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Abstract—This paper proposes an Importance Sampling (IS)
simulation to estimate the rare event probabilities which satisfy
a large deviation principle. The sampling distribution of the IS
is constructed using the information projection. With this con-
struction of the sampling distribution, the importance sampling
simulation is showed to be asymptotically efficient. A specific
example is presented to illustrate the IS technique.

I. INTRODUCTION

Estimating rare event probabilities with a reasonable degree
of accuracy has become very important due to its applications
in various areas such as financial risk, insurance, telecommu-
nication, computational physics [4]. It is yet still a challenging
problem since the occurrence of the rare event is extremely
small. The use of a standard Monte Carlo (MC) is completely
inadequate as it would require a very large number of trials.
Importance sampling (IS) is one of MC simulation methods
to reduce this computational burden. The basic idea of IS is
to sample from an alternative sampling distribution which is
the so-called change of measure so that the considered event
occurs more frequently.

The most difficult problem in IS is to find a good sampling
distribution in the sense that it minimizes the variance of the
estimator. It is worth noting that the IS could also backfire
if the variance of the estimator of IS is greater than that
of the standard MC. Thus it is crucial to find an efficient
and better IS comparing to the standard MC. There are two
efficiency criteria for IS MC simulation algorithms: bounded
relative error criterion and logarithmic asymptotic efficiency
or asymptotic optimality criterion [1], [5]. The asymptotic
optimality criterion is particularly convenient when the rare
event probabilities satisfy the large deviation asymptotic which
decays exponentially. In [5], the authors considered the esti-
mation probability of a rare event known as the probability
of large deviation. They proposed the IS by constructing the
“exponentially twisted” distribution as a sampling function to
obtain the asymptotically efficient simulation.

In this short paper, we also utilize IS to estimate the
probability of rare event which satisfies a large deviation
principle. However, the sampling distribution is chosen by
using information projection. Using the information projection
makes our proves simpler since we can use information
theoretic quanties and apply theorems of information theory
such as Pythagorean like theorem, conditional limit theorem.
The efficiency of IS with this sampling distribution is showed
in the sense of asymptotic optimality criterion. The paper is
organized as follows. In Section II, we state our problem
with the large deviation formulation and the IS estimation. In
Section III, we propose the sampling distribution and prove the
efficiency of the IS. This idea of IS is illustrated in Section IV
with a specific example. Finally, the conclusion and the future
work are drawn.

II. PROBLEM STATEMENT

A. Notations

Throughout this paper, P (X ) denotes the space of all
probability measures on the finite alphabet X . Here P (X ) is
identified with the probability simplex in R|X | , i.e., the set of
all |X |-dimensional real vectors with non-negative components
that sum to 1. Therefore, the topology on P (X ) is inherited
as the subspace topology from the ordinary topology on R|X |.

Definition 1. (Type.) The type P̂xn of a sequence xn =
(x1, ..., xn) ∈ Xn is its empirical distribution. More specifi-
cally, P̂xn =

(
P̂xn (a1) , ..., P̂xn

(
a|X |

))
is an element of the

set P (X ) and

P̂xn (a) =
n (a|xn)

n
=

1

n

n∑
i=1

I{a}(xi) for all a ∈ X .

where n (a | xn) is the number of times the symbol a occurs
in the sequence xn ∈ Xn and I{a}is the indicator function of
the set {a}.

The set of all possible types on Xn is denoted by Pn (X ).
It is therefore obvious that Pn (X ) ⊂ P (X ).
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We denote P̂Xn the random element associated to it, and
taking values in the set Pn (X ):

P̂Xn (a) =
n (a | Xn)

n
=

1

n

n∑
i=1

I{a}(Xi) for all a ∈ X .

