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Résumé

Dans le contexte routier, les objets d’intérêt (saillants ou

non) doivent être efficacement détectés quelles que soient

les conditions afin d’assurer la sécurité, que ce soit pour

des systèmes d’assistance à la conduite ou des véhicules

autonomes. Neufs modèles de saillance représentatifs de

l’état de l’art sont évalués sur deux bases de données is-

sues du contexte routier (perception humaine et robotique).

Bien qu’elle ne soit pas suffisante pour la détection, la

saillance visuelle bottom-up fournit des informations per-

tinentes, d’autant plus en la contrôlant pour ses biais clas-

siques.

Mots clés

Saillance visuelle, Contexte routier, Attention visuelle, Dé-

tection de cibles, Analyse de scène.

Abstract

In the road context, objects of interest (salient or not) must

be efficiently detected under any condition to ensure safety,

for both driver assistance systems and autonomous vehi-

cles. Nine representative state-of-the-art saliency mod-

els are evaluated on driving databases (human perception

vs. robotics). Although not sufficient for robust detection,

bottom-up saliency provides important information, espe-

cially when controlling for the classical biases.

Keywords

Saliency, Road context, Visual attention, Target detection,

Scene Analysis.

1 Introduction

Vision research studies usually make the distinction be-

tween two complementary kinds of processes when deal-

ing with human vision [19]. On the one hand, there are

slow, often sequential, and complex high-level processes

such as object recognition or visual search. On the other

hand, there are low-level mechanisms able to quickly pre-

select areas of interest within the field of view, on which

high-level processes can prioritarily focus. These mecha-

nisms accounting in part for both covert selection of infor-

mation and overt gaze orientation are simulated by a wide

range of models [2]. These models produce saliency maps

of visual scenes, where saliency can be basically defined as

the tendency for an area to pop out of its context.

Saliency algorithms are often better described as bottom-

up, starting from sensory information to more abstract

representations, only processing low-level features (inten-

sity, color, orientation, time) with quite simple filters (con-

trasts, center-surround opposition), yet with a multiscale

approach [12]. They thus do not rely on more complex

features (from pattern recognition, face recognition, learn-

ing), and except for a few [9], do not incorporate top-down

processes. At their origin, saliency models were aimed at

reproducing human behavior, and results were compared

and evaluated in regards to human scanpaths [2]. Scan-

paths are sequences of saccadic eye movements and fix-

ations on an image, that usually focus on salient features

(as defined above). This is however only true during free-

viewing tasks, where the impact of the task on saccades is

limited [18]. This has progressively led to the emergence

of a new perspective on saliency, defined as a segmentation

problem solving method, accompanied by the introduction

of new models to be used in computer vision, and thus

robotics [3]. Although reference maps (ground truth) for

foreground/background segmentation are statistically gen-

erated from human decisions, the aim of segmentation al-

gorithms is not to reproduce the exact human behavior and

its complex spatiotemporal unfolding.

Now focusing on road context, studies have shown that

driving is mainly task driven (involving a lot of top-down

processes) [18], and important elements for driving are in-



deed not necessarily salient. Although traffic signs may be

designed to be salient, a pedestrian crossing the road may

not be. Bottom-up mechanisms nevertheless play a role

as a filter, and thus facilitate detection. In this paper, we

more specifically evaluate how much bottom-up saliency

may contribute to the detection of objects of interest in the

road context. In addition to their validity as a predictor

of human behavior, saliency algorithms can also be tested

as an efficient pre-processing step in autonomous driving

systems [1]. Current computational architectures indeed

allow the embedded parallel implementation of saliency al-

gorithms on robots, which can then benefit from increased

robustness of visual features to scene modification. Sev-

eral benchmarks of saliency algorithms can be found in the

literature [3, 14], using a variety of databases. Some of

these databases were specifically created with a human be-

havior simulation purpose (please refer to [2] for a review).

Others are designed to evaluate models with segmentation

purpose, yet none of them provides road specific content,

in neither of the aforementioned contexts.

