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Depinning of evaporating liquid films in square capillary tubes:
Influence of corners’ roundedness

F. Chauvet, P. Duru,a! and M. Prat
Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse),
Allée Camille Soula, F-31400 Toulouse, France and CNRS, IMFT, F-31400 Toulouse, France

In this paper, evaporation of a volatile, perfectly wetting liquid confined in an initially filled

capillary tube of square internal cross section is studied, when conditions are such that liquid films

develop along the tube internal corners under the effect of capillary forces, as the bulk meniscus

recedes inside the tube. More precisely, the emphasis is on the moment when the liquid film tips

depin from the tube top once they have reached a critical length, a phenomenon observed in

experiments. A model taking into account liquid corner flow and phase change at the film tip is

proposed in order to predict the critical film length at depinning. The model is found to be in good

agreement with experimental data and highlights that the critical film length depends strongly on the

degree of roundedness of the tube internal corners. Thus, it is crucial to take into account this purely

geometrical factor when modeling evaporation in polygonal capillary tubes or, more generally,

corner flows in a rounded wedge. doi:10.1063/1.3503925

I. INTRODUCTION

Evaporation from liquid menisci in confined environ-

ment is of importance in many applications, such as cooling

technologies
1
or drying of porous media.

2
Understanding the

fundamental processes involved in these applications is es-

sential and has motivated many studies ssee, for example,
Ref. 3 and references thereind. In this context, the consider-
ation of evaporation in a single tube or microchannel is an

important step for the understanding of more complex sys-

tems, such as, for example, networks of interconnected cap-

illaries, which are common in microfluidic applications
4
and

which are also frequently used as conceptual models of po-

rous media.
2
Our motivation for the consideration of such an

elementary system originates more specifically from experi-

mental results in etched networks of channels of rectangular

cross section, showing that evaporation was much faster than

initially expected.
5
The effect was conjectured to be due to

the effects of liquid films trapped by capillarity in the corners

of the channels invaded by the gas phase ssee Fig. 1d. Since
then, the consideration of these corner films in relation with

drying problems has motivated several modeling and nu-

merical studies
6,7
and it is now widely admitted that these

films play a major role not only in etched networks, but also

in most porous media. However, this is only very recently

that careful experimental studies were developed with the

twofold objective of gaining a better understanding of evapo-

ration in the presence of corner films and developing quan-

titative predictive models.
8,9
The present paper notably high-

lights the influence of corner roundedness. As we shall see,

the tube evaporation kinetics is greatly affected by the tube

degree of roundedness. Hence, a somewhat tiny geometrical

detail has a great influence on evaporation. This has impor-

tant implications for the drying of porous media since the

study clearly suggests that evaporation in porous media

should depend on tiny details of the pore space geometry and

therefore contributes to explaining why quantitatively pre-

dicting the evaporation rate of porous media remains a chal-

lenging problem. Also, it is interesting to notice that the mass

transfer driven evaporation from a circular tube is well un-

derstood since the 19th century
10
and is a classic textbook

problem, usually referred to as the “Stefan tube problem.”
11

The situation is completely different in tubes of polygonal

cross section. The presence of corners and associated corner

liquid films leads to much greater evaporation rates
9
but

makes the analysis significantly more involved. The evapo-

ration enhancement is explained by the corner liquid films.

As sketched in Fig. 1, “thick” and elongated liquid films are

trapped by capillary forces along the tube’s four internal cor-

ners in the square tube considered in the present study, if the

liquid wetting contact angle u is inferior to a critical contact

angle uc=45°.
12,13

These corner films provide transport paths

for the liquid between the receding bulk meniscus and the

entrance of the tube. The liquid is transported within the

films under the action of the pressure gradient induced by the

meniscus curvature variation along the films, up to the tube’s

opened end, where it evaporates. Viscous resistance to the

corner flow and gravity swhen the tube is held verticallyd
tend to oppose to the capillary pumping. The relative impor-

tance of these three effects can be quantified by introducing

two dimensionless numbers: the capillary sCa=viscous
effects/capillary effectsd and the Bond numbers sBo
=gravity effects/capillary effectsd. When there are no corner
films su$ucd, the phase change takes place at the bulk me-
niscus and vapor is transported by molecular diffusion up to

the tube top as in the Stefan tube problem stube of circular
cross sectiond.

Corner liquid films are, of course, important not only for

mass transfer driven evaporation problem. Situations similar
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to the one described above, where a liquid confined in a

corner or wedge flows under the action of capillary forces,

are encountered in various research fields and have been dis-

cussed widely in the literature. For instance, the imbibition

of a wetting liquid along a corner can be related to oil recov-

ery problems in a porous medium.
14,15

Corner flows are also

relevant in many applications involving microsystems, such

as microheat pipes. In a microheat pipe, a volatile liquid is

transported by capillary pumping in wedges to some hot re-

gions of the device where it vaporizes. In contrast with the

situation considered in the present paper, evaporation is

driven by heat transfer in this case. Numerous studies fo-

cused on the length of the liquid-wetted region, an important

parameter to model to quantify the microheat pipe efficiency

and cooling capabilities
1,16

and on the Marangoni flows re-

sulting from the temperature gradients, which can oppose the

capillary-induced motion, leading to stationary interface

shape.
17–19

The modeling of corner flows in a wedge usually

relies on the assumption of a perfectly sharp corner in the

wedge. If this is certainly relevant when dealing with micro-

systems made using Silicium-etching based techniques,

which lead to sharp angles down to submicron scale, this is

not the case when working with corners fabricated from solid

materials by other techniques, such as machining or extru-

sion sas is the case for glass capillary tubes of polygonal
cross sectiond. However, we are aware of only a few works
that tried to incorporate the corner or wedge degree of round-

edness in the description of the abovementioned systems.

Several works focused on the variation of the viscous resis-

tance for corner flow as a function of the wedge degree of

roundedness.
14,20,21

All these works show that the resistance

is increasing with the degree of roundedness and can then be

much larger than that for the sharp corner case. Dong and

Chatzis
15
have then shown that the spreading dynamics of a

wetting droplet in a rounded wedge is going to be slowed

down compared to the sharp corner case. In Chen et al.,
21
the

authors mention that the tube roundedness is also going to

limit the drop final extension in the wedge, in the case of a

perfectly wetting fluid, which would spread to infinity in a

sharp wedge in the absence of gravity. It can also be men-

tioned that in a static case, in the absence of gravity, it has

been shown by Concus and Finn
22
that the classical condi-

tions established in previous works
12,13

for corners films to

develop—u,uc=p /2−a, where a is the corner half-

angle—is modified when the corner is rounded. For a given

a, when the degree of roundedness is nonzero, smaller criti-

cal contact angles have to be considered, compared to the

perfect corner case, for corners films to be present.

