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INTRODUCTION

Even the first steganographers knew that not all embedding changes are equal: some are more detectable than others. Early steganographic literature [START_REF] Westfeld | F5-a steganographic algorithm[END_REF][START_REF] Kim | Modified matrix encoding technique for minimal distortion steganography[END_REF] tried various approaches to what we now call adaptive embedding, but it was with the discovery of Syndrome Trellis Codes [START_REF] Filler | Minimizing additive distortion in steganography using syndrome-trellis codes[END_REF] that adaptive steganography became practical. In the theory of additive optimal embedding, each change is independent and has some distortion cost ci1 that can be computed from the cover, and aims to make that change with probability πi to minimize the average total cost i πici.
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When embedding is not binary, the sum becomes i,j π j i c j i , where c j i is the cost of applying change option j to location i, and π j i the corresponding probability. Note that the hypothesis of additive distortion can be extended to local interactions between neighbouring distortions, and computed using Gibbs sampling over disjoint sublattices [START_REF] Filler | Gibbs construction in steganography[END_REF].

At present, the leading steganographic embedding methods for digital images employ this method: HUGO [START_REF] Pevný | Using high-dimensional image models to perform highly undetectable steganography[END_REF], WOW [START_REF] Holub | Designing steganographic distortion using directional filters[END_REF], the UNIWARD family [START_REF] Holub | Universal distortion function for steganography in an arbitrary domain[END_REF], HILL [START_REF] Li | A new cost function for spatial image steganography[END_REF]. But in the last two years some detectors have been published that exploit the adaptivity: by placing more weight on parts of the image where it is estimated more likely to contain payload, the performance of the detector can be improved [START_REF] Tang | Adaptive steganalysis against WOW embedding algorithm[END_REF][START_REF] Denemark | Selection-channel-aware rich model for steganalysis of digital images[END_REF][START_REF] Denemark | Further study on the security of S-UNIWARD[END_REF]. The first version of UNIWARD [START_REF] Holub | Universal distortion function for steganography in an arbitrary domain[END_REF] was exploited to the extent that it would have been better to use an older embedding method instead, and the cost function had to be altered [START_REF] Denemark | Further study on the security of S-UNIWARD[END_REF]. A somewhat similar bug was present in the first version of HUGO, exploited in the BOSS contest [START_REF] Gul | A new methodology in steganalysis: breaking highly undetectable steganograpy (HUGO)[END_REF], but this can better be explained by the cost function omitting important information rather than the detector exploiting its values.

If circumstances exist under which additive adaptive embedding can be exploited by a knowing detector (one who has knowledge of the distortion costs) then the adaptivity cannot be optimal. In part the suboptimality is because detectability is a property of cover and stego distributions, and cannot be determined from minimizing distortion in a single images; in part because the knowing detector can exploit the adaptivity. Hence we call embedding that optimizes (1) naive adaptivity2 . We will argue that the embedder should minimize an alternative total cost,

i π 2 i ci (2) 
for the same ci as before. When embedding is not binary, this becomes i,j,k π j i c j,k i π k i , where c j,k i is a matrix defined by cost interactions at location i. We call this equilibrium adaptivity, because it is the equilibrium strategy of a zero sum game between the embedder and detector (in this work also called the attacker ), in a suitably simple theoretical setting. And since it is a minimax strategy, the embedder has optimized against the worst case: the knowing attacker.

Our result certainly has limitations: it assumes independence of pixels or pixel groups, and that each embedding changes only one element. The former is common in the theory of steganography and has not prevented theoretical results from predicting practical performance [START_REF] Ker | The square root law of steganographic capacity[END_REF], but the latter is an important consideration for further work on practical equilibrium adaptivity, as changing one pixel typically affects multiple measurements [START_REF] Denemark | Selection-channel-aware rich model for steganalysis of digital images[END_REF].

The structure of the paper is as follows. In Section 2 we give the theoretical justification for equilibrium adaptivity in models of covers where the pixels are independent. We make comparisons with existing literature using embedding costs in Section 3 and note that our result generalizes some special cases that have appeared recently, where squared probabilities can also be found; we also discuss how (2) can be optimized in practice. In Section 4 we test the theory against artificially-generated binary covers matching the binary model, and in Section 5 we examine the original version of S-UNIWARD, whose adaptivity was exploitable, and show that equilibrium mitigates this effect. However, since UNIWARD costs are not statistically founded, we do not optimize the embedding in this case. We draw conclusions in Section 6.

THEORETICAL RESULTS

In the game theory of steganography, the detector wishes to optimize some performance metric of their hypothesis test for H0: object under consideration is a cover, vs. H1: object under consideration is stego.

In the results below, we will be able to make a large-sample approximation, so that the detection is based on a statistic with Gaussian distribution under either hypothesis. We will define

µ0 = EH 0 [ ], µ1 = EH 1 [ ], σ 2 0 = VarH 0 [ ], σ 2 1 = VarH 1 [ ].
In this work we choose the detector's payoff as the true negative rate when the false negative rate is 50%. The embedder's payoff is the inverse, the false positive rate when the true positive rate is 50%, which is a benchmark we have advocated in [START_REF] Pevný | Towards dependable steganalysis[END_REF] for high-accuracy steganalysis. The game is zero sum (i.e. the gain on the detector's side is exactly balanced by the losses on the embedder's side).

