortion minimized is of the
form

∑
i πici.

Note that these distortion measures are blind to the knowl-
edge of the steganalyser, and more particularly to the fact
that a detector might use an estimation of the embedding
probabilities π̂i to derive detectors that will be more sen-
sitive to embedding changes. Recently, knowing detectors
(sometimes called omniscient in the literature) have ap-
peared with tSRM [25] or the maxSRM [4] feature sets,
which explicitly use π̂i and can offer up to 10% improvement
on the classification accuracy for very small payloads [4].
Note also that these feature sets are derived by weighting
each occurrence by its probability of change, exactly like
the optimal detection strategy proposed in equation (9).

The following steganographic schemes are interesting be-
cause they implicitly or explicitly assume that the steganal-
yser may have knowledge or estimates of πi, and result in
distortions depending on π2

i .
The first distortion measure comes from [12] which is set

in the context of batch steganography, and measures statis-
tical distortion using Kullback-Leibler Divergence (KLD).
The total distortion of the batch is then a weighted sum
of the squares of the number of embedding changes in each
image; the latter is proportional to the probability of embed-
ding in any given location in that image. For example, in [12,
§2.2] total distortion is proportional to

∑
i ciπ

2
i , where ci is

called the “Q-factor”. Even though this theoretical analysis
did not generate a practical embedding method, it appears
to be the first that proposed a distortion where the cost is



weighted by π2
i . Measuring detectability by KLD implic-

itly models the worst-case opponent, who would indeed be
a knowing detector.

Ref. [7] is another that measures detectability by KLD.
It is approximated by

∑
1
2
Ii(0)π2

i where Ii(0) denotes the
Fisher information of the stego content with respect to πi.
The authors use a local Gaussian approximation of the image
pixels in a neighbourhood to derive Ii(0) (which is indepen-
dent of πi) and to perform the minimization. It is interesting
to note that the “Q-factor” mentioned in [12] is in fact also
half of Fisher’s information.

Instead of minimizing KLD, two recent works have opti-
mized embedding with respect to a likelihood ratio detector.

In [23] the cover is modelled as a discretized univariate
generalized Gaussian model with varying variance (similar
to the model of [7]), and the embedding is pentary. The
probabilities of ±1 and ±2 changes constitute the embed-
der’s strategy. Similarly to our analysis, the authors argue
that the embedder should minimize a deflection coefficient,
and by approximating the likelihood ratio explicitly they de-
rive an optimization [23, Eq. (11)] which is a quadratic form
like (18).

In [22] the cover is modelled as a discretized Gaussian
with varying variance, and the embedding is ternary. The
square deflection of the likelihood ratio is given by

∑
π2
i /σ

4
i

where σ2
i denotes the variance of the underlying local Gaus-

sian model at location i [22, Eq. (11)]. They also compute
the deflection against an ignorant (there called indifferent)
detector, which is proportional to

∑
πi/σ

4
i [22, Eq. (12)].

This confluence of results is encouraging. Our contribu-
tion is to show that the conclusions are not dependent on a
particular cover or embedding model, and apply to arbitrary
discrete covers and arbitrary embedding operations.

3.2 Related Work on Implementation
We have not yet explained how the optimization problems

(10) and (17) can be solved. In fact, some of the other
literature mentioned above derives equations of a similar
form, and the generalizations are simple enough that we
need not go into much detail about them.

For linear additive distortions
∑
πici it is well-known that

we can optimize without even finding the solution (8), via
Syndrome Trellis Codes (STCs). For arbitrary embedding
against a fixed detector,

∑
πiωi can be optimized using l-

ary STCs, though their complexity grows very rapidly with
the alphabet size l, or nested STCs [6].

In [22] the authors explain how a function that fits the
form

∑
π2
i ci can be optimized: numerically solve the rela-

tionship λcj = H ′(πj)/πj , inside an interval bisection search
for λ meeting the payload constraint. Then reverse-engineer
costs dj = H ′(πj)/λ would have given the same solution for
naive embedding and λ that would leave these probabilities
on the rate-distortion bound. Applying STCs to the ad-
justed costs (di) should make changes with approximately
the optimal probabilities (πi). However the probabilities will
not be exact, because STCs do not meet the rate-distortion
bound exactly.