As mentioned before, the main scope of this paper is to

study how evaporation in a square capillary tube is affected

by the tube degree of roundedness. We deal with slow evapo-

ration in a stagnant dry air, under atmospheric pressure, and

at ambient temperature. Under these conditions, the phase

change is limited by mass transfer and the system is sup-

posed to be isothermal. Experiments using an infrared ther-

mography technique have confirmed the fact that the phase

change takes place at the top of the square capillary tube.
9

However, this is true only for a first stage of the experiment.

Indeed, it was shown by infrared thermography
9
and by

charge-coupled device sCCDd camera visualizations23 that
the corner films depin from the tube top after a while and

then recede inside the tube, a phenomenon not predicted by

earlier modeling attempts.
9
More precisely, the drying kinet-

ics of a square tube was described in Chauvet et al.
8
and

shown to be characterized by three main periods: a first pe-

riod where the films remain attached to the tube entrance and

slowly get thinner in the tube entrance region sas well as
within the tubed, and two periods where the films’ tip is
located inside the tube. The evaporation flux is much higher

during the first period, which essentially depends on the ex-

ternal mass transfer sas opposed to the third one, which is
dominated by the transfers inside the tube and the second

one, which depends on both the external and internal trans-

fersd. The event marking the end of the first period is the
films’ depinning from the tube entrance. Since the first pe-

riod is the high evaporation flux period, it is particularly

important to predict its duration and therefore the films’ de-

pinning. Consequently, the main goal of the present paper is

to predict the depinning through an improved modeling of

the films’ thickness evolution during the first period and at

depinning, notably by taking into account the effect of tube

roundedness and then to compare the model predictions to

some experimental results.

The paper is organized as follows. First, we rapidly de-

scribe the experimental setup and techniques used. Then, we

first show how the internal corner degree of roundedness is

controlling the maximal extension of hydrostatic, nonvolatile

corner liquid films before turning to the more involved case

of an evaporating fluid in Sec. IV. The predictions of the

model are then compared to experimental data in Sec. V.

Conclusions are drawn in Sec. VI.

II. EXPERIMENTAL SETUP

The experimental setup consists of a capillary tube, held

vertically and glued at one of its ends by an epoxy resin

directly to a syringe tip, the other end being opened and

placed in stagnant dry air. The tube filling is controlled by a

precision syringe pump sPHD 2000, Harvard Apparatusd.
Two types of capillary glass tubes were used in the

present work. First, a 10 cm long square capillary tubes

FIG. 1. Sketch of the thick liquid films in a capillary tube of square cross

section. The bulk meniscus position is denoted as z0.



made of borosilicate glass and supplied by Vitrocom. The

internal side length and wall thickness of the tubes are given

in Table I. As can be noticed by imaging tubes’ cross sections

with an optical microscope, the tubes’ internal corners are

not sharp. The degree of roundedness r0, as defined in Fig.

2sad, is estimated by fitting the internal corners’ shapes by
quarters of circular arcs for several tube cross sections fsee
Fig. 2sbdg. The values of r0 for the capillary tubes used are
given in Table I. Second, a 10 cm long square capillary tubes

made of borosilicate glass and supplied by Hilgenberg. The

internal side length and wall thickness of the tubes are given

in Table I. As for the Vitrocom capillary tubes, the tubes’

internal corners are not sharp. However, the internal corner

cross section shape does not consist of a circular arc contrary

to the Vitrocom tubes, probably due to a different fabrication

process. The degree of roundedness r0 was nonetheless esti-

mated as previously, by fitting the internal corners’ shapes by

quarters of circular arcs, for several tube cross sections, the

quarters of the circular arc being tangent to both the tubes’

lateral sides and the straight segment forming the angle fsee
Fig. 2sbdg. The corresponding values found for r0 are given
in Table I. Note that the values for r0 are found to be smaller

for this kind of tubes than those for the tubes supplied by

Vitrocom. There is notably a factor of 2 between the two

values for the d<1 mm tubes stubes 1 and 3d. Thus, these
differences in the tube corners’ degree of roundedness,

depending on the supplier, allowed us to vary this parameter,

which will prove to be a key parameter in the present study.

Three perfectly wetting fluids were used: heptane,

2-propanol, and a nonvolatile silicone oil s47V5d. The fluid
properties relevant for this study are shown in Table II.

The measurements performed in the present study rely

on video-imaging of the capillary tube, using an ombroscopy

configuration in order to detect easily the location of the

interface between the liquid and the gas. Two CCD cameras

sSensicam, PCOd were used. The first CCD camera is facing
one side of the capillary tube and images are taken at low

magnification sspatial resolution <13 pixels mm−1d. It is
used to detect the bulk meniscus location z0 ssee Fig. 1d.
When the liquid films are present up to the tube opened end,

this also amounts to measure the film length L, i.e., L=z0.

The second CCD camera provides high magnifi-

cation images of the tube top sspatial resolution

<654 pixels mm−1d. The optical axis is aligned with one of
the tube diagonals so that three corner films out of four are

seen on the high magnifications images. The focus is made

on the two lateral corner films. Image processing, based on

optical geometry considerations, allows determining the film

thickness e= sÎ2−1dsR−r0d, as sketched in Fig. 2sad, made
dimensionless by its value at the beginning of the experi-

ments e0 ssee Refs. 23 and 24 for more detailsd. The film
thickness measurement is typically performed on one of the

two lateral films imaged, at least one tube diameter away

from the film tip, i.e., in a region where the film longitudinal

curvature can be neglected ssee Sec. IIId, which is a neces-
sary condition for the present analysis to be correct. Also, the

moment when the lateral films depin from the tube top can

be determined by careful inspection of the recorded images.

This is also possible for the liquid film visualized in the

corner closest to the camera, despite the fact that it is blurred

on the images because it is slightly off-focus. The image

acquisition rate is typically 0.05 Hz sone image taken each
20 sd. For some experiments, it is found that the film tip

depinning in each corner does not occur within the same

time interval between two given recorded images: after the

first film depinning, the following images can still show one

or two corner films still present up to the tube top for a short

FIG. 2. sad Radius of curvature R and film thickness e in the tube cross

section plane at a location along the tube where the longitudinal curvature of

the liquid-gas interface is negligible compared to the transverse one s1 /Rd.
The degree of roundedness is denoted as r0. Note that the tube external

corners are also rounded but as it does not play a role in the present study,

it is not shown in this sketch. The hatched region is the union of the liquid

and solid corners. Its area at a given vertical position z is Ac /4 fsee Eq. s7d
in Sec. IVg. sbd Roundedness of a square capillary tube internal corner, as
visualized by an optical microscope with a 320 magnification; left: tube 1,

right: tube 3, see Table I.

TABLE I. Capillary tubes characteristics. The degree of roundedness was obtained by averaging the radii values

of the best-fitting quarters of circular arcs to the internal corners of several tube cross sections, obtained by

cutting a tube with a precision saw. The uncertainty on the degree of roundedness is the standard deviation to

the mean value.