Our objective in this paper is therefore to test the appli-

cability and limits of purely bottom-up approaches to vi-

sual saliency for object detection, while considering two

road context applications: the automatic detection of ob-

jects for autonomous vehicles (computer vision and mobile

robotics) and the simulation of human behavior in driving

situations (human vision and psychology). The latter may

not only lead to a better understanding of human behav-

ior required to adapt the infrastructure to human specifici-

ties, but also to design driving assistance systems relying

on joint human-machine visual interactions with the envi-

ronment. The associated databases not only illustrate the

wide range of applications targetted by saliency models,

but also demonstrate drastic differences in the visual in-

formation provided. Although our study directly relies on

road context databases and application constraints, most of

our results are generalizable to other domains. Now that we

have introduced the applicative context, section 2 sets out

the arguments for the selection of representative saliency

models, and provides details on the experimental protocol

(databases and metrics). Results are then presented in sec-

tion 3 before reaching the conclusions in the last section.

2 Method

2.1 Model selection

Borji [2] proposed a thorough review of state of art mod-

els whose purpose is to model visual attention (human be-

havior). A taxonomy of saliency models was proposed,

adopting the following classes : cognitive models, decision

theoretic models, information theoretic models, graphical

models, Bayesian models, spectral analysis models, pat-

tern classification models, and miscellaneous. This study

is complemented by a benchmark of models whose pur-

pose is to perform image segmentation [3], which we will

group in an additional class. As many models are associ-

ated to each class, we chose to pick one from each class
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NVT [13] Cognitive X X X X X

VOCUS [7] Cognitive X X X X X

AIM [5] Info. Theoretic ∼ X X X

GBVS [10] Bayesian ∼ ∼ X X X X

SR [11] Spectral X X

GAFFE [17] Spectral X X X

MSS [15] Miscellaneous X X X

AWS [8] Miscellaneous X X X X X

CAS [9] Segmentation X X X

Table 1: Summary of selected models.
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Figure 1: Saliency maps computed on the IPDS picture

from Fig.2. a) NVT, b) VOCUS, c) AIM, d) GBVS, e) SR,

f) GAFFE, g) MSS, h) AWS, i) CAS.

in order to make our analysis synthetic, yet significant (see

Table 1). In addition to testing our selection of models in

the road context, we may therefore also be able to put for-

ward their complementarities.

Additional criteria for selecting the models include: appli-

cability to static images (not only videos), generation of

saliency maps (not only sequences of fixations, thus elim-

inating graphical models), bottom-up processing (no task

driven and top-down mechanisms, thus eliminating deci-

sion theoretic models). Although a lot of models are elim-

inated this way, at least one remains in most of the cate-

gories. The most representative models of each class were

then prioritized. Within a class, representativity is here de-

fined as 1) being a usually referenced member of a large

branch of models within the taxonomy, and/or 2) obtaining

good scores in benchmarks compared to their counterparts.

Within the cognitive models, VOCUS [7] was selected as

driving context oriented variant of the original Neuromor-

phic Vision Toolkit (NVT) model [13], which was also in-

cluded as an historical reference. Spectral residual (SR)

was kept as the representant of spectral models [11], as

well as GAFFE, which is an hybrid model combining fil-

ters in the spectral domain and contrast processing in the

spatial domain [17]. Finally, AIM was selected as a mem-
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VELER IPDS

Sample size 72 pictures 53 pictures

Original domain Human perception Autonomous vehicles

Source
Photographs (with

digital editions)

Video camera (fixed on

vehicle frame)

Variability
Context, inserted road

users, vehicle lights

Frame sequence in

open environment

Image size 1000 x 565 px 640 x 480 px

Targets
Traffic signs, ground

marking, vulnerable

users

Traffic signs, ground

marking

Table 2: Summary of IPDS [16] and VELER [6] databases.

ber of the information theoretic models [5], and GBVS

for the Bayesian models [10]. Two miscellaneous mod-

els were also selected, because they adopt different points

of view on saliency and rely on very different mechanisms.

The first one is based on multi-scale symmetry operators

(MSS) [15], while the other (AWS) relies on decorrelation

(using principal component analysis) and distinctiveness

(Hotelling’s T2 measure) [8]. Despite our road context

which dictates a focus on the rapid detection of areas of

interest for further processing, and because segmentation

models obtain very high scores on some benchmarks [3],

Context-Aware Saliency (CAS) [9] was included for per-

formance comparison as one of the best in its category. All

algorithms were run using default parameters, as defined in

the source code publicly made available or personally pro-

vided by the original authors. For the GBVS model, only

the first saliency map after a central fixation was exploited.