Without loss of generality we may assume µ0 < µ1. For 50% true positives, the detection threshold for is the median value of in hypothesis H1, which is µ1 (and does not depend on σ1). The detector's payoff is PH 0 [ < µ1] = Φ(δ), where Φ is the Gaussian cumulative density function and δ is the deflection

δ = µ1 -µ0 σ 2 0 . ( 3 
)
Since Φ is increasing, we can assume that the detector aims to maximize, and the embedder to minimize, δ. This payoff function is a Neyman-Pearson criterion: the detector optimizes one type of error against a fixed limit on the other. In case the reader would prefer a different choice, for example the equal-prior error rate which is often used in steganographic game theory [START_REF] Schöttle | Game theory and adaptive steganography[END_REF], we mention that this provides an asymptotically equivalent ranking since in the large sample limit the square root law [START_REF] Ker | The square root law of steganographic capacity[END_REF] would force πi → 0, hence σ 2 0 ∼ σ 2 1 . Then equal-prior error has a monotone relationship with any Neyman-Pearson criterion. The deflection has appeared in other work (in which the cover models are restricted) on optimality against a knowing attacker [START_REF] Sedighi | Content-adaptive pentary steganography using the multivariate generalized gaussian cover model[END_REF][START_REF] Sedighi | Content-adaptive steganography by minimizing statistical detectability[END_REF], and can be found as the payoff in steganographic games even as far back as [START_REF] Ker | Batch steganography and the threshold game[END_REF]. It has also been justified by empirical evidence from steganographic likelihood ratio tests, in [START_REF] Cogranne | Modeling and extending the ensemble classifier for steganalysis of digital images using hypothesis testing theory[END_REF].

Binary Embedding in Binary Covers

To illustrate the calculations we begin with the simplest possible cover, consisting of n independent binary pixels. If they had equal probability distribution there would be no adaptivity, so we define pi as the probability that pixel i takes value 1. We assume that these are known to the detector. Embedding must flip pixels, and we define the embedder's strategy as (π1, . . . , πn) where πi is the probability of flipping pixel i; this is the adaptivity that we may (or may not) grant to the detector. Therefore in a stego object the probability that pixel i takes value 1 is

(1 -πi)pi + πi(1 -pi) = pi + πi(1 -2pi).
We know the form of an optimal detector for these hypotheses; the Neyman-Pearson Lemma states that we should reject the null hypothesis (give a positive detection) if the log-likelihood ratio

log i pi + πi(1 -2pi) x i 1 -pi -πi(1 -2pi) 1-x i p x i i (1 -pi) 1-x i = c + i xi log 1 + πi 1-2p i p i -log 1 -πi 1-2p i 1-p i ,
where xi denotes the observed value of pixel i, exceeds a threshold.

We do not need to analyze the likelihood ratio; it is sufficient to note that it is a constant plus 3(xi, ωi) = i xiωi where (ωi) defines the detector's strategy (the weight they give to each observation). Because likelihood ratio tests are an optimal subclass of all hypothesis tests under a Neyman-Pearson criterion (such as the false positive rate at 50% true positives), it is sufficient to consider detectors of this type, seeking equilibrium between (πi) and (ωi).

Asymptotically for large n and constant payload size, the Central Limit Theorem says that the distribution of (xi, ωi) is Gaussian in either null or alternative hypothesis, with µ0 = piωi, µ1 = pi+πi(1-2pi) ωi, and

σ 2 0 = pi(1- pi)ω 2
i . So by (3), the detector's payoff is monotone increasing in the deflection

i πi(1 -2pi)ωi i pi(1 -pi)ω 2 i = δ(πi, ωi, di, ei)
where di = (1 -2pi), ei = pi(1 -pi), and

δ(πi, ωi, di, ei) = i πidiωi i eiω 2 i . (4) 
It may easily be verified that

∂δ ∂ωj ∝ ( i eiω 2 i )πjdj -( i πidiωi)ejωj. (5) 
The detector wants to maximize the value of δ in (4). An ignorant detector4 must proceed as if all πi are equal to a constant π. Therefore (5) yields in this case ωj ∝ πdje -1 j . Note that multiplying the weights ωi by a constant does not change the detector. The stationary point can be verified to be a maximum as long as all pi are not equal to zero or one, but we omit the routine calculation. Substituting into (4) gives

δ(πi, di, ei) = i ππid 2 i e -1 i i π 2 d 2 i e -1 i
, the π terms cancel (hence it does not matter whether the ignorant detector is granted knowledge of the payload size, which would reveal π), and the denominator is constant, leaving

δ ∝ i πici, (6) 
where:

ci = d 2 i e -1 i = 1 -2pi pi(1 -pi) , (7) 
turns out to be the true statistical cost of flipping pixel i.

The best counter-strategy for the embedder minimizes this value of δ, subject to a payload constraint i H(πi) = m, where H is the binary entropy function. This is the familiar "optimal embedding" scenario, where the total costs are linear in the embedding probabilities; the standard solution can be found using the method of Lagrange multipliers, which gives λcj = H (πj) and hence the well-known solution

πi = e -λc i 1 + e -λc i (8) 
for some constant λ determined by the payload constraint.