B. Large deviation formulation

Let X1, X2, ..., Xn be i.i.d. random variables defined on the
alphabet X and drawn according to the probability mass func-
tion (PMF) Q. Let E ⊆ Pn (X ) and HE =

{
xn : P̂xn ∈ E

}
,

it is straightforward that Qn (HE) = P (Xn ∈ HE) =

P
(
P̂Xn ∈ E

)
. If Q ∈ E, we know from the weak law of

large numbers, that the sequence of empirical distributions
P̂xn converges in probability to the true distribution Q for
all x ∈ X , (Theorem 11.2.1, [2]). In contrast, for Q /∈ E

the family of probabilities P
(
P̂Xn ∈ E

)
decays exponentially

fast as n→∞.
Let Q /∈ E, we want to estimate the rare event probability

αn = P
(
P̂Xn ∈ E

)
which is characterized by the rarity

parameter n.
Sanov’s theorem [3] states that the family of probabilities

P
(
P̂Xn ∈ E

)
satisfies the large deviation principle with rate

function D (P ‖ Q) where P ∈ P (X ). Particularly, for

any set E ⊂ P(X ), the limsup of
1

n
logP

(
P̂Xn ∈ E

)
is upper bounded by inf

P∈E
D (P ‖ Q) and the liminf of

1

n
logP

(
P̂Xn ∈ E

)
is lower bounded by inf

P∈E◦
D (P ‖ Q).

For specific sets E such that E ⊆ E◦, where E◦ denotes
the interior and E denotes the closure of E, these upper and
lower bounds are identical thereby the large deviation limit
exists as follows:

lim
n→∞

1

n
logP

(
P̂Xn ∈ E

)
= −D (Q∗ ‖ Q) , (1)

where
Q∗ = arg inf

P∈E
D (P ‖ Q) , (2)

and D(P ‖ Q) is the relative entropy or Kullback Leibler
divergence of probability vector P relative to Q, where
supp(P ) ⊆ supp(Q).

In many practical applications, it is usually sufficient to
consider the set E convex since with the convexity of E we
can show that E is contained in the closure of its interior,
i.e., E ⊆ E◦ where we have the large deviation limit as in
(1). More interestingly, with this assumption, the probability
vector Q∗ is unique [3]. It should be noted that for sets E
satisfying E ⊆ E◦, we can show that inf

P∈E◦
D (P ‖ Q) =

inf
P∈E◦

D (P ‖ Q) = inf
P∈E

D (P ‖ Q). Since E◦ is a closed

set and D (P ‖ Q) is a continuous function of P , then the
minimum exists. Therefore Q∗ can be rewritten as

Q∗ = arg min
P∈E◦

D (P ‖ Q) . (3)

In this case Q∗ is called an entropic projection which has a
similar meaning to the dominating point mentioned in [5].

C. Importance sampling estimation

As mentioned above, we desire to estimate rare event
probabilities αn which is characterized by the rarity parameter
n such that αn → 0 as n−1 → 0 and satisfy the large deviation
principle. Even though the analytic behavior is well expressed
with respect to asymptotic upper and lower bounds of the large
deviation statement (which are identical in the case of convex
sets E), the exact value αn remains far from its bounds for
limited values of n. In the rest of this work we will deal with
convex sets E so that the limit in (1) is verified.

A straightforward way to estimate αn is to express it as
αn = EQn [IHE

(Xn)] and use a crude Monte Carlo simula-
tion by generating N independent outcomes (xn) according
to Qn. The estimator α̂MC is as follows:

α̂MC =
1

N

N∑
i=1

IHE

(
(xn)

i
)
, (4)

where each (x)i is generated from Q. The MC simulation is
inadequate for rare event estimation as the number of trials N
needed to hit one rare event is in average 1/αn (e.g. N = 1010

for αn = 10−10). Thus as n→∞, the number of trials grows
exponentially fast since the probabilities αn satisfy the large
deviation principle. It is also worth considering the relative
error of the estimator κ, i.e. the ratio of its standard deviation
to its mean:

κ2 =
var(IHE

(Xn))

Nα2
n

. (5)

Since var(IHE
(Xn)) = αn − α2

n , we have:

κ2 =
1

N

(
1

αn
− 1

)
. (6)

The smaller is αn, the larger is the number of simulation
we need to run in order to obtain a confidence interval with
some prescribed accuracy. In other words, given a constrained
and fixed number of trials N , the relative error of the crude
MC estimation is unbounded with respect to n.

