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GROUP ACTIONS ON DENDRITES AND CURVES

by Bruno DUCHESNE & Nicolas MONOD (*)

Abstract. — We establish obstructions for groups to act by homeomorphisms
on dendrites. For instance, lattices in higher rank simple Lie groups will always fix
a point or a pair. The same holds for irreducible lattices in products of connected
groups. Further results include a Tits alternative and a description of the topolog-
ical dynamics.

We briefly discuss to what extent our results hold for more general topological
curves.
Résumé. — Nous établissons des obstructions à l’existence d’actions de groupes

par homéomorphismes sur des dendrites. Par exemple, les réseaux de groupes de
Lie simples en rang supérieur à 2 fixent toujours un point ou une paire de points.
Le même résultat est obtenu pour des réseaux irréductibles dans des produits
de groupes connexes. D’autres résultats incluent une alternative de Tits et une
description de la dynamique des actions de groupes.

Nous discutons brièvement dans quelle mesure nos résultats peuvent s’étendre
au cas plus général des courbes topologiques.

1. Introduction

1.1. Dendrites

Recall that a dendrite is a locally connected continuum without simple
closed curves. Other equivalent definitions and some basic facts are recalled
in Section 2 below.
A simple example of a dendrite is obtained by compactifying a count-

able simplicial tree (Section 12), but the typical dendrite is much more
complicated: certain Julia sets are dendrites [17] and Ważewski’s univer-
sal dendrite [87] can be identified with the Berkovich projective line over

Keywords: dendrites, groups, rigidity, bounded cohomology, lattices, Tits alternative,
dynamics, curves.
2010 Mathematics Subject Classification: 54H20, 22D40.
(*) B.D. is supported in part by French Project ANR-14-CE25-0004 GAMME.



2 Bruno DUCHESNE & Nicolas MONOD

Cp [46]. The homeomorphism group of some dendrites is enormous (Sec-
tion 12), whilst for others it is trivial [42, p. 443].
In fact, it was recognized early on [89], [90] that any continuum has

a canonical dendrite quotient reflecting its cut-point structure, see [13],
[76] for the general statement. Bowditch made remarkable use of this quo-
tient [15], leading to the solution of the cut-point conjecture for hyperbolic
groups [14], [84]. In this application, Bowditch’s dendrites retained a de-
cidedly geometric aspect inherited from the hyperbolic group, namely the
dynamical convergence property, allowing him to reconstruct a metric tree
with an isometric action.
However, in general, continuous actions on dendrites are definitely not

geometrisable (see Section 12). Nonetheless, the purpose of our work is to
establish rigidity results for actions on dendrites in full generality. It turns
out that this context of topological dynamics still admits analogues of some
results that are known in geometry of negative curvature. We shall call an
action on a dendrite elementary if it fixes a point or a pair of points, cf.
the discussion in Section 3.

Theorem 1.1. — Let Γ be a lattice in a simple algebraic group of rank
at least two.
Then any Γ-action on a dendrite is elementary.

In the above statement, a simple algebraic group refers to G(k) where
k is a local field and G is a connected almost k-simple algebraic group
defined over k; its rank is the k-rank of G. Examples include the Lie group
SLn(R), which is of rank n− 1, or p-adic and function field analogues.
To highlight one of the differences between general dendrites and trees,

we recall that the analogue of Theorem 1.1 for trees or R-trees is a direct
consequence of Kazhdan’s property (T) [86], [44, 6.11]. In contrast, we
are not aware of any possible connection between Kazhdan’s property and
dendrites.

Problem. — Find a Kazhdan group with a non-elementary action on
a dendrite.

Our forthcoming paper [31] on the structural properties of dendrite
groups also contains evidence that Kazhdan’s property should not be an
obstruction to actions on dendrites.
Our approach is therefore different: we establish a degree two cohomo-

logical invariant for actions on dendrites which is a topological version of
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GROUP ACTIONS ON DENDRITES AND CURVES 3

invariants known in non-positive curvature [70], [71]. In view of the coho-
mological vanishing results for higher rank lattices proved in [19], [71], the
following already accounts for Theorem 1.1.

Theorem 1.2. — Let G be a group with a non-elementary action on a
dendrite.
There is a canonical unitary representation V of G without invariant vec-

tors and a non-trivial canonical element of the second bounded cohomology
H2

b(G,V ).