A knowing detector wants to maximize the value of δ, given complete knowledge of πi. From (5), δ is maximized when

ωj ∝ πjdje -1 j (9)
in which case the numerator of ( 4) is the square of the denominator, so that

δ 2 ∝ i π 2 i ci (10) 
where again ci = d 2 i e -1 i . Note that the payoff depends on the squared embedding probabilities, but the costs are identical to the standard optimal embedding scenario. This time the solution satisfies λcj = H (πj)/πj, which does not have a closed form. See Subsection 3.2 for a discussion of how (πi) should be found; for now we simply draw attention to the difference between optimization for an ignorant attacker [START_REF] Filler | Minimizing additive distortion in steganography using syndrome-trellis codes[END_REF] and a knowing attacker [START_REF] Holub | Universal distortion function for steganography in an arbitrary domain[END_REF].

Since the two player game is zero sum, the minimax solution (πi, ωi) is an equilibrium [START_REF] Neumann | Theory of Games and Economic Behavior[END_REF].

q-ary Embedding in Arbitrary Covers

Now consider a model where n pixels take values in some finite alphabet {a1, . . . , a l }. We still assume that they are independent of each other, and a fixed independent embedding operation, but this can be arbitrary, and the pixels can take arbitrary and different distributions.

We define p k i = P[Xi = a k ] as the distribution of cover pixel i, and gather it into a vector p i . 5 When a pixel is used for embedding, it changes from value aj to a k with probability q kj gathered into a matrix Q (for convenience, our matrix is organized in columns). Such matrices can describe LSB Replacement or Matching, Ternary or Pentary Embedding, etc. Note that p i and Q are parameters of the game, known to the detector.

As before, the embedder's strategy is the probability that each pixel is used (πi). The unconditional distribution of stego pixels is therefore given by q i = (1 -πi)p i + πiQp i .

This time the log-likelihood ratio is of the form

c + i k [xi = k] log(1 + πi q k i -p k i p k i )
where [A] is the Iverson bracket taking value 1 when A is true. For the same reasons as before it is sufficient to consider detectors, parameterized by the detector's strategy

ω k i (i = 1, . . . , n, k = 1, . . . , l), of the form (xi, ω k i ) = i k [xi = k]ω k i . (11) 
We collect the detector's strategy into n vectors ω i . Routine calculation gives

µ1 -µ0 = i πid T i ω i ,
where

d i = (Q -I)p i , and 
σ 2 0 = i p T i E i p i ,
where E i = ∆p i -p i p T i , ∆p i representing a diagonal matrix. Thus the detector's payoff is monotone increasing in

δ(πi, ω i , d i , E i ) = i πid T i ω i i ω T i E i ω i . ( 12 
)
Employing some vector calculus,

∂δ ∂ω j ∝ ( i ω T i E i ω i )πjd j -( i πid T i ω i )E j ω j . (13) 
For an ignorant detector, δ is maximized when E j ω j ∝ d j . Then [START_REF] Ker | Steganographic strategies for a square distortion function[END_REF] simplifies to

δ ∝ i πici, (14) 
where ci = d T i E -1 i d i .
For a knowing detector, [START_REF] Ker | Moving steganography and steganalysis from the laboratory into the real world[END_REF] implies that they should choose (ω i ) so that E j ω j ∝ πjd j which, similarly to before, leads to

δ 2 ∝ i π 2 i ci (15) 
for the same ci. Again, compare ( 14) with [START_REF] Kim | Modified matrix encoding technique for minimal distortion steganography[END_REF].

We will not solve these optimization problems, but proceed to a more general problem in the following subsection.

(There is a little wrinkle that has been obscured by our use of vector notation. The matrices E i , which are covariance matrices of a multinomial distribution, are all deficient. This does not affect the correctness of the calculations, as long as all p k i are positive, since then rank(E i ) = l -1 and k d k i = k p k i -q k i = 0 also has one degree of redundancy. Thus E j ω j ∝ πjd j does define ωj uniquely up to a constant multiple, and ci = d T i E -1 i d i is well-defined.)

Arbitrary Embedding

Consider now a fully arbitrary embedder, who can apply different embedding operations to each pixel. The cover model is still defined by p i , but it makes sense to consider the embedder's strategy to be exactly their output at pixel i, the vectors π i = (π 1 i , . . . , π l i ); we do not need to know what the embedder does with the cover pixel, merely what they output.

All pixels are potentially used (this does not stop the embedder from outputting cover pixels, of course). The calculations are therefore the same as the previous subsection with πi = 1, but now

d i = π i -p i
as what was previously called q i becomes the embedder's move in the game, rather than a parameter known to the detector.

The detector's strategy is of the same form as before, (ω i ), but there is no optimal detector who is ignorant of π i . They cannot perform a likelihood ratio test without knowing the ratio, and we postpone to future work investigation of a generalized likelihood ratio test in this model. However, against any fixed detector the ω i can be considered constants; therefore so is the denominator of the deflection [START_REF] Ker | Steganographic strategies for a square distortion function[END_REF], which in this case reduces to

δ ∝ i (π i -p i ) T ω i .