In the subsequent sections we focus on Importance Sam-
pling method and propose an alternative sampling distribution,
let say Q̃ to speed up rare events occurrence with a more
efficient simulation. Let us express first the estimator α̂IS of
IS:

αn = EQn [IHE
(Xn)] ,

= EQ̃n

[
IHE

(Xn) Q
n(Xn)

Q̃n(Xn)

]
,

α̂IS =
1

N

N∑
i=1

IHE

(
(xn)

i
)
×

Qn
(
(xn)

i
)

Q̃n
(
(xn)

i
)
 .

where each (x)i is generated from Q̃. The variance of α̂IS is
then computed as:

var (α̂IS) =
1

N

(
ηn

(
Q̃n
)
− α2

n

)
, (7)
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where

ηn

(
Q̃n
)
= EQ̃n

[
IHE

(Xn)×
(
Qn (Xn)

Q̃n (Xn)

)2
]
. (8)

In the next section, we will construct a sampling distribution
Q̃ such that var (α̂IS) ≤ var (α̂MC) for every n. We then
show that this IS estimator is asymptotically efficient [1], [5]
with respect to rarity parameter n, i.e.,

lim
n→∞

log ηn

(
Q̃n
)

logα2
n

= 1, (9)

or equivalently:

lim
n→∞

1

n
log ηn

(
Q̃n
)
= −2D (Q∗ ‖ Q) , (10)

where Q∗ is defined by (12). Asymptotic efficiency means that
the second moment decays exponentially as fast as α2

n and the
number of simulation runs required for a prescribed accuracy
grows sub-exponentially with n.

III. IMPORTANCE SAMPLING AND INFORMATION
PROJECTION

In order to estimate the family of rare event probabilities
αn , we consider the sampling distribution Q∗ which gives
the infinimum KL-divergence of distributions P in E relative
to Q. We recall that the set E is a convex set of non empty
interior so that the large deviation limit (1) holds. Recall that
for convex set E, we can have

inf
P∈E

D (P ‖ Q) = inf
P∈E◦

D (P ‖ Q) = min
P∈E◦

D (P ‖ Q) .

(11)
The sampling distribution is then chosen as:

Q∗ = arg min
P∈E◦

D (P ‖ Q) . (12)

With these hypotheses, we shall show in next subsections
that the variance of IS estimator is lower than for standard MC
and more desirably, that it satisfies the asymptotic efficiency
property.

A. The efficiency of IS

Proposition 2. var (α̂IS) ≤ var (α̂MC)

Proof: In order to show that var (α̂IS) ≤ var (α̂MC), we
only need to establish that:

ηn (Q
∗n) ≤ αn. (13)

We have

ηn (Q
∗n) = EQ∗n

[
IHE

(Xn)×
(
Qn (Xn)

Q∗n (Xn)

)2
]
,

= EQn

[
IHE

(Xn)×
(
Qn (Xn)

Q∗n (Xn)

)]
. (14)

Since we consider a sequence Xn of i.i.d. random variables,
the second term in the expectation may be developped as:

Qn(Xn)
Q∗n(Xn) =

n∏
i=1

Q(Xi)
Q∗(Xi)

,

=
∏
a∈X

(
Q(a)
Q∗(a)

)n(a|Xn)

,

= exp

[
n
∑
a∈X

n(a|Xn)
n log Q(a)

Q∗(a)

]
,

= exp

[
n
∑
a∈X

P̂Xn (a) log P̂Xn (a)
Q∗(a)

Q(a)

P̂Xn (a)

]
,

= exp

[
n
∑
a∈X

P̂Xn (a)
(
log P̂Xn (a)

Q∗(a) − log P̂Xn (a)
Q(a)

)]
,

= exp
{
n
[
D
(
P̂Xn ‖ Q∗

)
− D

(
P̂Xn ‖ Q

)]}
.