We should mention that, although λcj = H ′(πj)/πj does
not have a closed-form inverse, it would be trivial to tabulate
a few million values for locating πj from λcj , and this only
needs to be done once. Then, if necessary, the inverse could
be refined with one or two steps of the Newton-Raphson
method. In our experiments the calculation of embedding

probabilities was negligible compared with calculating the
costs in the first place.

In [23] the authors arrive at a system of 2n + 1 variables
that is similar to the nk simultaneous equations we reached
in (18); their system is simpler because the embedding op-
eration is limited to ±1 and ±2 changes. We advocate the
same approach that they take: it is a convex system, so
Newtonian numerical methods should converge quickly to a
solution. Again, these can be reverse-engineered into costs
for a l-ary or nested STC.

Nonetheless, in this work we will not try to implement
equilibrium embedding, since it is sufficient for our purposes
to simulate it by applying changes with the optimal proba-
bilities.

4. ARTIFICIAL BINARY COVERS
Our initial experiments are on artificial“images”fitting ex-

actly the model in Subsection 2.1, which ensures that most
of the assumptions of the theory are true (in particular, in-
dependence of pixels). These experiments test whether the
use of the large sample approximations is valid. Our cov-
ers will contain n = 218 pixels, the size of images in the
BOSSBase library [1].

In order to generate covers according to the model, we
must select the pixel probabilities pi ∈ (0, 1). In the first ex-
periment we drew pi independently from a Beta distribution
with parameters (5, 5); this means that they are somewhat
bell shaped and symmetrical around pi = 0.5. We generated
10 000 cover images using this model.

We then simulated three types of embedding on the rate-
distortion curve: non-adaptive embedding where πi is con-
stant, naive adaptive embedding where

∑
i πici is minimized,

and equilibrium adaptive embedding where
∑
i π

2
i ci is min-

imized. In each case the payload constraint was
∑
H(πi) =

0.1·218, simulating a payload of 0.1 bits per pixel, a size cho-
sen so that the detectors will be neither practically-perfect
nor near-random. We generated 10 000 stego images for each
case.

In Figure 1 (top) we show the histogram of the values pi,
and the relationship between the cost ci (computed from
pi using the results in section 2.1) and the naive or equi-
librium embedding probabilities πi. Throughout the figure,
red denotes the naive adaptivity and blue the equilibrium.
Observe that equilibrium embedding assigns lower probabil-
ities to low costs, but slightly higher probabilities to high
costs: it is less aggressive in its adaptivity (which is the rea-
son that it cannot be exploited). We also show histograms
of the binary entropy of the naive and equilibrium proba-
bilities: H(πi) indicates how many bits of payload (under
perfect coding) are placed in location i. Observe that naive
adaptive embedding prefers to hide almost one bit in each of
a few locations (in this case over 58% of the payload is placed
into just under 6% of the locations) and zero or almost zero
in the rest. Note that in the Bernoulli model, the costs dip
sharply for pi close to 0.5, since ci = (1 − 2pi)

2/pi(1 − pi)
(see Eq.(7)), so these locations appear attractive for pay-
load. However, equilibrium embedding places at least a tiny
amount of payload in every location, and very few contain
as much as nearly one bit.

Because we know exactly the cover model and the embed-
ding probabilities, we can build an optimal detector directly
from the likelihood ratio test (LRT), rejecting the null hy-
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Figure 1: Embedding in artificial binary covers. From left to right: histogram of the probabilities pi that pixel
i takes value 1; relationship between embedding cost and probability when the adaptivity is naive (red) and
in equilibrium (blue); histogram of the binary entropy of the embedding probabilities for naive adaptivity
(note that the zero bin is truncated); for equilibrium adaptivity, displayed on the same scale. Above, pi is
drawn from the Beta(5, 5) distribution, with a payload of 0.1 bits per pixel in 218 pixels. Below, pi is drawn
from the Beta(5, 20) distribution, with a payload of 0.02 bits per pixel in 218 pixels, and the histogram of H(πi)
focuses on low entropy locations.

pothesis if∑
i

xi
[
log
(

1 + πi
(
1−2pi
pi

))
− log

(
1− πi

(
1−2pi
1−pi

))]
exceeds a threshold. This can be done with each (πi), to
create the detector’s optimal counter-strategy to each of the
embedder’s three strategies. We then computed the em-
pirical embedder’s payoff, the false positive rate when the
true positive rate is 50%, for each detector against each em-
bedding adaptivity. The results are shown in Table 1 (top),
where each row corresponds to the optimal detector for each
type of embedding, and each column to that embedding.