This cohomological theorem can be used in other contexts too; here is
an example. A lattice Γ in a product G1 × · · · ×Gn is called irreducible if
its projection to any proper sub-product is dense. This definition coincides
with the classical one for semi-simple Lie groups and is discussed at length
e.g. in [23, 4.A].

Theorem 1.3. — Let Γ be an irreducible lattice in a product of at least
two connected locally compact groups.
Then any Γ-action on a dendrite is elementary.

In the preliminaries for the proofs of the above theorems, we need to
investigate probability measures on dendrites. As a by-product, we obtain
a short proof of the fact that every action of an amenable group on a
dendrite is elementary, first established in [82]. In fact, this holds in a
much wider generality.

Theorem 1.4. — If G has two commuting co-amenable subgroups,
then any G-action on a dendrite is elementary.

See Section 6 for context; for instance, any group whatsoever can be
embedded in a group admitting two commuting co-amenable subgroups.
Special cases of this theorem include the following, noting that the case

of F answers Problem 6 in [82].

Corollary 1.5. — Consider Thompson’s group F or any of the groups
of piecewise Möbius transformations of the line introduced in [68].

Then any action of these groups on a dendrite is elementary.

However, these special cases also follow from a Tits alternative that we
establish:

Theorem 1.6. — Let G be a group acting on a dendrite.
Then either G contains a non-abelian free subgroup or its action is ele-

mentary.

TOME 0 (0), FASCICULE 0



4 Bruno DUCHESNE & Nicolas MONOD

In contrast to some of our other arguments, this is proved rather directly
in parallel with the classical cases of trees and R-trees (cf. e.g. [77]).

The particular case of (topologically) minimal actions was established
earlier in [81] using ergodic tools; unfortunately, it seems that one cannot
reduce general actions on dendrites to that minimal case.

The dynamics of an individual homeomorphism of a dendrite can exhibit
diverse behaviours; we give a “tectonic” description in Proposition 10.6
below. However, from the perspective of non-elementary groups, we recover
a global phenomenon reminiscent of negative curvature:

Theorem 1.7. — Let G be a group with a non-elementary action on a
dendrite X.
Then X contains a canonical compact G-set which is a G-boundary in

Furstenberg’s sense.

1.2. Curves

The reader might wonder whether the results presented here really de-
pend on the dendrite structure or just on the one-dimensionality of these
topological spaces. For instance, it has been proved that lattices in higher
rank algebraic groups have strong obstructions to acting on one-mani-
folds [92], [39], [19]. This regards mostly the circle, because much less is
known about actions on the interval (which are elementary in our sense
anyway).

Consider thus a general compact Hausdorff space of dimension one; for
instance, a topologist’s curve, namely a continuum of dimension one. It
turns out that our results emphatically do not hold in this generality. For
instance, any countable residually finite group acts freely on the Menger
curve [61], as follows from [30, Thm. 1] or [78]. Such groups include all
lattices of Theorem 1.1 above; see Section 11 for further discussion.
There is however a class of better behaved curves, namely local dendrites.

By definition, this refers to any continuum in which every point has a
neighbourhood which is a dendrite. In fact, a one-dimensional continuum is
a local dendrite if and only if it is an absolute neighbourhood retract [85],
[73, 5.1]. For instance, the Berkovich space of any connected projective
scheme of pure dimension one over a separable complete valued field is a
local dendrite [46, 8.1].
Combining Theorem 1.1 with rigidity results for the circle, we obtain the

following.

ANNALES DE L’INSTITUT FOURIER
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Corollary 1.8. — Let Γ be a lattice in a simple algebraic group of
rank at least two.
Then any Γ-action on a local dendrite has a finite orbit.

In Section 11, we further combine our other results for dendrites with
known results for the circle and establish:

• a cohomological obstruction to actions on local dendrites,
• a result for groups with commuting co-amenable subgroups,
• a Tits alternative for actions on local dendrites.

2. Preliminaries on dendrites

On voit autour des expansions dendritiques une infinité
de petits appendices

Micheline Stefanowska (1897), in [83, p. 359].

Recall that a continuum is a (non-empty) connected compact metrisable
space. A continuum X is a dendrite if and only if any one of the following
equivalent conditions is satisfied:

(1) Any two distinct points of X can be separated by a point.
(2) X is locally connected and contains no simple closed curve.
(3) The intersection of any two connected subsets of X remains con-

nected.
(4) X is a one-dimensional absolute retract.
(5) C(X) is projective in the category of unital C*-algebras.