Tube 1 Tube 2 Tube 3 Tube 4

Supplier Vitrocom Vitrocom Hilgenberg Hilgenberg

Internal dimension d smmd 1 0.4 0.95 0.49

Tube wall thickness smmd 200 200 108 55

Degree of roundedness r0 smmd 10562.5 3261.5 4865 20.561.5



time duration. This situation will be referred to as “differen-

tial depinning” in the following ssee Sec. Vd. However, the
difference between the longest corner film imaged sfound for
the latest depinningd and the shortest is always small,

being at most one tube internal diameter. More details on the

experimental setup and techniques can be found

elsewhere.
9,23,24

III. ROUNDNESS-LIMITED EXTENSION
OF A HYDROSTATIC LIQUID FILM

To highlight the effect of the tube internal corners’ de-

gree of roundedness on the corner film extension, we first

focus on the simple case of a nonvolatile liquid at rest, con-

fined in a square capillary tube. The liquid is perfectly wet-

ting so that thick liquid films develop along the internal tube

corners, as sketched in Fig. 1. The variation of the pressure

in the liquid film pl along the vertical direction z is given by

the equation of fluid statics

dpl

dz
= rlg for 0, z , z0, s1d

where rl is the liquid density and g is the gravity accelera-

tion. At a given z, the liquid pressure is related to the gas

ambient pressure pa by Laplace’s law

plszd = pa −
g

Rszd
for 0, z , z0, s2d

where g is the surface tension and Rszd is the curvature ra-
dius of the liquid-gas interface in the plane perpendicular to

the tube axis fsee Fig. 2sbdg. Note that the longitudinal cur-
vature, i.e., the curvature along the tube axial direction z, is

neglected in this simple model, which is a usual assumption

in the corner flow literature. Recently, Yang and Homsy
17

have studied the case of a liquid meniscus in a V-shaped

wedge under an imposed axial temperature gradient. The

equilibrium meniscus shape is fixed by the competition be-

tween the Marangoni stress and the capillary pressure gradi-

ent. They have shown that to neglect the longitudinal curva-

ture is justified over the full film extension by deriving an

expression for the capillary pressure drop and showing that it

is dominated everywhere by the transverse curvature term

compared to the axial one snote that this remains true as long
as the sum of the contact angle and of the corner half-angle is

not p /2, which is the case in the present study, where

u<0 and the half-angle is p /4d. This is also true when the
liquid film has dried out, due to the heat flux imposed on the

wedge. However, we believe that the situation is different

when the liquid films are “pinned” to the three-dimensional

geometric singularity consisting of the junction between the

tube internal corner and the tube top external surface, at the

tube entrance. Consequently, we cannot strictly make use of

Yang and Homsy’s result to argue that the longitudinal cur-

vature is negligible when compared to the transverse one,

over the full film extension. However, the longitudinal cur-

vature affects the shape of the elongated films only very

close to their tips in the present case, as can be checked on

high magnification images of the film tips. Clearly, if the

longitudinal curvature were to be non-negligible compared to

the transverse one f1 /Rszdg, it would be in this region of the
films, which is of a very limited spatial extension and small

compared to the total film length L s.10d in the present
experimentsd. Thus, it can be expected that to take into ac-
count the longitudinal curvature would result only in a mar-

ginal correction to the case where only the transverse curva-

ture is considered.

As the hydrostatic pressure drop over the vertical exten-

sion of the bulk meniscus is negligible compared to the cap-

illary pressure jump at the bulk meniscus, the total curvature

of the meniscus can be taken as the purely capillary solution

for the meniscus curvature
25,26

Rbm =
d

2x
, s3d

where x is a dimensionless curvature, which is a function of

both the contact angle and the critical contact angle above

which no corner film exist. For a perfectly wetting liquid in a

square capillary tube, 2x<3.77. In the present modeling, it
is assumed that the purely transverse radius of curvature of

the corner films tends toward Rbm when the corner films

match to the bulk meniscus, i.e., when z→z0. As mentioned

in Sec. II, the film length L is obtained experimentally by

measuring the bulk meniscus bottom position z0. Conse-

quently, directly comparing such experimental data to predic-

tions of film lengths from the model comes down to neglect-

ing the vertical extension of the bulk meniscus compared to

the film length. This is reasonable for the elongated films of

interest in the present study.

Combining Eqs. s1d and s2d leads to the following ex-
pression for the radius of curvature evolution with z:

Rpszpd =
1

1 + Bos1 − zpd/e
. s4d

In this expression, Rpszpd is the radius of curvature made
dimensionless by Rbm and zp=z /L. The Bond number Bo is

defined as rlgRbm
2

/g and e=Rbm /L. For a perfectly sharp

corner, Eq. s4d predicts an infinite maximal length for the

TABLE II. Fluid properties.

47V5 Heptane 2-Propanol

Density rl sg cm−3d 0.910 0.679 0.781

Surface tension g smJ m−2d 19.70 19.66 20.93

Liquid viscosity ml skg m−1 s−1d 4.55 0.387 2.04

Equilibrium vapor mass concentration ce skg m−3d ¯ 0.230 0.134

Vapor-air diffusion coefficient D sm2 s−1d ¯ 7.23310−6 9.70310−6



corner film: Lmax→+` when Rp
→0 at zp=0. In fact,

the above description breaks down when the film thickness

becomes so small that disjoining pressure effects begin to

act. Taking a typical cutoff thickness for that transition of

'10 nm, Eq. s4d still leads to a remarkable length Lmax of

<Os106d m for 47V5 oil in a d=1 mm square capillary

tube sBo=0.032d. Actually, the maximal film length is dras-
tically limited by the tube internal corners’ degree of round-

edness which provides a lower limit for the film curvature

radius R, as mentioned qualitatively by Bico and Quéré
27

snote that Ramos and Cerro28 also deduced from this remark
a way to measure the very small contact angle of almost

perfectly wetting liquid on glassd. The maximal film length is
then obtained when Rp

→r0 at z
p=0 and reads

Lmax =
Rbm

Bo
S 1
r0

p
− 1D , s5d

where r0
p=r0 /Rbm. One then obtains Lmax<12.65 mm using

47V5 oil properties in tube 1 sd=1 mm, r0
p=0.396d. Thus,

the length of a static corner liquid film depends strongly on

the degree of roundedness of the tube internal corners. Note

that the above description breaks down when the rounded-

ness of the tube is such that the film length is no longer large

enough compared to d so that the longitudinal curvature has

to be taken into account.

