
HAL Id: hal-01359837
https://hal.science/hal-01359837

Submitted on 5 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Three Periods of Drying of a Single Square Capillary
Tube

Fabien Chauvet, Paul Duru, Sandrine Geoffroy, Marc Prat

To cite this version:
Fabien Chauvet, Paul Duru, Sandrine Geoffroy, Marc Prat. Three Periods of Drying of a Single
Square Capillary Tube. Physical Review Letters, 2009, vol. 103 (n° 12), pp. 124502-1-124502-4.
�10.1103/PhysRevLett.103.124502�. �hal-01359837�

https://hal.science/hal-01359837
https://hal.archives-ouvertes.fr


  

 

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 16045 

To link to this article : DOI : 10.1103/PhysRevLett.103.124502  
URL : http://dx.doi.org/10.1103/PhysRevLett.103.124502 

To cite this version : Chauvet, Fabien and Duru, Paul and Geoffroy, 
Sandrine and Prat, Marc Three Periods of Drying of a Single Square 
Capillary Tube. (2009) Physical Review Letters, vol. 103 (n° 12). 
pp. 124502-1-124502-4. ISSN 0031-9007 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



Three Periods of Drying of a Single Square Capillary Tube

F. Chauvet,1 P. Duru,1 S. Geoffroy,2 and M. Prat1,*
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The drying kinetics of a porous medium is classically described in three main periods, which depend on

the interplay between the external and internal mass transfers during evaporation. The first period is

described as essentially depending on the external mass transfer, whereas the third period is dominated by

the internal mass transfer. The second period is a crossover period. We show experimentally that a similar

drying kinetics can be obtained from a much simpler system owing to the effect of corner liquid films: a

capillary tube of square cross section.
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Drying of porous media is a process of particular im-

portance in relation with many applications, including soil

drying, recovery of volatile hydrocarbons from under-

ground oil reservoirs, and drying in food, textile, and

pharmaceutical industries. Although much progress has

been made on drying thanks to invasion percolation con-

cepts and pore network simulations, e.g., [1], the prediction

of drying rate, and therefore of drying time, is still a

challenge. It is now widely admitted that this difficulty

stems largely from the effect of liquid films in grooves,

crevices of roughness in the pore space [2,3]. The accurate

description of drying in a system where these films have a

major effect is therefore of great interest. Although a

porous medium with its hierarchy of pore diameters and

junction structures is clearly much more complex, the

consideration of an individual channel has often proven

to be a useful step in the understanding of transport phe-

nomena in porous media. Our study is also of direct interest

for microfluidic systems, e.g., [4], where square and rect-

angular channels are common. Also, we note that little has

been done on the evaporation from a single capillary tube

since the pioneering experiments of Stefan [5] for circular

tubes. Here we show that evaporation in a square tube is

much faster and dramatically different owing to the effect

of corner films. The square tube drying kinetics is shown to

resemble the drying curve of a porous medium, which is

classically described in three main periods as follows [6].

During the first period, referred to as the constant rate

period (CRP), the evaporation rate is essentially constant

and controlled by the external demand (velocity and rela-

tive humidity in surrounding air). The last period, the

receding front period (RFP), is characterized by an internal

evaporation front receding into the porous medium

whereas the intermediate period, the falling rate period

(FRP), is a crossover period characterized by a significant

drop in the drying rate. The aim of this work is to present a

detailed description of the drying kinetics for our simple

system. Interestingly, this description is consistent with the

analysis presented in [7], where it was argued that the CRP

for a usual porous medium could exist even in the absence

of bulk liquid-gas interface at the surface pores provided

that liquid films reach the porous medium surface.

The 10 cm long square capillary tube is made of boro-

silicate glass. The tube internal side length d and wall

thickness are 1 and 0.2 mm, respectively. The tube internal

corners are not sharp but rounded (Fig. 1). Measurements

of the tube internal curvature radius r0 from high magnified

images of tube cross sections give r0 ! 100 #m. The

capillary tube is held vertically and glued directly to a

syringe placed on a precision pump, allowing accurate

filling of the tube by the liquid (here n-heptane or

2-propanol, two perfectly wetting liquids). This setup is

(a)

(b) (c)

FIG. 1. (a) Visualization of corner liquid films in tube entrance

[the camera is aligned on the tube diagonal axis (shown as a

dashed line in (b)]. (b) Sketch of tube cross section in corner film

region, where r0 is the curvature radius of rounded corner, R is

the in-plane curvature radius of corner menisci, and w is the

corner film thickness. (c) Computed shape of gas-liquid interface

in the tube.



placed inside a plexiglass enclosure which helps to main-

tain a constant temperature ("0:5 #C) in the tube environ-

ment during the experiment. At t ¼ 0, the top tube end is

exposed to a stagnant air atmosphere at ambient tempera-

ture and evaporation starts. As shown in Fig. 1, thick liquid

films remain trapped along the four internal corners when

the bulk meniscus recedes into the tube as a result of

evaporation. Using an ombroscopy visualization tech-

nique, images are acquired with two CCD cameras to

follow both the bulk meniscus position z0 and the evolution
of corner films at the tube entrance.