At this payload rate, non-adaptive embedding is highly
detectable by the conventional LRT (0.000 false positives),
but if the embedder switches to standard naive adaptiv-
ity this detector is almost random. However, a knowing
attacker can regain good performance by using the adap-
tivity in the LRT (0.023 false positives). To avoid being
exploited, the embedder should use equilibrium adaptivity,
and the optimal detector still makes false positives at a rate
of 0.145. Amongst the three embedder/detector strategies
shown here, the table shows that equilibrium embedding
and the LRT detector for it do indeed form an equilibrium,

since the detector can only degrade their performance by
deviating from it, and the embedder can only become more
detectable by deviating.

The bell-shaped distribution of pixel probabilities pi leads
to many costs very close to zero, which is probably not a
good model for steganography in real images. Therefore
we repeated the previous experiments with a different dis-
tribution of pi, this time from the Beta distribution with
parameters (20, 5), in which the costs do not get too close
to zero. The higher costs indicate that payload will be more
detectable, so we reduced the payload constraint to 0.02 bits
per pixel, again so that the detectors’ performance is neither
too good nor too poor. The distribution of pi, the relation-
ship between costs and embedding probabilities under naive
and equilibrium adaptivity, and the distribution of payload
are shown in Figure 1 (bottom) and the performance of the
detectors in Table 1 (bottom). We observe similar features:
naive adaptive embedding is more secure against an igno-
rant opponent, but can be exploited by a knowing opponent
to the extent that it becomes even more detectable than no
adaptivity at all. Equilibrium embedding spreads the pay-
load rather more evenly than naive adaptivity, and cannot
be exploited.



(a) pi taken from Beta(5, 5), 0.1 bits per pixel embed-
ded in 218 pixels

Embedding adaptivity

LRT detector for None Naive Equilibrium

No adaptivity 0.000 0.492 0.335

Naive adaptivity 0.443 0.023 0.225

Equilibrium 0.038 0.081 0.145

(b) pi taken from Beta(5, 20), 0.02 bits per pixel em-
bedded in 218 pixels

Embedding adaptivity

LRT detector for None Naive Equilibrium

No adaptivity 0.040 0.433 0.198

Naive adaptivity 0.472 0.000 0.305

Equilibrium 0.099 0.023 0.116

Table 1: The embedder’s payoff (false positive rate
when true positive rate is 50%) for artificial binary
covers. Likelihood ratio tests for each adaptivity
type were tested against embedding with each adap-
tivity type.

5. EXPLOITABILITY OF S-UNIWARD
Finally, we attempt to apply the theory of equilibrium to

the contemporary steganographic algorithm S-UNIWARD
[10]. This calculates the distortion of changing pixel i from
a Wavelet-transformed image:

ci =

3∑
k=1

m∑
u=1

n∑
v=1

W
(k)
uv (X)−W (k)

uv (Xi)

σ +W
(k)
uv (X)

,

whereX is the matrix of m×n cover pixels,Xi the same im-

age with only change i applied and W
(k)
uv (·) denote the (u, v)

wavelet coefficients in the first-level undecimated Daubechies
8-tap wavelet decomposition. The index k = 1, 2, 3 corre-
sponds to the LH, HL, and HH subbands, respectively.

The original version of UNIWARD used σ = 10−15 to
avoid division by zero, but this caused wide variation in the
costs, and hence a strong preference for certain embedding
locations. In [3] the authors demonstrated the vulnerability
of S-UNIWARD to an attacker who could estimate the costs
via a feature set called Content-Selective Residuals (CSR);
the same work proposed the simple heuristic fix of setting
σ = 1 to moderate the costs. The effect on embedding prob-
abilities is similar to that of an equilibrium strategy: it in-
creases the likelihood of embedding in previously unused pix-
els, and reduces it in the more commonly-used areas. Since
then, further (less catastrophic) attacks on S-UNIWARD
have been accomplished by weighting features according to
the probability of embedding, which our theory predicts to
be optimal (9), in feature sets tSRM [25] and maxSRM [4].