Experiments performed with 47V5 oil, a perfectly wet-

ting, nonvolatile fluid, allowed to test the predictions of the

above analysis. Note that in these experiments, the tube was

first filled completely with silicone oil, which was then

drained using the syringe pump. Several drainage steps were

realized successively in order to impose several liquid film

lengths. For each bulk meniscus position z0, a film thickness

measurement was performed, a long time s30 mind after the
previous drainage step, to allow the films to relax to their

hydrostatic shape. In Figs. 3sad and 3sbd, respectively, the
measured film thickness e, made dimensionless by e0, the

film thickness measured after the first drainage step, is

shown as a function of the imposed bulk meniscus position

z0 for tubes 1 and 2, respectively. It is important to note that

the film thickness measurements were performed at least one

tube diameter away from the tube top: at zm=1 mm for tube

1 and at zm=0.67 mm for tube 2. These measurements

points were chosen arbitrarily sufficiently “far” from the very

top of the tube, where some longitudinal curvature effects are

visible, as explained in Sec. II. It was checked that the results

do not vary significantly with the exact location where the

image processing is performed. For z0,Lmax, the theoretical

predictions concerning the film thickness, shown as solid

lines in Fig. 3, have been obtained using Eq. s4d with L=z0
and zp=zm /z0. Theoretically, when the bulk meniscus posi-

tion reaches the value Lmax given by Eq. s5d, the films are
supposed to depin from the tube top. However, the film

thickness at the measurement point is not zero at that mo-

ment. For z0.Lmax, the theoretical predictions shown in Fig.

3 were obtained by assuming that once a film has depinned,

its shape does not evolve and is simply translated further

down the tube as the bulk meniscus recedes. Consequently,

theoretical predictions shown in Fig. 3 are nonzero up to z0

values equal to Lmax+zm. The agreement between the experi-

ments and the theoretical prediction concerning the film

thickness evolution at the measurement point is good. In par-

ticular, the maximal film extension is well predicted

as the thickness is found to go to zero when z0<Lmax+zm.

Note that the theoretical predictions for r06 the standard

deviation to the average r0 value ssee Table Id have also been
plotted in Fig. 3 as dotted lines to take into account the

uncertainty on the r0 value when comparing the theoretical

predictions to the experimental data.

This simple hydrostatic case highlights the fact that the

tube corners’ degree of roundedness is a major parameter to

predict the hydrostatic liquid film extension in a square cap-

illary tube partially filled with a nonvolatile liquid. In the

remainder of this paper, it will be shown that the tube cor-

ners’ degree of roundedness is also a key feature in a much

more complex situation, namely, when the confined liquid is

evaporating.

IV. EVAPORATING LIQUID FILM: MODELING

In this section, a model of evaporation in a capillary tube

of square cross section is introduced, the results of which

will be compared to experimental results in Sec. V. It is

based on the earlier modeling attempts mentioned in Sec. I.

The new key feature introduced here is that the present ap-

proach allows taking into account the corner internal degree

of roundedness. As it will be seen in Sec. V, this is a crucial

parameter to consider in order to get quantitative predictions

from the model.

A. Modeling and numerical technique

Slow evaporation in stagnant, dry air is considered.

Phase change is controlled and limited by vapor diffusion in

the surrounding air and the system is assumed to be isother-

mal, i.e., the temperature variations due to the evaporation

cooling effect are neglected. This assumption is supported by

experimental data. Using an infrared thermography

technique,
9
the cooling induced by evaporation can be mea-

sured. The cooling is located at the top of the tube, where the

phase change takes place until the films depin. The cooling is

at most 2.5 K when using 2-propanol in tube 1 and less than

1.5 K for three others cases
24 s2-propanol in tube 2 and hep-

tane in tubes 1 and 2d. These amplitudes of cooling are suf-
ficiently small to consider the system to be isothermal, in the

range of evaporation rates obtained in the present study. The

starting point of the modeling follows the classical analysis

of Ransohoff and Radke
20
for corner flows, relating the liq-

uid flow rate in the liquid films to the liquid pressure gradient

by a Poiseuille-like law corrected for gravity

qliqszd = − rl

AcR
2

bml

Sdpl

dz
− rlgD with 0, z , z0, s6d

where ml is the liquid viscosity and Ac is the sum of the areas

of the four liquid corner films and of the four “solid” corners,

in a cross section at position z fsee Fig. 2sadg



Ac = lR2, s7d

with l=4−p, for a perfectly wetting liquid in a square cross

section tube.
14,25

In Eq. s6d, b is a dimensionless flow resis-

tance depending on the tube corner shape, the contact angle,

and the boundary condition at the liquid-air interface. In the

present study, the shear stress on the liquid-vapor interface of

the films can be neglected because the liquid viscosity is

much larger than that of air. As in Sec. III, the liquid is

considered as perfectly wetting on the internal tube wall. The

dimensionless flow resistance for a rounded corner was ob-

tained in three different studies. Ransohoff et al.
20
solved the

corner flow equation numerically using a finite element

method and obtained a discrete set of values for the dimen-

sionless flow resistance, depending on the contact angle, the

shear stress on the liquid-vapor interface, and the degree of

roundedness. An analytical formula is proposed in Zhou

et al.
14
using two classical approaches: the hydraulic diam-

eter approach and thin film flow theory. In the two aforemen-

tioned studies, the dimensionless flow resistance, which is

denoted b, is unbounded and diverge when r0 /R→1. A third

approach, initiated by Ayyaswamy et al.
29
and later revisited

by Weislogel and co-workers,
21
notably in the case of a

rounded corner, has shown that the aforementioned diver-

gence of the hydraulic resistance disappears when using a

proper scaling of the problem. However, as mentioned by

Chen et al. in their paper, Ransohoff and Radke’s approach

remains more widespread. In the present study, the use of

this later approach is motivated by the close relation of the

present work with the study of evaporation in capillary po-

rous media, in which the b formalism is often used
6,7
and is

coherent with previous works of some of the authors.
7,9

Figure 4 shows the values of b as a function of r0 /R ob-

tained from these three works sthe way to get the value of b,

as defined in the present paper, from the approach of Chen

et al.,
21
is detailed in Appendix Ad. The rough shape of the

various curves is similar. Notably, they all diverge when

R→r0 i.e., when the film thickness tends toward zero. How-

ever, it is worth noting that there are up to a 20% difference

in b values predicted by these three different approaches for

the whole range of r0 /R values.