The payload constraint is the familiar

i H(π i ) = m
where H(πi) represents the entropy of the vector π i , with the additional constraint that k π k i = 1. Using vector calculus 6 and Lagrange multipliers (omitting routine calculation of this standard result) we reach

λω i = ln(µiπ i )
where ln(µiπ i ) applies the logarithm pointwise to the vector. This has the well-known q-ary optimal embedding solution

π k i = e -λω k i k e -λω k i . ( 16 
)
On the other hand, for a knowing detector, we still have

E j ω j ∝ π j -p j ,
and so

δ 2 ∝ i (π i -p i ) T E -1 i (π i -p i ). ( 17 
)
In this situation the embedder should minimize a quadratic form, the multidimensional analogue of the squared probabilities in [START_REF] Holub | Universal distortion function for steganography in an arbitrary domain[END_REF]. The solution satisfies

λE -1 i π i = ln(µiπ i ) (18) 
for a constant λ determined by the payload constraint, and µi to ensure that k π k i = 1. For a brief discussion of how this is solved, see Subsection 3.2.

RELATION TO OTHER WORK

There have been a few contributions on embedding against a knowing detector, and some recent work has produced results that have superficial similarities with ours. In this section we make the connections more explicit.

Related Work on Optimality

Most distortion costs in the literature are derived directly from the cover content. They are built on the rationale that the distortion should be low for samples that are difficult to predict (e.g. pixels located in textures of an image) and high for samples that can be easily predicted (e.g. edges or homogeneous areas). For example the schemes UNI-WARD [START_REF] Holub | Universal distortion function for steganography in an arbitrary domain[END_REF] and WOW [START_REF] Holub | Designing steganographic distortion using directional filters[END_REF] use high-pass wavelet subbands, while HILL [START_REF] Li | A new cost function for spatial image steganography[END_REF] uses a succession of high-pass and low-pass filters. Theses schemes approximate the local noise power in the image, and the cost is akin to a (stego-)signal to (image self-)noise ratio. For all these schemes the distortion minimized is of the form i πici.

The cost derived in HUGO [START_REF] Pevný | Using high-dimensional image models to perform highly undetectable steganography[END_REF] is a "hybrid" in the sense that its distortion uses weights directly computed from the image content (the successive differences between neighbouring pixels), but the algorithm also attempts to preserve a global distortion model between the entire cover and stego image. The model is derived from co-occurrence matrices of image residuals. Again, the distortion minimized is of the form i πici.

Note that these distortion measures are blind to the knowledge of the steganalyser, and more particularly to the fact that a detector might use an estimation of the embedding probabilities πi to derive detectors that will be more sensitive to embedding changes. Recently, knowing detectors (sometimes called omniscient in the literature) have appeared with tSRM [START_REF] Tang | Adaptive steganalysis against WOW embedding algorithm[END_REF] or the maxSRM [START_REF] Denemark | Selection-channel-aware rich model for steganalysis of digital images[END_REF] feature sets, which explicitly use πi and can offer up to 10% improvement on the classification accuracy for very small payloads [START_REF] Denemark | Selection-channel-aware rich model for steganalysis of digital images[END_REF]. Note also that these feature sets are derived by weighting each occurrence by its probability of change, exactly like the optimal detection strategy proposed in equation [START_REF] Holub | Designing steganographic distortion using directional filters[END_REF].

The following steganographic schemes are interesting because they implicitly or explicitly assume that the steganalyser may have knowledge or estimates of πi, and result in distortions depending on π 2 i . The first distortion measure comes from [START_REF] Ker | Steganographic strategies for a square distortion function[END_REF] which is set in the context of batch steganography, and measures statistical distortion using Kullback-Leibler Divergence (KLD). The total distortion of the batch is then a weighted sum of the squares of the number of embedding changes in each image; the latter is proportional to the probability of embedding in any given location in that image. For example, in [12, §2.2] total distortion is proportional to i ciπ 2 i , where ci is called the "Q-factor". Even though this theoretical analysis did not generate a practical embedding method, it appears to be the first that proposed a distortion where the cost is weighted by π 2 i . Measuring detectability by KLD implicitly models the worst-case opponent, who would indeed be a knowing detector.

Ref. [START_REF] Fridrich | Multivariate gaussian model for designing additive distortion for steganography[END_REF] is another that measures detectability by KLD. It is approximated by

1 2 Ii(0)π 2
i where Ii(0) denotes the Fisher information of the stego content with respect to πi. The authors use a local Gaussian approximation of the image pixels in a neighbourhood to derive Ii(0) (which is independent of πi) and to perform the minimization. It is interesting to note that the "Q-factor" mentioned in [START_REF] Ker | Steganographic strategies for a square distortion function[END_REF] is in fact also half of Fisher's information.

Instead of minimizing KLD, two recent works have optimized embedding with respect to a likelihood ratio detector.

In [START_REF] Sedighi | Content-adaptive pentary steganography using the multivariate generalized gaussian cover model[END_REF] the cover is modelled as a discretized univariate generalized Gaussian model with varying variance (similar to the model of [START_REF] Fridrich | Multivariate gaussian model for designing additive distortion for steganography[END_REF]), and the embedding is pentary. The probabilities of ±1 and ±2 changes constitute the embedder's strategy. Similarly to our analysis, the authors argue that the embedder should minimize a deflection coefficient, and by approximating the likelihood ratio explicitly they derive an optimization [23, Eq. ( 11)] which is a quadratic form like [START_REF] Pevný | Using high-dimensional image models to perform highly undetectable steganography[END_REF].