See e.g. [26], [28]; a reference containing all those preliminary facts that we
do not justify is [72, §10].
Any non-empty closed connected subset of a dendrite is path-connected

and is again a dendrite. The characterisation 3 implies that any subset A
of a dendrite is contained in a unique minimal closed connected subset,
which we denote by [A]. (A closed connected subset is automatically a
sub-dendrite, i.e. itself a dendrite.) When A consists of two points x, y
we denote this dendrite simply by [x, y]; it is an arc, i.e. a homeomorphic
image of a compact interval in the real line. We define the interior of an arc
[x, y] to be [x, y]\{x, y}. Yet another characterisation of dendrites amongst
continua is:

(6) Any two points are the extremities of a unique arc in X.
For any point x in a dendrite X, all connected components of X \ {x}

are open (by local connectedness). The cardinality of this set of component

TOME 0 (0), FASCICULE 0



6 Bruno DUCHESNE & Nicolas MONOD

coincides with the Menger–Urysohn order of x in X [54, §46, I]. The point
x is called an end point if it has order 1 and a branch point if it has
order > 3. We denote by Ends(X) and Br(X) the subsets of end points
and branch points. The other points, of order 2, are called regular. There
are only countably many branch points (throughout this article, countable
means 6 ℵ0). The set of end points is non-empty and the set of regular
points is dense; in fact, dense in any arc.

The following is a simple topological version of Helly’s theorem.

Lemma 2.1. — Let X be a dendrite and Y be a collection of closed
connected subsets Y ⊆ X that have pairwise non-empty intersection. Then
the intersection of all members of Y is non-empty.

Proof. — By compactness, we can assume that Y is finite. Choose a
point xY,Y ′ in each Y ∩ Y ′. We can replace X by the compact tree X0 =
[{xY,Y ′ : Y, Y ′ ∈ Y }] and each Y by Y ∩X0, which is connected. Now the
result follows from Helly’s theorem for trees (where connectedness coincides
with convexity). �

We will also need the following form of acyclicity.

Lemma 2.2. — Let zi be closed connected subsets of a dendrite X in-
dexed by i ∈ Z/4Z. If zi ∩ zi+1 6= ∅ for all i, then either z0 ∩ z1 ∩ z2 6= ∅
or z1 ∩ z2 ∩ z3 6= ∅.

Proof. — Apply Lemma 2.1 to the three sets z0 ∪ z3, z1, z2. �

End points can be separated from connected sets in the following sense.

Lemma 2.3. — Let C be a closed subset of a dendrite X and x ∈
Ends(X). If x ∈ [C], then x ∈ C.

Proof. — It follows from the definition of the Menger–Urysohn order that
x admits a system of open neighbourhoods whose topological boundary is
reduced to a point (see also [72, 9.3]). SinceX is a dendrite, the complement
of any such neighbourhood is connected, and the result follows. �

We endow as usual the space Cl(X) of non-empty closed subsets of X
with the Vietoris topology, which is compact and metrisable [47, §1].

Lemma 2.4. — The map C 7→ [C] is continuous in Cl(X).

Proof. — Recall that the Vietoris topology can be metrised using the
Hausdorff distance associated to a compatible distance on X. One then
checks directly that the above map is continuous on finite subsets C by
considering the tree spanned by the union of two given finite subsets of X.

ANNALES DE L’INSTITUT FOURIER



GROUP ACTIONS ON DENDRITES AND CURVES 7

In order to deduce the general case, one uses the uniform approximation
of X by trees [72, 10.37]. �

Finally, we recall that dendrites have the fixed-point property:

Lemma 2.5. — Every homeomorphism of a dendrite fixes a point.

Proof. — The first occurrence of this statement is probably [80,V, p.129].
Since X is an absolute retract [54, §48 III 16], this can also be viewed

as a consequence of Schauder’s theorem [79], or even of a fixed-point result
predating Brouwer’s, such as [10, p. 186], because X can be embedded in
the plane [87, p. 9]. �

As the above references show, this holds more generally for continuous
self-maps. We recall however that there are tree-like continua for which the
fixed-point property fails for continuous self-maps [6] and even for homeo-
morphisms [36], [75].

3. Elementarity of actions on dendrites

All group actions on dendrites will be understood to be by homeomor-
phisms. If a group G has a topology, the action on X is called continuous
when the action map G×X → X is so.

Definition 3.1. — An action of a group G on a dendrite X is elemen-
tary if G fixes a point in X or preserves a pair of points in X.

There is not much to say about elementary actions; any countable group
admits an action on a dendrite which is free away from a single fixed point.