In these experiments, we investigate whether an equilib-
rium strategy provides an alternative to changing the value
of σ. For just one image, the histogram of the costs with
σ = 10−15, the relationship between costs and embedding
probabilities, and histograms of the binary entropy of those
probabilities are displayed in Figure 2. We also display bi-
nary entropy of the naive embedding probabilities for some

(a) CSR features; payload constraint of 0.2 bits per
pixel

σ = 10−15 σ = 1

Detector Embedding ad. Embedding ad.

trained on Naive Equil. Naive Equil.

Naive ad. 0.0076 0.4999 0.4452 0.4975

Equil. ad. 0.5053 0.2949 0.4025 0.3425

(b) CSR features; payload constraint of 0.3 bits per
pixel

σ = 10−15 σ = 1

Detector Embedding ad. Embedding ad.

trained on Naive Equil. Naive Equil.

Naive ad. 0.0073 0.5000 0.3997 0.4950

Equil. ad. 0.5022 0.1297 0.3593 0.3013

(c) maxSRM features; payload constraint of 0.3 bits
per pixel

σ = 10−15 σ = 1

Detector Embedding ad. Embedding ad.

trained on Naive Equil. Naive Equil.

Naive ad. 0.2406 0.3229 0.2773 0.3109

Equil. ad. 0.4719 0.2442 0.3463 0.1580

Table 2: Equal-prior error rates for S-UNIWARD,
both the original version with σ = 10−15 and the up-
dated version with σ = 1, with naive and equilibrium
adaptivity.

other values of σ; in this case it appears that equilibrium
embedding probabilities are quite close to those that could
be obtained naively using σ = 20.

For both the original S-UNIWARD with σ = 10−15, and
the modern version with σ = 1, we computed the naive
and equilibrium optimal embedding probabilities; we also
computed CSR and maxSRM features7.

Our experiments used BOSSBase [1]: 10 000 grayscale im-
ages of size 512× 512; although a single cover corpus would
not be appropriate for significant experiments [24], it is suf-
ficient to explore our theory in practice.

In each repetition of the experiment, two binary classi-
fiers were trained: one for stego images embedded with
naive adaptivity, and the other for stego images embed-
ded with equilibrium adaptivity. Both steganalyzers were
implemented as an ensemble of FLDs and trained on 8000
cover and 8000 stego images. Since we are now performing
real steganalysis, we adopt the standard benchmark Perr =
0.5(Pfp + Pfn), estimated on the remaining 2000 cover and
stego images. The experiment was repeated ten times with
different partitions of training and testing data.

7maxSRM features were calculated by estimating the em-
bedding strategy from the stego image, as proposed in [4],
rather than assuming omniscience of the detector.
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Figure 2: Above, equilibrium embedding with the original version of S-UNIWARD (σ = 10−15), in one of the
BOSSBase images. From left to right: histogram of the distortion costs ci; relationship between embedding
cost and probability when the adaptivity is naive (red) and in equilibrium (blue); histogram of the binary
entropy of the embedding probabilities for naive adaptivity; for equilibrium adaptivity, displayed on the same
scale. The image has 218 pixels and the payload is 0.4 bits per pixel. Below, histograms of H(πi) on the same
scale for naive embedding with (left to right) σ = 1, 10, 20, 50.

The error rates for the various combinations of σ, em-
bedder, and detector, are shown in Table 2. We include
two payloads tested against CSR features. For the original
S-UNIWARD with σ = 10−15, the equilibrium strategy is
much less exploitable than naive adaptive embedding. How-
ever, the “equilibrium” is not really an equilibrium, since
against such a detector it would be advantageous for the
embedder to switch to the other embedding probabilities.
Furthermore, naive embedding with σ = 1 is less detectable
than equilibrium embedding with σ = 10−15. These results
confirm that equilibrium embedding makes the flaw in the
original S-UNIWARD less exploitable, but we should not be
surprised that the so-called equilibrium is suboptimal: the
costs are heuristic rather than founded on statistical opti-
mality, and the theory does not directly apply. When σ = 1
it is downright worse to use equilibrium embedding, but that
is only to be expected when σ = 1 already moderates the
embedding probabilities.