In [START_REF] Sedighi | Content-adaptive steganography by minimizing statistical detectability[END_REF] the cover is modelled as a discretized Gaussian with varying variance, and the embedding is ternary. The square deflection of the likelihood ratio is given by π 2 i /σ 4 i where σ 2 i denotes the variance of the underlying local Gaussian model at location i [22, Eq. ( 11)]. They also compute the deflection against an ignorant (there called indifferent) detector, which is proportional to πi/σ 4 i [22, Eq. ( 12)]. This confluence of results is encouraging. Our contribution is to show that the conclusions are not dependent on a particular cover or embedding model, and apply to arbitrary discrete covers and arbitrary embedding operations.

Related Work on Implementation

We have not yet explained how the optimization problems [START_REF] Holub | Universal distortion function for steganography in an arbitrary domain[END_REF] and ( 17) can be solved. In fact, some of the other literature mentioned above derives equations of a similar form, and the generalizations are simple enough that we need not go into much detail about them.

For linear additive distortions πici it is well-known that we can optimize without even finding the solution (8), via Syndrome Trellis Codes (STCs). For arbitrary embedding against a fixed detector, π i ω i can be optimized using lary STCs, though their complexity grows very rapidly with the alphabet size l, or nested STCs [START_REF] Filler | Minimizing additive distortion in steganography using syndrome-trellis codes[END_REF].

In [START_REF] Sedighi | Content-adaptive steganography by minimizing statistical detectability[END_REF] the authors explain how a function that fits the form π 2 i ci can be optimized: numerically solve the relationship λcj = H (πj)/πj, inside an interval bisection search for λ meeting the payload constraint. Then reverse-engineer costs dj = H (πj)/λ would have given the same solution for naive embedding and λ that would leave these probabilities on the rate-distortion bound. Applying STCs to the adjusted costs (di) should make changes with approximately the optimal probabilities (πi). However the probabilities will not be exact, because STCs do not meet the rate-distortion bound exactly.

We should mention that, although λcj = H (πj)/πj does not have a closed-form inverse, it would be trivial to tabulate a few million values for locating πj from λcj, and this only needs to be done once. Then, if necessary, the inverse could be refined with one or two steps of the Newton-Raphson method. In our experiments the calculation of embedding probabilities was negligible compared with calculating the costs in the first place.

In [START_REF] Sedighi | Content-adaptive pentary steganography using the multivariate generalized gaussian cover model[END_REF] the authors arrive at a system of 2n + 1 variables that is similar to the nk simultaneous equations we reached in [START_REF] Pevný | Using high-dimensional image models to perform highly undetectable steganography[END_REF]; their system is simpler because the embedding operation is limited to ±1 and ±2 changes. We advocate the same approach that they take: it is a convex system, so Newtonian numerical methods should converge quickly to a solution. Again, these can be reverse-engineered into costs for a l-ary or nested STC.

Nonetheless, in this work we will not try to implement equilibrium embedding, since it is sufficient for our purposes to simulate it by applying changes with the optimal probabilities.

ARTIFICIAL BINARY COVERS

Our initial experiments are on artificial "images" fitting exactly the model in Subsection 2.1, which ensures that most of the assumptions of the theory are true (in particular, independence of pixels). These experiments test whether the use of the large sample approximations is valid. Our covers will contain n = 2 18 pixels, the size of images in the BOSSBase library [START_REF] Bas | BOSSBase[END_REF].

In order to generate covers according to the model, we must select the pixel probabilities pi ∈ (0, 1). In the first experiment we drew pi independently from a Beta distribution with parameters [START_REF] Filler | Gibbs construction in steganography[END_REF][START_REF] Filler | Gibbs construction in steganography[END_REF]; this means that they are somewhat bell shaped and symmetrical around pi = 0.5. We generated 10 000 cover images using this model.

We then simulated three types of embedding on the ratedistortion curve: non-adaptive embedding where πi is constant, naive adaptive embedding where i πici is minimized, and equilibrium adaptive embedding where i π 2 i ci is minimized. In each case the payload constraint was H(πi) = 0.1•2 18 , simulating a payload of 0.1 bits per pixel, a size chosen so that the detectors will be neither practically-perfect nor near-random. We generated 10 000 stego images for each case.

In Figure 1 (top) we show the histogram of the values pi, and the relationship between the cost ci (computed from pi using the results in section 2.1) and the naive or equilibrium embedding probabilities πi. Throughout the figure, red denotes the naive adaptivity and blue the equilibrium. Observe that equilibrium embedding assigns lower probabilities to low costs, but slightly higher probabilities to high costs: it is less aggressive in its adaptivity (which is the reason that it cannot be exploited). We also show histograms of the binary entropy of the naive and equilibrium probabilities: H(πi) indicates how many bits of payload (under perfect coding) are placed in location i. Observe that naive adaptive embedding prefers to hide almost one bit in each of a few locations (in this case over 58% of the payload is placed into just under 6% of the locations) and zero or almost zero in the rest. Note that in the Bernoulli model, the costs dip sharply for pi close to 0.5, since ci = (1 -2pi) 2 /pi(1 -pi) (see Eq.( 7)), so these locations appear attractive for payload. However, equilibrium embedding places at least a tiny amount of payload in every location, and very few contain as much as nearly one bit.