The evolution of z0 is shown in Fig. 2 together with its

theoretical evolution for a circular tube for both liquids [5].

Evaporation is much faster with the square tube, for the

corner films provide a pathway for transporting the liquid

from the receding bulk meniscus up to the film tips. One

can distinguish three main phases for the square tube: a

first phase where z0 seems to vary linearly with time, then a

crossover period where the bulk meniscus significantly

slows down, and eventually a third phase where z0 /
ffiffi

t
p

as shown in the inset of Fig. 2. These three periods are best

seen in Fig. 3, which shows the drying curve for the

heptane experiment (a similar curve is obtained with the

2-propanol data). So as to use the same convention as for

the drying curve of a porous medium [6], we define the

liquid saturation as S ¼ ðz0max ( z0Þ=z0max, where z0max is

the farthest position reached by the bulk meniscus in the

experiment. Hence S is the liquid volume fraction in the

tube region z * z0max, neglecting, however, the small

amount of liquid trapped along the corners. The evapora-

tion flux E shown in Fig. 3 is estimated from the mass

balance E ¼ -‘d
2ð1( A+

cÞ dz0dt
, where -‘ is the liquid den-

sity and A+
c ¼ 41

3:772
with 1 ¼ 1( 2=4. The area d2ð1( A+

cÞ
is the area left free of liquid within the tube as the junction

between the bulk meniscus and the corner menisci for a

perfectly wetting liquid [8]. Computing
dz0
dt

from our dis-

crete series of data (t; z0) is not straightforward because of

the higher frequencies fluctuations of z0 with time that are

barely discernible in Fig. 2 but significantly affect the

direct computation of derivatives from a simple finite

difference scheme (these fluctuations are notably due to

small temperature fluctuations and air motion variations

induced by the room air conditioning system). One first

option is to use a polynomial curve fitting procedure and

compute
dz0
dt

from deriving the polynomial expression. This

can be done splitting the data in several subsets and gives

the solid line shown in Fig. 3, where Emax is the maximum

evaporation flux computed using this procedure. An alter-

native consists in first applying a smoothing procedure to

the raw data (t; z0) and then computing
dz0
dt

using a simple

finite difference scheme. We have tested several smoothing

procedures (moving averages, Savitzky-Golay filters) and

all give results consistent with the evolution deduced from

the curve fitting procedure. An example of such results is
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FIG. 2. Evolution of bulk meniscus position z0 as a function of
time. The thick solid line and the dashed line are for the square

tube. The thin solid line and dashed line on the bottom are for a

circular tube. The inset shows the evolution of z0 as a function of
ffiffi

t
p

in the square tube with heptane. The position when the corner

liquid films cease to be attached to the tube entrance (depinning)

is indicated. The depinning does not occur at the same time in

the four corners in the 2-propanol experiment. The two dashed

lines indicate the first depinning and when depinning has oc-

curred in the four corners, respectively.
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FIG. 3 (color online). Square tube drying kinetics with heptane

[solid line from fits of z0ðtÞ, red circles from discrete derivatives,

see text] and evolution of the corner film thickness w measured

at a distance of one tube internal width d from tube entrance

[solid line, the dotted line corresponds to the purely hydrostatic

evolution, whereas the dashed line is deduced from a model of

viscous flow in the film, see text, wmax ¼ ð
ffiffiffi

2
p

( 1Þð d
3:77

( r0Þ].
The vertical dashed line marks the film tip depinning. The right-

hand inset shows the drying kinetics as a function of z0 com-

puted numerically when the film thinning and depinning are due

to gravity forces only. The left-hand inset shows the evolution of

dimensionless evaporation flux as a function of w.



shown in Fig. 3 (circles). The remarkable result is that the

drying curve in Fig. 3 is similar to the drying curve of

porous media [6]. An accurate description of this curve is

possible in relation with the evolution of film thickness w,
measured inside the tube at a distance d from tube entrance

from local visualization by ombroscopy, and also shown in

Fig. 3 [w is the film thickness in the intersection between

the corner angle bisector plane and the tube cross section

plane; see Fig. 1(b)]. We now describe the three periods

and how they are related to the external and internal mass

transfers.