(15)

where D
(
P̂Xn ‖ Q

)
is a non negative random element. Plug-

ging (15) into the right hand side of (14), we have:

ηn (Q
∗n)

= EQn

{
IHE

(Xn)× exp
[
n
(
D
(
P̂Xn ‖ Q∗

)
−

D
(
P̂Xn ‖ Q

))]}
,

=
∑

xn∈Xn

Qn (xn) IHE
(xn) exp

[
n
(
D
(
P̂Xn ‖ Q∗

)
−

D
(
P̂xn ‖ Q

))]
,

=
∑

xn∈HE

Qn (xn) exp
{
n
[
D
(
P̂xn ‖ Q∗

)
−D

(
P̂xn ‖ Q

)]}
.

(16)

Since E◦ is a closed convex set and Q∗ is a distribution
achieving the minimum KL divergence of distributions P̂xn

in E◦ to Q as defined in Eq.(12), using a Pythagorean like
theorem (cf. Theorem 11.6.1, [2]), we have for all P̂xn ∈ E◦:

D
(
P̂xn ‖ Q

)
≥ D

(
P̂xn ‖ Q∗

)
+D (Q∗ ‖ Q) .

Equivalently,

−D (Q∗ ‖ Q) ≥ D
(
P̂xn ‖ Q∗

)
−D

(
P̂xn ‖ Q

)
. (17)

From (16) and (17) we have

ηn (Q
∗n) = EQn

[
IHE

(Xn)×
(
Qn(Xn)
Q∗n(Xn)

)]
,

≤
∑

xn∈HE

Qn (xn) exp {−nD (Q∗ ‖ Q)} ,

≤
∑

xn∈HE

Qn (xn) = α.

(18)
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The last inequality is easy to see because the relative entropy
is non negative thus exp {−nD (Q∗ ‖ Q)} ≤ 1.

Proposition 3. (Asymptotic optimality) Show that

lim
n→∞

1

n
log ηn (Q

∗n) = −2D (Q∗ ‖ Q) . (19)

Proof: Conditioned to P̂xn ∈ E, by the conditional limit
theorem (cf. Theorem 11.6.2, [2]) we have

P̂xn
n→∞→ Q∗ in probability. (20)

By the continuity of relative entropy, we have

D
(
P̂xn ‖ Q

)
n→∞→ D (Q∗ ‖ Q) . (21)

Plugging (21) into (16) we obtain:

lim
n→∞

1

n
log ηn (Q

∗n)

= lim
n→∞

1

n
logEQn

[
IHE

(Xn)×
(
Qn(Xn)
Q∗n(Xn)

)]
,

= lim
n→∞

1

n
log

∑
xn∈HE

Qn (xn) exp
{
n
[
D
(
P̂xn ‖ Q∗

)
−

D
(
P̂xn ‖ Q

)]}
,

= lim
n→∞

1

n
log

∑
xn∈HE

Qn (xn) exp {n [−D (Q∗ ‖ Q)]} ,

= lim
n→∞

[
−D (Q∗ ‖ Q) +

1

n
logαn

]
,

(a)
= −2D (Q∗ ‖ Q) .

where (a) comes from the large deviation limit defined in
Eq.(1), i.e.,

lim
n→∞

1

n
logαn = −D (Q∗ ‖ Q) . (22)

B. Discussion

In this paper, we estimate the rare event probability
P
(
P̂Xn ∈ E

)
where P̂Xn is the type of an i.i.d. sequence

{Xi} drawn according to some PMF Q . We consider convex
sets E as subsets of P (X ), the probability simplex in R|X |.
We analyse the use of importance sampling to numerically
estimate the family of probabilities αn = P