Because we know exactly the cover model and the embedding probabilities, we can build an optimal detector directly from the likelihood ratio test (LRT), rejecting the null hy- 

H(π i ) 0 1 H(π i ) 0 1 p i 0 0.5 10 -5 10 -3 10 -1 π i c i naive equilibrium 0 0.1 >0.1 H(π i ) 0 0.1 >0.1 H(π i )
Figure 1: Embedding in artificial binary covers. From left to right: histogram of the probabilities pi that pixel i takes value 1; relationship between embedding cost and probability when the adaptivity is naive (red) and in equilibrium (blue); histogram of the binary entropy of the embedding probabilities for naive adaptivity (note that the zero bin is truncated); for equilibrium adaptivity, displayed on the same scale. Above, pi is drawn from the Beta(5, 5) distribution, with a payload of 0.1 bits per pixel in 2 18 pixels. Below, pi is drawn from the Beta(5, 20) distribution, with a payload of 0.02 bits per pixel in 2 18 pixels, and the histogram of H(πi) focuses on low entropy locations.

pothesis if i xi log 1 + πi 1-2p i p i -log 1 -πi 1-2p i 1-p i
exceeds a threshold. This can be done with each (πi), to create the detector's optimal counter-strategy to each of the embedder's three strategies. We then computed the empirical embedder's payoff, the false positive rate when the true positive rate is 50%, for each detector against each embedding adaptivity. The results are shown in Table 1 (top), where each row corresponds to the optimal detector for each type of embedding, and each column to that embedding. At this payload rate, non-adaptive embedding is highly detectable by the conventional LRT (0.000 false positives), but if the embedder switches to standard naive adaptivity this detector is almost random. However, a knowing attacker can regain good performance by using the adaptivity in the LRT (0.023 false positives). To avoid being exploited, the embedder should use equilibrium adaptivity, and the optimal detector still makes false positives at a rate of 0.145. Amongst the three embedder/detector strategies shown here, the table shows that equilibrium embedding and the LRT detector for it do indeed form an equilibrium, since the detector can only degrade their performance by deviating from it, and the embedder can only become more detectable by deviating.

The bell-shaped distribution of pixel probabilities pi leads to many costs very close to zero, which is probably not a good model for steganography in real images. Therefore we repeated the previous experiments with a different distribution of pi, this time from the Beta distribution with parameters [START_REF] Schöttle | Game theory and adaptive steganography[END_REF][START_REF] Filler | Gibbs construction in steganography[END_REF], in which the costs do not get too close to zero. The higher costs indicate that payload will be more detectable, so we reduced the payload constraint to 0.02 bits per pixel, again so that the detectors' performance is neither too good nor too poor. The distribution of pi, the relationship between costs and embedding probabilities under naive and equilibrium adaptivity, and the distribution of payload are shown in Figure 1 (bottom) and the performance of the detectors in Table 1 (bottom). We observe similar features: naive adaptive embedding is more secure against an ignorant opponent, but can be exploited by a knowing opponent to the extent that it becomes even more detectable than no adaptivity at all. Equilibrium embedding spreads the payload rather more evenly than naive adaptivity, and cannot be exploited.

(a) pi taken from Beta(5, 5), 0.1 bits per pixel embedded in 2 18 

EXPLOITABILITY OF S-UNIWARD

Finally, we attempt to apply the theory of equilibrium to the contemporary steganographic algorithm S-UNIWARD [START_REF] Holub | Universal distortion function for steganography in an arbitrary domain[END_REF]. This calculates the distortion of changing pixel i from a Wavelet-transformed image:

ci = 3 k=1 m u=1 n v=1 W (k) uv (X) -W (k) uv (X i ) σ + W (k) uv (X)
, where X is the matrix of m×n cover pixels, X i the same image with only change i applied and W The original version of UNIWARD used σ = 10 -15 to avoid division by zero, but this caused wide variation in the costs, and hence a strong preference for certain embedding locations. In [START_REF] Denemark | Further study on the security of S-UNIWARD[END_REF] the authors demonstrated the vulnerability of S-UNIWARD to an attacker who could estimate the costs via a feature set called Content-Selective Residuals (CSR); the same work proposed the simple heuristic fix of setting σ = 1 to moderate the costs. The effect on embedding probabilities is similar to that of an equilibrium strategy: it increases the likelihood of embedding in previously unused pixels, and reduces it in the more commonly-used areas. Since then, further (less catastrophic) attacks on S-UNIWARD have been accomplished by weighting features according to the probability of embedding, which our theory predicts to be optimal [START_REF] Holub | Designing steganographic distortion using directional filters[END_REF], in feature sets tSRM [START_REF] Tang | Adaptive steganalysis against WOW embedding algorithm[END_REF] and maxSRM [START_REF] Denemark | Selection-channel-aware rich model for steganalysis of digital images[END_REF].