Figure 3 shows that the evaporation rate is not exactly

constant but slowly decreases (almost linearly) during the

CRP. Interestingly, this is also observed, but not explained,

with porous media [6]. The observations indicate that the

corner films are attached to the tube entrance and that the

film thickness w decreases in the tube entrance region all

along the CRP (Fig. 3). Hence the liquid is transported

within the liquid films up to the tube entrance thanks to the

effect of capillary forces during this period. The films’

thinning induce, in turn, the slow decrease in the evapora-

tion flux. The mechanisms responsible for the films’ thin-

ning can be understood from a simple model. Following

[9], we express the liquid flow rate qwithin each of the four
corner films as

qðzÞ ¼ -l

1R4

6#

"

dpl

dz
( -lg

#

; zf < z < z0; (1)

where R is the corner film menisci in-plane curvature

radius [Fig. 1(b)], # the liquid viscosity, and 6 a dimen-

sionless resistance [9]; zf is the film tip position (zf ¼ 0

during the CRP). Note that the curvature in the z direction,
i.e., along the tube, is neglected. This, however, does not

affect significantly our results because the film tip region

where the axial curvature is non-negligible is in fact OðwÞ,
that is quite small. The vapor transport by diffusion in the

gas phase is only significant in the film tip region and can

be neglected further below in the tube. We therefore as-

sume that the phase change takes place only at the film tip.

Combining Eq. (1) with Laplace’s law, pl ¼ pg ( <
R
where

< is the surface tension, leads to

q ¼ -l

1

6#

"

<R2
dR

dz
( R4-lg

#

; zf < z < z0; (2)

which, combined with the mass balance equation 4q ¼
-ld

2ð1( A+
cÞ dz0dt

, leads to

ð1(A+
cÞ
dz0
dt

¼ 41

d26#

"

<R2
dR

dz
(R4-lg

#

; zf <z<z0:

(3)

Assuming that the bulk meniscus shape is essentially iden-

tical to the quasistatic shape yields pg ( plðz0Þ ¼ 3:77<
d

[8],

and therefore R ¼ d=3:77 as boundary condition at z ¼ z0.

For given values of z0 and
dz0
dt

deduced from the experi-

mental data, Eq. (3) is solved for determining the evolution

of R along the film, and then the film thicknessw ¼ ð
ffiffiffi

2
p

(
1ÞðR( r0Þ. Contrary to a perfectly sharp corner, Eq. (3)

cannot be solved analytically because the dimensionless

flow resistance 6 depends on R for a rounded corner [9].

The degree of roundedness is an important parameter. A

perfectly sharp corner would lead to a much longer CRP. A

finite difference numerical solution gives the results dis-

played in Fig. 3, in a fairly good agreement with the

experimental data. We have also plotted the thinning due

to the effect of gravity forces only, a solution referred to as

the purely hydrostatic one in the caption of Fig. 3 and given

by Boðz+0 ( z+fÞ ¼ 1
R+ðz+

f
Þ ( 1

Rðz+
0
Þ , where the * indicates a

variable made dimensionless using d as characteristic

length. Bo is the Bond number, Bo ¼ -lgd
2

<
. As seen in

Fig. 3, gravity effects are responsible for the film thinning

over most of the CRP. However, viscous effects become

very significant toward the CRP end (the film thickness

ceases to follow the purely hydrostatic evolution and de-

creases much more abruptly). When R is about to be equal

to r0 at the tube top, we expect that the films cease to be

attached to the tube top and begin to recede into the tube.