Saliency map samples are provided in Fig.1. Two models

are added as controls: a model of center bias (with gener-

ated saliency map following a Gaussian profile function of

excentricity), and a uniformly random model (providing a

lower bound for the selected metrics and performance).

2.2 Databases

Two road context databases are used to evaluate the mod-

els. They originate from completely different areas of the

research field, thus allowing us to analyze the influence of

the chosen database on the results. To illustrate the differ-

ences, one picture of each database is provided on Fig.2.

The VELER database was designed to study the detection

rate of vulnerable road users according to their position

and context [6]. This database contains 72 images pictures

of urban driving scenes, where vulnerable road users have

been inserted with controlled parameters. The insertion of

various road users, as well as the presence or absence of

daytime running lights, leads to different versions of ur-

ban photographs (originally taken from a human perspec-

tive). The second database is a subset of IPDS, a multi-

sensory and publicly available dataset, with data acquired

from a mobile robotic transportation platform navigating

on Cézeaux campus (Clermont-Ferrand) [16]. The subset

contains 53 images from various video sequences captured

from a fixed camera on the vehicle frame, images in which

relevant targets are visible (traffic signs, ground marking).

Figure 2: Representative sample picture and Mean Anno-

tation Position (MAP) for VELER [6] (left) and IPDS [16]

(right) databases.

2.3 Metrics

Humans being very accurate in detecting targets in such

databases, we asked human observers to perform segmen-

tation on all pictures, without any time constraint. Since

we wanted to make sure an increased saliency value on

any part of an object would be considered valid, we re-

lied on hand-defined bounding polygons for moving ve-

hicles (cars, trucks, buses), motorcycles, pedestrians, cy-

clists and traffic elements. This distinction based on known

dynamics was made because motorcycles, pedestrians and

cyclists represent the most vulnerable road users, while

parked four-wheeled vehicles are not of direct importance.

All traffic signs and ground marking were selected since

they provide a lot of information for road users.

These (binary) reference maps then need to be matched

against the (graded) saliency maps produced by the dif-

ferent models. Many metrics have been introduced and

extensively used in the literature, some of which directly

applicable to our problem, including: correlation coef-

ficient (CC), normalized scan-path saliency (NSS), area

under the ROC curve (AUC), shuffled AUC (sAUC),

Kullback-Leibler measure (KL-div) and Earth Mover Dis-

tance (EMD) [4]. As the properties they measure might dif-

fer and their convergent validity may be limited, we chose

to rely on a set of metrics to draw sound conclusions. In

order to make our results easily comparable to most of the

existing benchmarks, we chose the most common metrics,

starting from the CC metric. Albeit simple, this metric

gives a good estimate of the accuracy of saliency maps.

We also selected the AUC metric, which complementarily

takes into account both precision and recall rates. Borji

and colleagues have shown that these two metrics are very

sensitive to a center bias [4], and we added sAUC as a bias

corrected version of the AUC. The reader may note that the

NVT model produces quasi binary saliency maps, which

are heavily penalized by AUC and sAUC metrics (associ-

ated results thus need to be interpreted with caution).

To control for center bias, we computed Mean Annotation
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Position (MAP) [3] separately on each database, as the av-

erage reference map for all pictures. Thus, if a position is

registered in a lot of images, there will be a high intensity

at this location on the MAP. Conversely, a uniform MAP

reflects the absence of center bias. As demonstrated by

the MAPs on Fig.2, the VELER database demonstrates a

much strong center bias than IPDS. This difference is eas-

ily explained by the fact that the focal point was whether

chosen by a human photographer (VELER) or indirectly

determined by the pose of the robot (IPDS). In addition

to the controlled perspective and framing of the VELER

database, reflected by the horizon line on the MAP, inserted

elements (pedestrians, cyclists or motorcycles) are placed

either near the center or on the sides of the pictures. Al-

though camera height and tilt are also kept constant in the

IPDS dataset, pictures are captured at all times on a moving

vehicle (on a roughly flat course), and eccentricity is thus

accentuated by the variability in target to camera distances

or vehicle orientation. When the vehicles moves forward,

ground marking will descend from the horizon line to fi-

nally disappear at the bottom of the image (when rolling

over it). Despite the lack of a clear center bias in IPDS,

we thus face a more complex position bias, betraying the

regularities in the movement and environment. Our study

allows to estimate the impact of these drastic differences in

MAPs on the detection performance.