In these experiments, we investigate whether an equilibrium strategy provides an alternative to changing the value of σ. For just one image, the histogram of the costs with σ = 10 -15 , the relationship between costs and embedding probabilities, and histograms of the binary entropy of those probabilities are displayed in Figure 2. We also display binary entropy of the naive embedding probabilities for some (a) CSR features; payload constraint of 0.2 bits per pixel σ = 10 other values of σ; in this case it appears that equilibrium embedding probabilities are quite close to those that could be obtained naively using σ = 20.

For both the original S-UNIWARD with σ = 10 -15 , and the modern version with σ = 1, we computed the naive and equilibrium optimal embedding probabilities; we also computed CSR and maxSRM features 7 .

Our experiments used BOSSBase [START_REF] Bas | BOSSBase[END_REF]: 10 000 grayscale images of size 512 × 512; although a single cover corpus would not be appropriate for significant experiments [START_REF] Sedighi | Toss that bossbase, Alice![END_REF], it is sufficient to explore our theory in practice.

In each repetition of the experiment, two binary classifiers were trained: one for stego images embedded with naive adaptivity, and the other for stego images embedded with equilibrium adaptivity. Both steganalyzers were implemented as an ensemble of FLDs and trained on 8000 cover and 8000 stego images. Since we are now performing real steganalysis, we adopt the standard benchmark Perr = 0.5(P fp + P fn ), estimated on the remaining 2000 cover and stego images. The experiment was repeated ten times with different partitions of training and testing data. The error rates for the various combinations of σ, embedder, and detector, are shown in Table 2. We include two payloads tested against CSR features. For the original S-UNIWARD with σ = 10 -15 , the equilibrium strategy is much less exploitable than naive adaptive embedding. However, the "equilibrium" is not really an equilibrium, since against such a detector it would be advantageous for the embedder to switch to the other embedding probabilities. Furthermore, naive embedding with σ = 1 is less detectable than equilibrium embedding with σ = 10 -15 . These results confirm that equilibrium embedding makes the flaw in the original S-UNIWARD less exploitable, but we should not be surprised that the so-called equilibrium is suboptimal: the costs are heuristic rather than founded on statistical optimality, and the theory does not directly apply. When σ = 1 it is downright worse to use equilibrium embedding, but that is only to be expected when σ = 1 already moderates the embedding probabilities.

(π i ) 0 1 H(π i ) 0 1 H(π i ) 0 1 H(π i ) 0 1 H(π i ) 0 1 H(π i )
We also include one payload detected by maxSRM features. Here there is no significant benefit in switching to equilibrium embedding even at σ = 10 -15 , and disadvantages at σ = 1. Again we should not be surprised, because the costs were not optimal to begin with.

CONCLUSIONS

An adaptivity criterion is an example of side information. Given asymptotically perfect coding, it does not matter whether the receiver possesses this information. But this is not at all true for the detector, and optimizing an embedder against a worst-case (likelihood ratio test) detector, which is the minimax strategy for the embedder, has received recent attention. Solving such game theory problems in steganography was identified as an important open problem in [START_REF] Ker | Moving steganography and steganalysis from the laboratory into the real world[END_REF].

In this work we have substantially generalized prior results, to the case of arbitrary nonstationary (discrete) cover distributions and arbitrary embedding. Thus we can justify theoretically certain emerging themes: quadratic forms in the embedding probabilities [START_REF] Sedighi | Content-adaptive pentary steganography using the multivariate generalized gaussian cover model[END_REF], and weighting features by an estimated embedding probabilities [START_REF] Denemark | Selection-channel-aware rich model for steganalysis of digital images[END_REF]. For binary and fixed q-ary embedding, our result can be stated simply: optimize π 2 i ci instead of πici, but do not change the costs. We have seen empirical evidence that equilibrium strategies are less aggressive than naive adaptivity, making even high-cost changes with non-negligible probability and less certain to make low-cost changes. Heuristically, something similar was applied to counter exploitation of the original S-UNIWARD.

Ironically, compared with the discretized nonstationary univariate Gaussian [START_REF] Sedighi | Content-adaptive steganography by minimizing statistical detectability[END_REF] or generalized Gaussian [START_REF] Sedighi | Content-adaptive pentary steganography using the multivariate generalized gaussian cover model[END_REF] special cases, the more powerful theoretical results do not lead to easily-implementable optimal steganography. The advantage of restricted cover models is that the parameters are few enough that they can be estimated; that would be quite impossible for arbitrary nonstationary covers with arbitrary embedding. We consider our contribution more to the theory of optimal embedding than the practice; the works [START_REF] Sedighi | Content-adaptive pentary steganography using the multivariate generalized gaussian cover model[END_REF][START_REF] Sedighi | Content-adaptive steganography by minimizing statistical detectability[END_REF] have already demonstrated that there is practical value in this approach.

Although the theoretical results are general, they have important limitations. They grant the detector considerable knowledge, including the exact distortion costs (even though they do not possess the cover) and cover model. They require the detection space to be identical to that in which distortion is calculated: this is not the case for current leading steganalysis and adaptive steganography, but the optimality of the likelihood ratio test suggests that these domains should eventually converge. It is for further work to adapt these results to the practical situation where one embedding change affects multiple features. Finally, we have assumed independence of pixels in the cover model, and independent embedding. It would be valuable to consider Gibbs embedding [START_REF] Filler | Gibbs construction in steganography[END_REF] against a knowing opponent, but for fully-general distortions we will not be able to appeal to the law of large numbers, making analysis difficult. We speculate that a similar result could at least be proved for costs that are sums of local potentials.