As in Sec. III, liquid pressure and curvature radius are

linked by Laplace’s law sthe longitudinal curvature still be-
ing neglectedd. Combining Eqs. s2d, s6d, and s7d leads to

qliqszd = − rl

lR4

bml

SgR−2
dR

dz
− rlgD with 0, z , z0.

s8d

Due to evaporation along the films, the liquid flow rate de-

creases up to the film tips. As in Yiotis et al.,
6
the resulting

vapor diffusion into the tube is taken into account in the

modeling. Here, the mass transfer between the liquid film

and the gas phase inside the tube is simply modeled intro-

ducing a mean vapor mass concentration c̄, which is a spatial

average of the vapor mass concentration over the tube cross

section region occupied by the gas Ag=d
2−lR2, and assum-

ing the gas mixture as being dilute such that the evaporation

mass rate per unit of length inside the tube Qev
is given by
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FIG. 3. sad Dimensionless liquid film thickness e /e0 as a function of bulk

meniscus position z0 for sad tube 1 and sbd tube 2. Equation s5d gives
Lmax=12.65 mm for tube 1 and Lmax=48.2 mm for tube 2.
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Qev
= − 2pDhR

ce − c̄

d/2
= − 2pDhR

ce − c̄

xRbm

, s9d

where ce is the equilibrium vapor mass concentration at the

liquid-gas interface, D the vapor molecular diffusion coeffi-

cient, and h=4 is a dimensionless coefficient of mass transfer

provided by three-dimensional computations of the steady

diffusion of vapor in the gas phase, inside a square capillary

tube partially filled with a perfectly wetting and volatile

liquid.
30
The sensitivity of the numerical results to h will be

discussed in Sec. IV B.

The diffusional mass flux in the gas phase qvap is given

by

qvapszd = − DAg

dc̄

dz
. s10d

The evaporation rates expected are such that the characteris-

tic drying time tdry=dsdz0 /dtd−1 is much larger than the char-
acteristic diffusion time tdiff=d

2
/D, so that vapor diffusion

in the tube can be considered as being quasisteady. In the

present experiments, the ratio tdry /tdiff is found to be

Os103–104d. Also, the characteristic time for the interface
shape to reach a steady state is much smaller than tdry,

so that the interface shape variation can be considered as

being quasisteady.
6
Consequently, one obtains from mass

conservation

Qev
=
dqliq

dz
= −

dqvap

dz
. s11d

The total mass flux is denoted as qtot, qtot=qliq+qvap and is

constant along z. Note that because the z-axis is pointing in

the same direction as gravity in the present modeling ssee
Fig. 1d, all the fluxes defined above have negative values.

If we focus on the moment when the film tips depin from

the tube top, the two following boundary conditions have to

be used:

qvaps0d = qtot, s12d

qliqs0d = 0. s13d

As in the previous hydrostatic analysis, the gravity force is

neglected over the bulk meniscus vertical extension. In addi-

tion, it is assumed that the liquid flow rate is small enough to

consider that the capillary pressure jump at the bulk menis-

cus is constant and equal to its static value. Also, the vapor

mass concentration on the liquid-gas interface is assumed to

be constant and equal to its equilibrium value. The two re-

sulting boundary conditions reads

Rsz0d = Rbm, s14d

c̄sz0d = ce. s15d

The above equations are made dimensionless using the fol-

lowing variables:

Rp = R/Rbm, zp = z/L, cp = c̄/ce. s16d

Combining Eqs. s8d, s9d, and s11d, a second-order nonlinear
ordinary differential equation on Rp is obtained

Rp
d2Rp

dzp2
+ S2 − Rp

b

db

dRp
DSdRp

dzp
D2 − Bo e−1Rp2

3S4 − Rp

b

db

dRp
DdRp

dzp
= e−2b Ca hs1 − cpd , s17d

where e=Rbm /L as before and Ca is the capillary number

Ca =
2pmlDce

Rbmrllg
. s18d

Combining Eqs. s9d–s11d, another second-order ordinary dif-
ferential equation on cp is obtained,

s4x2 − lRp2d
d2cp

dzp2
− 2lRp

dRp

dzp

dcp

dzp
= − 2pe−2hRps1 − cpd .

s19d

The boundary conditions, Eqs. s12d–s15d, become

qvap
p s0d = qtot

p , s20d

qliq
p s0d = 0, s21d

Rps1d = 1, s22d
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cps1d = 1, s23d

where the flux are made dimensionless by a reference evapo-

ration rate qref=RbmDce and with qtot
p =qliq

p +qvap
p . In order to

close this set of equations the following boundary condition

is added:

Rps0d = r0
p, s24d

traducing the drying of the film tips at depinning, the situa-

tion of interest in the present study.

The two coupled Eqs. s17d and s19d, along with the cor-
responding boundary conditions fEqs. s20d–s24dg, form a

boundary value problem with one unknown parameter e. An

iterative scheme is used to solve this problem. Equations

s17d and s19d are solved successively. At each iteration, Eq.
s17d on Rp, with boundary conditions s21d, s22d, and s24d,
and Eq. s19d on cp, with boundary conditions s20d and s23d,
are solved using the MATLAB solver bvp5c. The parameter e

is calculated in the same time as Rp. The maximal relative

error on Rp, cp, and e is 10−6. The hydraulic resistance as a

function of the curvature radius was obtained using either the

results of Zhou et al.
14
or Chen et al.,

21
which provide ana-

lytical expressions for b, as opposed to the discrete values of

Ransohoff et al.
20
As b and Rpb−1db /dRp diverge when

Rp
→r0

p, the boundary condition Eq. s24d is in fact applied as
Rps0d=xr0

p with x=1.001 which, after several tests, appeared

to be sufficient to obtain a converged solution. Note that in

the present numerical procedure, the value of qtot is used as

an input. Three-dimensional numerical simulations of the va-

por diffusion problem in the capillary tube, from the menis-

cus surface to the stagnant ambient air, could be used to

compute the evaporation rate as a function of the bulk me-

niscus position and of the full meniscus surface shape. Some

of the authors reported work in that direction in a recently

published paper.
8
However, this numerical procedure is

heavy and for simplicity, the values of qtot will be obtained

experimentally in the present study.

B. Numerical results

In Fig. 5, the dimensionless film thickness ep= sRp

−r0
pd / s1−r0

pd is shown as a function of zp for several values

of Bond and capillary numbers. The value of qtot
p used is

typical of the values measured at the depinning, for the

present experiments ssee Table III in Sec. Vd. The
corresponding dimensionless film length at depinning

e−1=L /Rbm is given in the legend. In Fig. 5sad, film thickness
profiles are shown for several Bond numbers at Ca=5

310−6. The effect of gravity on such profiles is clearly vis-

ible: the corner film profile is all the more thin and short that

the Bond number is large. In Fig. 5sbd, film thickness profiles
are for several capillary numbers at Bo=5310−3 for the

same set of parameters as in Fig. 5sad. The viscous effects
clearly limit the film length.