This event can indeed be seen on the movie obtained from

the high magnification images of tube entrance and is

indicated in Figs. 2 and 3. An interesting question is

whether the film depinning occurs exactly at the end of

the CRP (Fig. 2) or slightly later in the FRP (Fig. 3). A

related question is the nature of the CRP-FRP transition: a

‘‘cusp’’ or a softer transition. The exact shape of the curve

E versus S when the evaporation rate begins to drop

abruptly is, however, difficult to determine with a great

accuracy from our data. To gain further insight into the

CRP-FRP transition, the Laplacian problem governing the

vapor transport by diffusion in the gas phase is solved

numerically when the shape of the corner menisci is gov-

erned by the competition between gravity and capillary

forces. The three-dimensional computational domain

includes the gas phase within the tube [as illustrated in

Fig. 1(c)] as well as a spherical outer domain around the

tube. Numerical tests have shown that a sphere with a

radius equal to 5d was sufficient to obtain a solution

independent of the sphere radius. The FLUENT
TM fluid

dynamics analysis package is used to generate the compu-

tational mesh and to solve the diffusion equation. The

three-dimensional shape of the corner film [as illustrated

in Fig. 1(c)] is deduced from a simplified analysis of the

quasistatic shape of liquid-gas interface in the tube that

will be detailed elsewhere. The results, presented in the

right-hand inset of Fig. 3, indicate (i) that the CRP-FRP

transition coincides with the film depinning and (ii) that

this transition is quite similar to the cusp transition ob-

tained from the experimental results. The depinning is not

exactly at the CRP-FRP transition in the experiments

because the film depinning does not occur exactly simul-

taneously in the four corners. From both the simulation

and the experiment it can be concluded, however, that the

CRP-FRP transition essentially coincides with the film



depinning. Hence the liquid no longer reaches the entrance

of the system during the FRP. The numerical results also

indicate the existence of an additional very short drying

period at the very beginning of the evaporation process

corresponding to the transition from a flat meniscus all

over the tube entrance to a curved meniscus with a depth of

about one internal tube width d. This period cannot be seen
experimentally because the bulk meniscus is typically

located 1 or 2 mm within the tube when the experiment

starts.

The simulations show that the vapor concentration gra-

dients are only significant in the film tip region and are

negligible further away within the tube, a phenomenon

referred to as the diffusional screening phenomenon.

Hence, the dimensionless evaporation flux E+ ¼ E
Dced

(where ce is the equilibrium water vapor mass concentra-

tion at the liquid-gas interface andD is the vapor molecular

diffusion coefficient, noting that the vapor concentration in

the far field is nil here) is expected to vary essentially with

the film thickness w. This is illustrated in the left-hand

inset in Fig. 3. Note that the computations have been

performed in the dilute limit, i.e., ce , 1, whereas this

constraint is not satisfied in the experiments with heptane

(ce ! 0:245 kg=m3) or 2-propanol (ce ! 0:117 kg=m3).

This should explain the difference between the numerical

and experimental results in Fig. 3.

As seen from Fig. 3, E+ ! 1:3 at depinning, which

allows us to introduce the length ? ! 0:77d for character-

izing the external mass transfer resistance. Hence the

external mass transfer is equivalent to the diffusive mass

transfer over a tube dry section of length ? , that is quite
short compared to tube length. This allows us to finish the

description of the three main drying periods. The large

(more than a 50% reduction in the flux observed at the end

of CRP) and abrupt decrease in the evaporation flux ob-

served for a variation in the main meniscus displacement of

order d (this corresponds to a variation of 0.04 in saturation

in Fig. 3) during the FRP is fully consistent with the fact

that ? ! OðdÞ. The evolution of the film tip position zf
during the FRP and the RFP can therefore be deduced from

the equation -‘ð1( A+
cÞ dz0dt

! Dce
?þzf

and is shown in Fig. 4.

The results shown in Fig. 4 were obtained from the discrete

data shown in Fig. 3 (circles) after some additional data

filtering. As can be seen, zf / z0 when the variation of the

evaporation flux becomes sufficiently small. As a result,
dz0
dt

/ z(1
0 when zf . ? , which consistently leads to the

behavior z0 /
ffiffi

t
p

shown in Fig. 2 when z0=d > 15. This

suggests that the RFP can be defined as the period where zf
varies linearly with z0, that is the period characterized by

the behavior z0 /
ffiffi

t
p

. The FRP-RFP transition corresponds

to the intersection of the straight line with the data curve in

the inset of Fig. 2 and in Fig. 4, i.e., the moment where zf
begins to vary linearly with z0. It could be argued that zf
varies linearly with z0 in the RFPmainly because of gravity

effects since the film’s extension cannot be greater than

ðz+0 ( z+fÞmax ! Bo(1ð 1
r+
0

( 3:77Þ. It can be shown, however,
that the regime zf / z0 should also be observed in the

absence of gravity effects owing to viscous effects. This

will be detailed in a longer paper.
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FIG. 4. Evolution of film tip position zf in the tube as a

function of z0 for the heptane experiment. The inset shows the

evolution of dimensionless evaporation flux as a function of zf.