2.4 Procedure

All selected models were applied on every picture of both

databases. After evaluating their performance using the in-

troduced metrics, the same was done after applying a cor-

rection for center bias. The correlation matrix between the

results of all models was also computed to check whether

different approaches would encounter difficulties on dif-

ferent images. To further refine our findings, a fine-grained

analysis at the image level was done to test which picture

characteristics lead to differences in performance.

3 Results

3.1 Models ranking

Models are compared in Fig.3. AIM, GAFFE and AWS

models prove to be more effective for both metrics and on

both databases. Gaussian, GBVS and GAFFE models take

into account the center bias, and thus produce good results

when the bias is present (VELER), but are conversely pe-

nalized when it is not (IPDS). Spectral residual (SR) is very

effective on IPDS only, due to its sensitivity to the nar-

row and well contrasted dotted lines of the ground mark-

ing. Even though they remain effective, VOCUS and MSS

display below average results. Itti’s NVT model produces

almost binary saliency maps, which lead to artificially low

AUC and sAUC scores, thus justifying its seemingly bad

performance in comparison with others for these metrics.
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Figure 3: Comparison of results for both databases (gray

line represents equal performance) using CC (left) and

sAUC (right) metrics, with models: NVT (1), VOCUS (2),

AIM (3), GBVS (4), SR (5), MSS (6), GAFFE (7), AWS

(8), CAS (9), Gaussian (10).

3.2 Center bias correction

The influence of center bias correction is estimated by scal-

ing the saliency maps pixel-wise by the Gaussian map.

Since some algorithms already include this type of correc-

tion (GAFFE with post-processing, GBVS intrinsically),

applying this correction a second time increases the weight

of information near the center of the picture, thus allowing

to further check any loss or gain in performance.

From Table 3, the Gaussian correction has a positive im-

pact for all models on the VELER database. Reassuringly,

the models that received prior correction are also those

which benefit from the smallest improvement. On the con-

trary, applying a center bias correction on the IPDS pic-

tures degrades the results for all models, which could be

predicted from the bad results of the Gaussian model alone

on this database. Although the specific shape of the Gaus-

sian profile was arbitrarily chosen and could be optimized,

these results mainly reflect the existing differences between

the databases, with VELER demonstrating a more focused

MAP than IPDS. The MAPs show that the spatial loca-

tion of targets on the image is very important, and a sim-

ple center bias correction is not sufficient. Such position

bias should rather be considered as top-down, with target-

location associations acquired through learning. Saliency

maps could then either be modulated by the expectancy of

the target or centered through by a focus mechanism (sim-

ilar to the overt/covert attentional systems in humans).

3.3 Correlation between models results

In addition to check whether some targets are difficult to

detect for all models or a subset, computing the correlation

between model results on all pictures for each database also

allows understanding the specificities of the models. In this

paper, we only describe the more interesting results found

for the VELER database. The Fig.4 shows the correlation

coefficient for each couple of models on VELER.

The AIM model can be thought as the most representative

model, with a high average correlation with the other mod-

els. The strong correlation between Gaussian, GAFFE and
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IPDS VELER

CC sAUC CC sAUC

NVT 2.0 -0.0 8.5 0.6

VOCUS -21.9 -2.5 53.3 3.7

AIM -17.6 -5.2 45.1 1.8

GBVS -7.6 -1.9 7.3 0.7

SR -23.9 -9.4 204.1 6.3

MSS -18.8 -3.1 138.7 6.1

GAFFE -11.3 -2.2 11.3 0.6

AWS -23.9 -7.3 57.1 2.9

CAS -23.1 -7.2 77.6 2.3

Gaussian -0.6 0.0 1.8 -0.0

Table 3: Change (in percents) in mean scores ob-

tained through Gaussian (center bias) correction on both

databases.