We also include one payload detected by maxSRM fea-
tures. Here there is no significant benefit in switching to
equilibrium embedding even at σ = 10−15, and disadvan-
tages at σ = 1. Again we should not be surprised, because
the costs were not optimal to begin with.

6. CONCLUSIONS
An adaptivity criterion is an example of side informa-

tion. Given asymptotically perfect coding, it does not mat-
ter whether the receiver possesses this information. But
this is not at all true for the detector, and optimizing an
embedder against a worst-case (likelihood ratio test) detec-
tor, which is the minimax strategy for the embedder, has
received recent attention. Solving such game theory prob-
lems in steganography was identified as an important open
problem in [13].

In this work we have substantially generalized prior re-
sults, to the case of arbitrary nonstationary (discrete) cover
distributions and arbitrary embedding. Thus we can jus-
tify theoretically certain emerging themes: quadratic forms
in the embedding probabilities [23], and weighting features
by an estimated embedding probabilities [4]. For binary and
fixed q-ary embedding, our result can be stated simply: opti-
mize

∑
π2
i ci instead of πici, but do not change the costs. We

have seen empirical evidence that equilibrium strategies are
less aggressive than naive adaptivity, making even high-cost
changes with non-negligible probability and less certain to
make low-cost changes. Heuristically, something similar was
applied to counter exploitation of the original S-UNIWARD.



Ironically, compared with the discretized nonstationary
univariate Gaussian [22] or generalized Gaussian [23] spe-
cial cases, the more powerful theoretical results do not lead
to easily-implementable optimal steganography. The advan-
tage of restricted cover models is that the parameters are
few enough that they can be estimated; that would be quite
impossible for arbitrary nonstationary covers with arbitrary
embedding. We consider our contribution more to the the-
ory of optimal embedding than the practice; the works [23,
22] have already demonstrated that there is practical value
in this approach.

Although the theoretical results are general, they have
important limitations. They grant the detector considerable
knowledge, including the exact distortion costs (even though
they do not possess the cover) and cover model. They re-
quire the detection space to be identical to that in which dis-
tortion is calculated: this is not the case for current leading
steganalysis and adaptive steganography, but the optimal-
ity of the likelihood ratio test suggests that these domains
should eventually converge. It is for further work to adapt
these results to the practical situation where one embedding
change affects multiple features. Finally, we have assumed
independence of pixels in the cover model, and independent
embedding. It would be valuable to consider Gibbs embed-
ding [5] against a knowing opponent, but for fully-general
distortions we will not be able to appeal to the law of large
numbers, making analysis difficult. We speculate that a sim-
ilar result could at least be proved for costs that are sums
of local potentials.

Finally, we should stress that swapping
∑
πici to

∑
π2
i ci

is not a panacea in steganography. It is only correct if
the costs ci were statistically justified, and does not nec-
essarily apply to the vast majority of steganography cost
functions such as WOW, UNIWARD, or HILL, which are
purely heuristic. And they have to be at least somewhat
heuristic, because to know the true costs requires impossible
knowledge of the exact parameters of the cover model (the
probability that each pixel takes a particular value). Our
theoretical results exist in something of a vacuum because
neither player will in practice know the costs. However, it
remains possible that good estimates of the costs will suffice
for a near-equilibrium (costs perhaps obtained form empir-
ical learning about the cover source), and this is something
for future work.

Development of less-heuristic distortion functions is an im-
portant area for future research in steganography, and even
though MiPOD [22] is based on a very simple cover model it
makes a valuable contribution in this direction. As proposed
in [16], one possible solution to derive a practical distortion
having statistical meaning would be to use the output of a
classifier. Perhaps statistical methods can also lead to the
development of distortion functions for domains where they
are currently lacking, such as audio or video.
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[18] T. Pevný, T. Filler, and P. Bas. Using
high-dimensional image models to perform highly
undetectable steganography. In Proceedings of the
International Conference on Information Hiding (IH)
2010, pages 161–177, 2010.
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