The effect of r0 on the film length at depinning, the study

of which is the primary objective of this paper, is displayed

in Fig. 6 for different values of the capillary number at a

fixed value of uqtotu and of the Bond number. As might have
been expected from the discussion in Sec. III concerning the

hydrostatic nonvolatile liquid case, it is found that the corner

films’ maximal extension si.e., obtained at the moment when
they depin from the top of the tubed is found to decrease with
r0

p. This is an important effect. For instance, for Ca=10−6, the

film length at depinning is divided by more than a factor of 2

between the case of a perfectly sharp corner and the case of

a rounded tube with r0
p=0.4 swhich corresponds to the r0

p

value for tube 1, see Table Id. For any value of r0
p, it is

important to note that the film extension is finite and much

smaller that the one that is obtained in a purely hydrostatic

case, when Ca=0, which highlights how the viscous effects

induced by the liquid flow toward the tube top limit the film

length. When r0
p
→1, the film length at depinning decreases:

as the present model is no longer valid when the film be-

comes so short that the effect of the longitudinal curvature on

the film length cannot be neglected, no results for e−1,10

are shown in Fig. 6. The film length depends weakly on the

value of the dimensionless mass transfer coefficient h fsee
Eq. s9dg. For instance, for Ca=10−5, Bo=5310−3, r0

p=0.4,

and uqtot
p u=4.5, e−1 varies between 71.2 and 70.6 when h is

varied between 2 and 6. This weak dependence of the film

length on h is due to the fact that the extension within the

tube over which the vapor flow rate qvap is nonzero is always

much shorter than the film length, for all the tested values of

h ssee Fig. 7 belowd. The sensitivity of the obtained film
length to the fixed value of qtot chosen for the computations

at a given Ca and r0
p is also shown in Fig. 6. The results

obtained for uqtotu=4.560.45 are plotted as errors bars in Fig.

6. This clearly displays that the film length is mainly con-

trolled by the tube roundedness. For instance, at Ca=5

310−6 and r0
p=0.3, a 10% variation in uqtotu results in a varia-

tion of '3.5% for e−1, whereas a 10% variation in r0
p results

in a variation of '10% for e−1.

In Sec. V, the predictions of the above model will be

tested against experimental data. However, such a compari-

son is limited to the film length at depinning only, as the

system of coupled equations is solved when the films depin,

as expressed by boundary conditions s20d and s21d. Before
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that moment, the flow rate distribution between the gas and

liquid phase si.e., the ratio between qliq and qvapd at the film
tip is not known and thus the model cannot be used to make

any predictions on the film length. However, as can be seen

in Fig. 7sad, where the vapor mass concentration profiles in
the tube are shown for the same set of parameters as in Fig.

5sad, the gas phase is saturated over much of the film length:
the vapor concentration gradients are only significant near

the tube entrance region for 0,zp,0.1. Consequently, the

phase change occurs preferentially at the film tip: the vapor

mass flux is nonzero only in the near tube entrance region, as

seen in Fig. 7sbd, which shows the absolute value of the
dimensionless vapor mass flux qvap

p as a function of zp. In the

following, a simpler model is proposed, in which vapor dif-

fusion is neglected in the tube: the air is considered to be

saturated in vapor inside the tube, so that qvap
p =0 at any

zp.0. Consequently, the liquid flow rate is assumed to be

constant along the tube. This model is similar to the one

proposed in Chauvet et al.
9
and it is shown below that it can

predict the evolution of the film thickness during the whole

experiment and not only at the moment when the films depin.

C. A simpler model

With the additional assumption on the saturation of air

with vapor inside the tube, the problem amounts to a single

differential equation, obtained by rewriting Eq. s8d as

dz̃

dRp
= SCa
2p

qtot
p bRp−2 + BoRp2D−1, s25d

where now z̃=z /Rbm. Using qtot as an input and solving

Eq. s25d using a finite difference scheme with the boundary
condition

z̃ = 0 at Rp = xr0
p, with x = 1.001 s26d

leads to a prediction of the film length at depinning, which is

then e−1= z̃sRp=1d. Equation s25d can also be solved using
the following boundary condition:

z̃ = z̃0 at Rp = 1, s27d

using the measured qtot and film length as inputs in order to

get the film thickness profile Rpsz̃d.
The predictions of this simple model as far as the film

length at depinning is concerned, i.e., using boundary condi-

tion s26d, are shown as dotted lines in Fig. 6. The simple
model provides film lengths very close to the complete

model predictions ssolid lines in Fig. 6d for a wide range of
capillary numbers, Bond numbers, and total evaporation rate

values. It can be noted that the film lengths given by this

simplified model are always slightly lower than those ob-

tained with the previous approach sthe maximal difference
for the results presented in Fig. 6 is 2.5Rbm for the

Ca=10−6 case, at r0
p=0.15d. Indeed, in the simple model, the

liquid flow rate is constant along the entire film length.

Therefore, it can be argued that in this case, the liquid pres-

sure gradient dpl /dz, in the film tip region, is larger than the

one obtained using the previous model. As dpl /dz~

−df1 /Rszdg /dz, the radius of curvature gradient is then lower

in the previous model than in the simplified model, leading

to larger film length at depinning. It is also important to

notice that even if this simplified model is in good agreement

with the previous one as far as film length at depinning is

concerned, it predicts a divergence of the dimensionless liq-

uid mean velocity at the film tip v
p ssee Fig. 8d, where
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v
p =

qliq/frllsR2 − r0
2dg

qref/frllsRbm
2 − r0

2dg
= qliq

p
1 − r0

p2

Rp2 − r0
p2
. s28d

Indeed, since the liquid flow rate is constant along the film

and since the liquid cross section at the film tip is 0, a diver-

gence of v
p is found at the film tip. On the contrary, as the

complete model takes into account evaporation along the

films, it predicts a more realistic zero liquid mean velocity at

the film tip ssee Fig. 8d.

V. EXPERIMENTAL RESULTS AND COMPARISONS
WITH THE MODELS PREDICTIONS

A typical evolution of the bulk meniscus location z0 as a

function of time is shown in Fig. 9 for heptane in tube 2.

Three distinct periods can be seen. First, as long as

z0,17 mm, the evaporation rate is roughly constant. Then,

around z0<17 mm, the evaporation rate starts to decrease
and this corresponds to the moment when the films depin

from the tube’s opened end, as can be checked visually on

the recorded images. For this given experiment, the film tip

depinnings do not occur exactly at the same time and the

moment when the first and last film depinning occur are

indicated in Fig. 9 snote that only three corner films out of
four can be detected on the high magnification images, see

Sec. IIId. Finally, after the film depinnings, the film tips re-
cede inside the tube. Consequently, the distance between the

film tips and the tubes’ opened end increases, provoking an

increase in the diffusive resistance to mass transfer and thus

a continuous decrease of the evaporation rate, as can seen in

Fig. 9 for z0.17 mm. A more detailed analysis of this kind

of curve can be found in Chauvet et al.
8

We now turn to the comparison between the experimen-

tal data and the model, as far as the film length at depinning

is concerned. To allow for such a comparison, the evapora-

tion rate, made dimensionless by dividing by qref=RbmDce,

has to be used as an input for the model fsee boundary Eq.
s20dg. The evaporation rate is estimated as

E = rl

dz0

dt 5d2 − s4 − pdRbm
2 − s4 − pdRbm

2

33
1

S1 + Bo z0

Rbm

D2 − 146 s29d

ssee Appendix Bd. The dz0 /dt value is calculated as the

value at zd of the derivative of the best-fitting second-order

polynomial of the data points z0std in the range fzd−1 mm,
zd+1 mmg, where zd is the bulk meniscus position at the

depinning. When a differential depinning of the observed

films occurs, the data points z0std in the range fzd,f−1 mm,
zd,l+1 mmg are fitted by a second-order polynomial, which is
then used to compute dz0 /dt at zd,f and zd,l. Here, zd,f and zd,l
are the bulk meniscus positions observed at the first and last

depinning. Two dimensionless evaporation rates are then cal-

culated, qtot,f
p and qtot,l

p , corresponding, respectively, to the

evaporation rate measured when the first and last film depin-

nings are observed, made dimensionless by dividing by qref.