This is a notion of triviality for actions that could have been defined in
several other equivalent ways:

Proposition 3.2. — Let G be a group acting on a dendrite X. The
following are equivalent.

(1) The G-action is elementary.
(2) G preserves an arc in X, possibly reduced to a point.
(3) G has a finite orbit in X.
(4) There is a G-invariant probability measure on X.

An immediate consequence of this proposition is the fact that every con-
tinuous action of an amenable group on a dendrite is elementary, first
proved in [82].
The only non-trivial implication needed for the above equivalences,

namely (4) ⇒ (1), is a particular case of the following result, which will
however be particularly useful for non-elementary actions.

TOME 0 (0), FASCICULE 0



8 Bruno DUCHESNE & Nicolas MONOD

Proposition 3.3. — Let X be a dendrite. There is a Borel Homeo(X)-
equivariant map

ϕ : Prob(X) −→P1,2(X)

to the space P1,2(X) of subsets of cardinality 1 or 2 in X.

To be precise, we view P1,2(X) as a compact subset of the hyperspace
Cl(X); this is none other than the Borsuk–Ulam symmetric product [11] of
two copies of X. As for Prob(X), it denotes the compact convex space of
Borel probability measures on X endowed with the usual weak-* topology
(in the dual of the space of continuous functions).

Proof. — Given a probability measure µ on X we construct below an
element of P1,2(X). The resulting map ϕ will be canonical enough to be
Homeo(X)-equivariant by definition, and it will be explicit enough to be
Borel by a straightforward verification (using also Lemma 2.4). Therefore
we only provide the construction.

Suppose first that µ has atoms. It then has finitely many atoms of maxi-
mal mass. It is therefore enough to construct a map Pf(X)→P1,2(X) on
the space Pf(X) ⊆ Cl(X) of finite non-empty subsets. For any A ∈Pf(X),
the set [A] is a tree; we work with trees without degree two vertices to re-
main well-defined topologically. There is a number of different well-known
canonical ways to associate a notion of center to a finite tree. We choose
Jordan’s center [48] because it is the most classical that we know of; it is
indeed a set of one or two vertices of [A].
We now consider the atom-free case and distinguish two subcases. As-

sume first that there exist regular points x such that both components of
X \ {x} have measure 1/2. We claim that the set Eµ ⊆ X of all such
points x lies in an arc; then, the extremities of [Eµ] yield the desired
element of P1,2(X). If the claim did not hold true, there would be ele-
ments x, y, z ∈ Eµ forming a tripod, yielding three disjoint components of
mass 1/2, which is impossible.

In the second subcase, every regular point x ∈ X determines a component
cx of X \{x} with mass > 1/2, recalling that µ({x}) = 0. We claim that the
intersection

⋂
cx, where x ranges over all regular points of X, is a singleton.

This will be our element of P1,2(X). To prove this claim, we observe that
the closed connected sets cx have pairwise non-empty intersection by virtue
of their mass. Thus, by Lemma 2.1, the intersection

⋂
cx is non-empty.

Since any two distinct points are separated by a regular point, we proved
the claim. �

ANNALES DE L’INSTITUT FOURIER



GROUP ACTIONS ON DENDRITES AND CURVES 9

4. Dendro-minimality

Recall that any action on any compact space admits (possibly several)
minimal invariant non-empty closed subsets. A similar application of Zorn’s
lemma shows that an action on a dendrite admits some minimal invariant
sub-dendrite. In fact, more is true:

Lemma 4.1. — Let G be a group with a non-elementary action on a
dendrite X.

(1) There is a unique minimal G-invariant non-empty closed subset
M ⊆ X.

(2) There is a unique minimal G-invariant sub-dendrite in X, namely
[M ].

Proof. — The first point is proved in [60,4.1] and (2) follows from (1). �

Remark 4.2. — In fact, there is a unique minimalG-invariant sub-dendrite
in X as soon as G has no global fixed points. Indeed, minimal G-invariant
sub-dendrites are necessarily disjoint, and the first-point retraction (see
10.24 and 10.25 in [72]) would map any invariant sub-dendrite to a fixed
point in any disjoint invariant sub-dendrite. Thus we see that there is still
a canonical minimal G-set when there are no G-fixed points: in the elemen-
tary case, take the extremities of the unique minimal invariant arc.
There are however such examples without uniqueness of minimal sets.