GBVS again reflects the integration of a center bias cor-

rection. GAFFE directly includes a final step with Gaus-

sian correction, while GBVS includes a normalization step

on a graph of pixel nodes, where the arcs are weighted by

pixel-to-pixel distances. Pixels on the edge of the image

are disadvantaged, as they are on average more distant to

the others. Even though NVT is again isolated because of

its quasi-binary nature, it is maximally correlated with the

model derived from it (VOCUS).

To further refine our results, we compared pairs of mod-

els at the picture level, and here chose to contrast VOCUS

(representative of the NVT family of models) with AIM

(which highly performed and was qualified as the most rep-

resentative), which are only moderately correlated. Fig.5

shows the CC scores of VOCUS vs. AIM for each image

of the VELER database. While AIM performs on average

better than VOCUS, and especially on pictures 53b, 06 and

42, VOCUS yet clearly outperforms AIM on pictures 11b,

21 and 19 (see images on Fig.6). AIM wins for high con-

trast images (e.g. saturated sky, very dark road) while VO-

CUS better detects the targets on less contrasted and better

exposed images. On these latter images, buildings in the

background provide a gradual transition from the sky to the

road, and large size targets are also often present (e.g. bus

on image 19). Such targets are then easily detected by VO-

CUS thanks to its multi-scale architecture, thus boosting its

CC score. Reciprocally, VOCUS also detects a contrasted

sky as the most prominent element, and although the sky

may be salient, it is not important from a driving perspec-

tive (for safety or navigation in urban environments). To

put it briefly, the dynamic range, the structure of the envi-

ronment, as well as the size of the targets play an important

role in the evaluation of saliency models.

4 Discussion
Detection capabilities of a set of representative saliency

models have been evaluated using complementary metrics

and driving oriented databases, in which important ele-

ments (for safety or navigation in our context) may not al-

ways be the most salient. AIM, AWS and GAFFE models

demonstrated the best results on both databases, followed

by CAS and GBVS models. Other models show database

dependent performance, with SR for instance achieving top
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Figure 4: Correlation coefficients between the models re-

sults for CC metric on VELER.
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Figure 5: VOCUS vs AIM results for CC metric on

VELER.
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Figure 6: Images with CC differences between models, to

the advantage of VOCUS (11b, 21 and 19 on the left) or

AIM (53b, 06 and 42 on the right).

performance on IPDS database while scoring very low on

VELER. The take-home message is that the task (e.g. tar-

gets) and context (e.g. urban or not, point of view) are key

elements that can drastically alter performance, and that

saliency models should thus be evaluated and selected in

regards to the target application.

In addition, we brought out characteristics of the image
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databases which largely impact detection performance, in-

cluding: 1) Position bias (not limited to center bias) which

can be estimated using Mean Annotation Position maps

(MAPs); 2) Dynamic range and colors, which depend

of acquisition devices, their calibration and settings (thus

also depending on shooting conditions), and which could

be corrected through the use of dedicated devices (e.g.

luminance-meters).

The limitations of this study also put forward limitations in

the common use of saliency models, and should thus lead

to future work on these aspects: 1) Most models apply only

and are evaluated on static images, while the spatiotem-

poral structure in video sequences may for instance turn

moving pedestrians into salient targets; 2) Most saliency

algorithms can easily detect part of a traffic sign, but can-

not properly segment and identify it without resorting to

complementary methods (this of course applies to the de-

tection of objects in any domains); 3) Color balance, con-

trast or levels impact saliency, but are not usually taken

into account, while they could be controlled by simple pre-

processing (exposure correction or white balance being for

instance somehow performed by the human eye).

More importantly in the driving context, pure bottom-up

saliency cannot alone be used for the reliable detection

of important elements, as they are not necessarily salient

(e.g. pedestrian). Yet our study shows that saliency al-

gorithms can already highlight a lot of potential targets,

and thus bring in information that can be further processed

and filtered by top-down processes. These latter processes

(which usually require iterations to reach a decision, e.g.

identity of an object) can continuously modulate bottom-

up saliency processes (which naturally apply for parallel

implementation). Such modulation could be the estimation

of a priori locations of targets (instead of the simple center

bias correction we used here), which may in turn integrate

information from other sensors (movement speed, GPS, ac-

celeration, orientation of the camera).
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