For a given couple tube fluid, several experiments were per-

formed, each one leading to one or two values for the dimen-

sionless evaporation rate depending on the occurrence or not

of a differential depinning. All these values were then aver-

aged to get a unique dimensionless evaporation rate qtot
p to be

used in the model, the uncertainty on this parameter being

taken as the standard deviation on this average. Similarly, the

film lengths at depinning were measured in each experiment,

leading to one szdd or two values in case of differential de-
pinning szd,f and zd,ld. All these values were then averaged to
get a unique film length Ld, the uncertainty on this parameter

being taken as the standard deviation on this average. The

values for qtot
p , Ld, the corresponding experimental uncertain-

ties, along with the capillary and Bond numbers calculated

using the fluid properties given in Table I, are given in

Table III.

Figures 10sad and 10sbd, respectively, show the predicted
value of e−1=Ld /Rbm at depinning as a function of r0

p, to-

gether with the present experimental measurements for hep-

tane and 2-propanol, respectively. The theoretical predictions

fshown as lines in Figs. 10sad and 10sbdg are obtained using
the result of Zhou et al.

14
for b. For the sake of clarity, the

theoretical predictions obtained using the result of Chen

et al.
21
for b are not shown. Note that they do not differ from

the ones obtained using the results of Zhou et al. by more

than 5.4%. The vertical error bars on the theoretical predic-

tions come from the uncertainty on qtot
p . The theoretical pre-

diction were computed only for a restricted range of r0
p

around the experimental value for the tube considered. The

data points are shown as isolated symbols: squares for the

experiments performed with tubes 3 and 4 shaving the
smaller r0d and circles for the experiments performed with
tubes 1 and 2. The uncertainty on the degree of roundedness

of the tube internal corners is shown as a horizontal error bar

for the experimental data and the uncertainty on e−1 is due to

the experimental uncertainty on Ld.

The tube internal corner degree of roundedness has a

huge impact on the film length at depinning. For instance, Ld
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is roughly twice larger in tube 3 than in tube 1, which having

approximately the same internal size d but, respectively, with

r0
p=0.396 and r0

p=0.187 for the two fluids used. For all the

data points considered, the agreement between the experi-

mental results and the simulation results is good: the mean

difference between the data points and the theoretical predic-

tions is 12% when using the results of Zhou et al. for b and

12.7% when using the results of Chen et al. Thus, the present

modeling captures correctly the fact that the internal round-

edness of the capillary tubes is the key factor controlling the

film maximal length. Another point to mention is that the

differential depinning sometimes observed in the present ex-

periments could then simply be due to slight differences in

the tube corners’ degrees of roundedness, the “roundest” cor-

ner depinning first.

In the following, we compare the model predictions to

the experimental data, as far as the film thickness evolution

before depinning is concerned. As mentioned in Sec. IV, the

first model presented predicts only the film length at depin-

ning whereas the simpler, second model can be used before

the film depinning, using the evaporation rate and the film

length as inputs. For a given bulk meniscus position before

the film depinning, the film length is simply L=z0std. When
computing the evaporation rate using Eq. s29d, the dz0 /dt

value is obtained by finite difference, after filtering the z0std
data with a Savitzky–Golay filter. The experimental results

are compared to several theoretical predictions, made at the

measurement point location. As the model gives the film

shape until the film thickness cancels at z=0, the theoretical

predictions shown here do not go to zero. The film length

predicted at depinning, already shown in Fig. 10, can be read

in Fig. 11 as the z0 value corresponding to the last point of a

given theoretical curve. We also note that because the film

thickness measurement is not performed at the tube top but

at z /d=1 in both cases, the film thickness does not fall to

zero at the film depinning, which is detected at z=0 on the

high magnification images and the moment of which is indi-

cated on Fig. 11. Rather, the experimental data evolution

after the depinning displays the shape of the liquid film tip as

it passes in front of the measurement point.

First, we compare the experimental results to the model

predictions for a hydrostatic case, i.e., taking Ca=0 in Eq.

s25d fdotted line in Figs. 11sad and 11sbdg. A good agreement
is found between the model and the whole experimental data

TABLE III. Experimental data.

Ca Bo uqtot
p u dqtot

p

Ld

smmd
dLd

smmd

Tube 1: Isopropanol 4.52310−6 2.57310−2 3.71 0.21 11.1 0.8

Tube 2: Isopropanol 1.13310−5 4.11310−3 2.66 0.24 13.6 1.4

Tube 1: Heptane 1.32310−6 2.38310−2 4.47 0.12 11.7 0.05

Tube 2: Heptane 3.31310−6 3.81310−3 4.69 0.32 17.1 0.5

Tube 3: Isopropanol 4.74310−6 2.34310−2 3.36 0.23 21.6 0.65

Tube 4: Isopropanol 9.25310−6 6.15310−3 3.14 0.44 22.45 1.55

Tube 3: Heptane 1.39310−6 2.17310−2 3.86 0.68 28.01 1.27

Tube 4: Heptane 2.70310−6 5.70310−3 4.07 0.92 32.03 2.11
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FIG. 10. Dimensionless film length at depinning e−1=Ld /Rbm as a function

of r0
p for sad heptane and for sbd isopropanol in the four tubes considered.

The theoretical predictions are shown as solid lines for all cases for a limited

range of r0
p. The theoretical prediction associated with a given experimental

case is the one closest to the corresponding data point.



for tube 1, whereas in tube 2 the agreement is correct until

e /e0<0.8. In tube 1, the film thinning is then mainly due to
gravity effect, whereas in the smaller tube 2, the discrepancy

between a purely hydrostatic prediction and the data means

that some viscous effects start to manifest when the films are

getting thin enough. In this latter case, the theoretical predic-

tions obtained when taking into account the viscous effect in

the model ssolid line in Fig. 11d significantly differs from the
hydrostatic case fwhich is not the case for tube 1, see Fig.
11sadg and agrees within errors bars with the experimental
data. Note that the same conclusions can be drawn when

using the results of Chen et al. for b rather than the results of

Zhou et al. To highlight the crucial importance of the internal

corner degree of roundedness, we also plotted the theoretical

prediction for a perfectly sharp corner, r0=0. Then, the

model clearly fails: the film thickness predicted is much

larger than the one observed and also, it is not zero at the

tube top, i.e., no depinning is observed.