Finally, we should stress that swapping πici to π 2 i ci is not a panacea in steganography. It is only correct if the costs ci were statistically justified, and does not necessarily apply to the vast majority of steganography cost functions such as WOW, UNIWARD, or HILL, which are purely heuristic. And they have to be at least somewhat heuristic, because to know the true costs requires impossible knowledge of the exact parameters of the cover model (the probability that each pixel takes a particular value). Our theoretical results exist in something of a vacuum because neither player will in practice know the costs. However, it remains possible that good estimates of the costs will suffice for a near-equilibrium (costs perhaps obtained form empirical learning about the cover source), and this is something for future work.

Development of less-heuristic distortion functions is an important area for future research in steganography, and even though MiPOD [START_REF] Sedighi | Content-adaptive steganography by minimizing statistical detectability[END_REF] is based on a very simple cover model it makes a valuable contribution in this direction. As proposed in [START_REF] Kouider | Adaptive steganography by oracle (ASO)[END_REF], one possible solution to derive a practical distortion having statistical meaning would be to use the output of a classifier. Perhaps statistical methods can also lead to the development of distortion functions for domains where they are currently lacking, such as audio or video.

  uv (•) denote the (u, v) wavelet coefficients in the first-level undecimated Daubechies 8-tap wavelet decomposition. The index k = 1, 2, 3 corresponds to the LH, HL, and HH subbands, respectively.

Figure 2 :

 2 Figure 2: Above, equilibrium embedding with the original version of S-UNIWARD (σ = 10 -15), in one of the BOSSBase images. From left to right: histogram of the distortion costs ci; relationship between embedding cost and probability when the adaptivity is naive (red) and in equilibrium (blue); histogram of the binary entropy of the embedding probabilities for naive adaptivity; for equilibrium adaptivity, displayed on the same scale. The image has 2 18 pixels and the payload is 0.4 bits per pixel. Below, histograms of H(πi) on the same scale for naive embedding with (left to right) σ = 1, 10, 20, 50.

Table 1 :

 1 pixels The embedder's payoff (false positive rate when true positive rate is 50%) for artificial binary covers. Likelihood ratio tests for each adaptivity type were tested against embedding with each adaptivity type.

		Embedding adaptivity
	LRT detector for	None	Naive	Equilibrium
	No adaptivity	0.000	0.492	0.335
	Naive adaptivity	0.443	0.023	0.225
	Equilibrium	0.038	0.081	0.145
	(b) pi taken from Beta(5, 20), 0.02 bits per pixel em-
	bedded in 2 18 pixels			
		Embedding adaptivity
	LRT detector for	None	Naive	Equilibrium
	No adaptivity	0.040	0.433	0.198
	Naive adaptivity	0.472	0.000	0.305
	Equilibrium	0.099	0.023	0.116

Table 2 :

 2 Equal-prior error rates for S-UNIWARD, both the original version with σ = 10 -15 and the updated version with σ = 1, with naive and equilibrium adaptivity.

			-15	σ = 1
	Detector	Embedding ad.	Embedding ad.
	trained on	Naive	Equil.	Naive	Equil.
	Naive ad.	0.0076	0.4999	0.4452	0.4975
	Equil. ad.	0.5053	0.2949	0.4025	0.3425
	(b) CSR features; payload constraint of 0.3 bits per
	pixel				
		σ = 10 -15	σ = 1
	Detector	Embedding ad.	Embedding ad.
	trained on	Naive	Equil.	Naive	Equil.
	Naive ad.	0.0073	0.5000	0.3997	0.4950
	Equil. ad.	0.5022	0.1297	0.3593	0.3013
	(c) maxSRM features; payload constraint of 0.3 bits
	per pixel				
		σ = 10 -15	σ = 1
	Detector	Embedding ad.	Embedding ad.
	trained on	Naive	Equil.	Naive	Equil.
	Naive ad.	0.2406	0.3229	0.2773	0.3109
	Equil. ad.	0.4719	0.2442	0.3463	0.1580

A common notation for a cost is ρi, but we prefer to reserve Greek letters for the strategies of the embedder and detector.

Note that in some other work[START_REF] Schöttle | Weighted stego-image steganalysis for naive content-adaptive embedding[END_REF], naive adaptivity was used for an even weaker embedding that always picks the location with lowest cost.

We use (xi, ωi) as shorthand to mean a function of all xi's and ωi's.

Recall that the detector is ignorant of the individual values of πi, but still granted knowledge of pi, hence di and ei.

We will use boldface lowercase letters for vectors, and boldface uppercase for matrices.

Note that ∂ ∂π i H(π i ) ∝ 1 + ln π i .

maxSRM features were calculated by estimating the embedding strategy from the stego image, as proposed in[START_REF] Denemark | Selection-channel-aware rich model for steganalysis of digital images[END_REF], rather than assuming omniscience of the detector.
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