(
P̂Xn ∈ E

)
satisfying the large deviation principle with rate D(Q∗ ‖ Q).
Importance sampling with Q∗ as sampling distribution per-
forms efficient estimation when crude MC simulations are
inadequate for rare event. In [5] the authors applied also
importance sampling to estimate a family of probabilities
satisfying large deviation principle with a twisted version of
the original distribution as sampling distribution. This tilted
operation is formed with the exponential of the Legendre-
Fenchel transform of the log moment generating function of

the original distribution. It is already well known [3] that this
transform is a rate function for probabilities satisfying the
large deviation principle. The Contraction Principle allows to
establish the relation between this transform and the Sanov’s
rate. Thus in our paper we choose the information projection
instead. The authors in [5] first showed that the best sampling
distribution is the one associated with the dominating point
if it exists which in our case is obtained by the sufficient
condition on the convexity of E, and under this assumption
this probability vector Q∗ is unique. Performing simulation
runs in the probability domain by counting the frequency of
occurence of each value of the random variable is particulary
easier to implement.

IV. PRACTICAL RESULT

In this section, we assess the use of Q∗ as an alternative
sampling distribution in IS estimation of a binomial sequence
with parameters (n, p = 0.1). We wish to estimate the family

of probabilities αn = P
(

n∑
k=1

Xk ∈ [0, λ)

)
where λ is a

given threshold far from the expected value np of the sum.
From large deviation principle the sampling distribution can
easily be computed as Q∗ =

{
λ
n , 1−

λ
n

}
. Fig. 1 and Fig. 2

show the estimated probability α̂IS using importance sampling
with sampling distribution Q∗. In Fig. 1 the estimated value
is represented (stars points) as 1

n log α̂IS and compared to
the true value 1

n logαn (solid line) and to the rate function
D(Q∗ ‖ Q), as functions of the rarity parameter n . We see
that for sequences of length less than 104 the limit of the large
deviation is far from the exact value so it is expected that the
analytic expression is poor for a limited length n of sequences.

In Fig. 2, the length of the sequence is limited to n = 2000.
As the threshold λ decays, rarity increases and the family of
probabilities αn goes to zero as λ → 0. Here again expected
values obtained with importance sampling employing Q∗ as
sampling distribution are very close to the true ones. For λ =
100, αn = 2, 3.10−16 , and the estimated variance S of α̂IS
is evaluated over N = 40000 simulation runs. By the law of
large numbers, S → var(α̂IS) for large N . The relative error
is then evaluated as in (5) but for the importance sampling
estimation:

κ =

√
var(α̂IS)

αn
.

We obtain κ = 0.0143 which means that the 95% con-
fidence interval gives has an accuracy of ±0.028αn when
crude MC needs more than 1018 simulation runs to insure
this accuracy. A factor of 1013 may then be saved.

V. CONCLUSION AND FUTURE WORKS

We have shown that the sampling distribution based on
information projection made our IS simulation efficient to
estimate the rare event probabilities which satisfy a large
deviation principle. This efficiency is evaluated in the sense of
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Figure 2. Values of αn and α̂IS with respect to the threshold.

asymptotic optimality. We have also put this IS into practice
with a specific example to compute the heavy tail of binomial.

The future work shall be devoted to employing the IS to
estimate the rare event with another rarity parameter. More
specifically, in this paper, we have used n as a rarity parameter
to index the rare event probability αn. In the future, we want
to estimate a positive quantity α (ε) = P (Eε) that depends
on a rarity parameter ε > 0 where Eε ⊆ P (X ) such that
P (Eε) is a monotone strictly decreasing function of ε and
that lim

ε→0
P (Eε) = 0. We plan to find a sampling distribution

based on information projection and to check if the IS with
the considered sampling distribution is efficient.
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