VI. CONCLUSION

Liquid films trapped by capillarity in the corners of a

square cross section capillary tube have a great impact on the

evaporation kinetics of a volatile liquid contained in the tube.

They provide paths for the liquid between the receding bulk

meniscus and the entrance of the tube. The capillary pump-

ing of the volatile liquid from the bulk meniscus to the tube

opened end where it evaporates is the key point in explaining

the much faster evaporation rate obtained in a square capil-

lary tube scompared to a circular cross section tubed. In this
paper, we have shown that the degree of roundedness of the

tube internal corners is a key factor in controlling the corner

films’ maximal extension, i.e., the films’ length for which the

films are found to depin from the tube and to start to recede

inside the tube. The tube internal roundedness provides a

lower limit value for the corner films’ transverse curvature

and the viscous resistance to the corner flow diverges when

the liquid films thin down until they perfectly match the

internal corner shape. Experimental results are in good

agreement with a simple model of corner flow that take into

account the tube internal roundedness, as far as the maximal

films’ length and also the films’ thickness evolution before

the films’ depinning are concerned.

This study highlights how a seemingly insignificant geo-

metrical detail, the tube corners’ roundedness, has a great

influence on the evaporation of a volatile liquid contained in

a square capillary tube. From here, one can appreciate how

challenging the prediction of evaporation rate for a porous

medium must be, where a precise knowledge of the pore

space geometry is often out of reach experimentally and also

difficult to model. Corner roundedness will certainly have a

dramatic influence for others corner flow situations, such as

the one typically encountered when describing microheat

pipes. For instance, the dry out conditions slocation and criti-
cal heat fluxd should be influenced by the change in the vis-
cous resistance to the flow into the wedge, when a slight

roundedness of the wedge corner is present.
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APPENDIX A: EXPRESSION OBTAINED
FOR THE HYDRAULIC RESISTANCE b USING
THE RESULTS OF CHEN et al.

In this short appendix, how to get the hydraulic resis-

tance expressed using the b formalism of Ransohoff and

Radke
20
from the results Chen et al.

21
is shown explicitly.

Using the notations and the results of Chen et al., the hy-

draulic resistance b can be expressed as
31

b =
f2

Fi

1 + Tc
2

s1 − r0
pd2Tc

2H1 − F r0
p

hps1 − r0
pd + r0

pG2J−1, sA1d

where f =sin a / scos a−sin ad, Tc=tan a+ fdr0
p
/ s1−r0

pd, d
=p /2−a−u, and hp= sR−r0d / sRbm−r0d. The variable Fi is

given by

Fi =W 3 Fsa,u,hp,r0
pd , sA2d

where the function F can be found in Chen et al. and W is a

coefficient which depends on hp and r0
p. The values of W

used to compute b as a function of r0
p were obtained from

Fig. 11 of Chen et al. for hp=1 /2.
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FIG. 11. Dimensionless film thickness e /e0 as a function of z0 for heptane in

sad tube 1 at z=1 mm and sbd tube 2 at z=0.4 mm. The experimental error
bars for the data points are shown on a distinct point, for the sake of clarity.

The results of Zhou et al. were used to compute b. The vertical errors bars

on the theoretical predictions come from the uncertainty on the value of r0
p

used in the model.



APPENDIX B: DERIVATION OF AN APPROXIMATED
EXPRESSION FOR THE EVAPORATION RATE

In this appendix, the calculation leading to Eq. s29d is
detailed. The evaporation rate spositive and expressed in
kg s−1d is defined by

E = − rl

dsVr + Vcd
dt

, sB1d

where Vr= fH−z0stdgd2 is the volume of liquid contained in
the fully saturated part of the tube of vertical extension H

and Vc=e
0

z0stds4−pdR2fz ,z0stdgdz is the volume of liquid
trapped in the corners films snote that the present analysis
leads to identical results when the interior corners rounded-

ness, which is neglected here, is taken into accountd. Then,

dsVr + Vcd
dt

= − d2
dz0

dt
+ s4 − pd

d

dt
E
0

z0std

R2fz,z0stdgdz ,

sB2d

with

d

dt
E
0

z0std

R2fz,z0stdgdz =
dz0

dt
R2fz = z0std,z0stdg

+ E
0

z0std d

dt
R2fz,z0stdgdz , sB3d

so that finally, using Rfz=z0std ,z0stdg=Rbm,

E = − rl

dsVr + Vcd
dt

= rl

dz0

dt
Fd2 − s4 − pdRbm

2 − s4 − pd

3E
0

z0std d

dz0
R2fz,z0stdgdzG . sB4d

The integral appearing in Eq. sB4d cannot be computed ex-
plicitly without knowledge of the shape of corner films, i.e.,

of Rfz ,z0stdg. Assuming that the corner films’ shape is simply
given by a balance between gravity and capillary forces si.e.,
neglecting viscous effectsd,

1

Rfz,z0stdg
=
1

Rbm

−
rlg

g
fz − z0stdg , sB5d

and finally,

E = rl

dz0

dt 5d2 − s4 − pdRbm
2 − s4 − pdRbm

2

33
1

S1 + Bo z0

Rbm

D2 − 146 . sB6d

The third term appearing in Eq. sB6d becomes significant
compared to the second one when the corner films are suffi-

ciently elongated, i.e., when Bo z0 /Rbm is no longer !1. For

instance, at the end of a typical experiment considered in this

paper using tube 1 with isopropanol, z0 /d is '10 close to

depinning so that Bo z0 /Rbm<1.
Equation sB6d for E is a good approximation for tubes 1

and 3, which are large enough so that viscous effects are

negligible scf. Fig. 11 and related discussiond. As far as the
smaller tubes used in this study are concerned stubes 2 and
4d, the use of Eq. sB5d to describe Rfz ,z0stdg is more ques-
tionable as viscous effects are clearly displayed experimen-

tally for these tubes scf. Fig. 11d. Consequently, the meniscus
shape results from a balance between capillary, gravitary, and

viscous effects and cannot be computed explicitly. However,

as the Ca numbers are very small in the present study sbe-
cause of the small evaporation ratesd, it may be expected that
using Eq. sB6d should provide a precise enough estimate of
the evaporation rate in the small tube case. Also, it must be

noted that the two last terms in the right-hand side of Eq.

sB6d, and notably the problematic third one, always represent
a small correction to the first one, as s4−pdRbm

2 <0.06d2.
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