The simplest is provided by the following action of the infinite dihedral
group D ∼= Z o {±1} on the H-shaped dendrite. The D-action on the
interior of the horizontal rung of H is conjugated to its standard isometric
action on the real line, while the ends of H are permuted according to the
appropriate quotient map from D to the Vierergruppe [53, p. 12–13].

Classically, an action on a space M without invariant closed proper sub-
sets is called (topologically) minimal. There is of course no reason that M
should be a dendrite; therefore, we shall need to consider rather the case
where the action is dendro-minimal, that is, does not admit an invariant
proper sub-dendrite.

Lemma 4.3. — Let G be a group with a dendro-minimal action on a
dendrite X. For any proper sub-dendrite Y ⊆ X, one can find g ∈ G such
that gY ∩ Y = ∅.

Proof. — Otherwise it follows that gY ∩ g′Y 6= ∅ for all g, g′ ∈ G. By
Lemma 2.1, the intersection of all G-translates of Y is non-empty; this
intersection is a proper G-invariant sub-dendrite, which is absurd. �
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10 Bruno DUCHESNE & Nicolas MONOD

Lemma 4.4. — Let G be a group with a dendro-minimal action on a
dendrite X. Then the closure of any G-orbit contains Ends(X).

In particular, in the non-elementary dendro-minimal case, the unique
minimal set contains Ends(X).
Proof of the lemma. — Let x ∈ X and C = Gx. By dendro-minimality,

[C] = X. It suffices now to apply Lemma 2.3. �

Thanks to the fixed-point property of dendrites, Lemma 4.1 has the
following consequence.

Lemma 4.5. — Let G be a group with a non-elementary action on a
dendrite X and let M be the unique minimal subset of Lemma 4.1.

Then any homeomorphism of X commuting with G fixes M point-wise.

Proof. — Let h be a homeomorphism of X commuting with G. Then
G preserves the closed subset of h-fixed points, which is non-empty by
Lemma 2.5. Therefore, this set contains M . �

Lemma 4.5 immediately implies the following.

Corollary 4.6. — When a direct product of two groups acts on a
dendrite, at least one of the factors acts elementarily. �

Remark 4.7. — There is a special case where (topological) minimality
and dendro-minimality do coincide. A free arc is an arc (not reduced to a
point) whose interior is open in X; for dendrites, this is equivalent to asking
that this interior does not meet Br(X). For any dendrite X not reduced to
a point, the following conditions are equivalent:

(1) X has no free arc.
(2) Br(X) is dense in X.
(3) Ends(X) is dense in X.

(The implications (1) ⇒ (2) and (3) ⇒ (1) follow readily from the defini-
tions and (2)⇒ (3) can be found e.g. in [24, Prop. 2.3].)
Now Lemma 4.4 implies that minimality and dendro-minimality are

equivalent for any action on a dendrite satisfying the above three equivalent
conditions.

5. A Tits alternative for dendrites

We will apply the following well-known variant of Klein’s Ineinanderver-
schiebungsprozess (cf. III §16,18 in [52]), also described by the less precise,
but less sesquipedalian, terminology “ping-pong lemma”:

ANNALES DE L’INSTITUT FOURIER



GROUP ACTIONS ON DENDRITES AND CURVES 11

Let a, b be two elements of a group G acting on a set X and suppose
that X contains four non-empty disjoint sets A±, B± such that

a±1(X \A∓) ⊆ A±, b±1(X \B∓) ⊆ B±.

Then a, b are free generators of a free subgroup of G. (This criterion can
be easily deduced from the statements given e.g. in [43, II.24] or [57].)
Proof of Theorem 1.6. — It suffices to consider the case where the G-

action on a dendrite X is non-elementary and dendro-minimal. In particu-
lar, we can choose two points x, y ∈ X such that the arc [x, y] contains at
least some branch point r 6= x, y. We further choose regular points p ∈ [x, r]
and q ∈ [r, y] with p 6= x and q 6= y.
We use the following notation: given two distinct points s, t ∈ X, we write

Us(t) for the sub-dendrite defined as the closure in X of the component of
X \ {s} containing t.

Since p is regular, Up(x) and Up(y) cover X. Thus, by Lemma 4.3, there
is g ∈ G such that g(Up(y)) ⊆ Up(x). Likewise, there is h ∈ G such that
h(Uq(x)) ⊆ Uq(y). Using Up(x) ⊆ Uq(x), we deduce

hg(Up(y)) ⊆ Uq(y).

If we set a = hg, A− = Up(x) and A+ = a(X \A−), then the two conditions
a±1(X \ A∓) = A± hold by definition. Moreover, A− and A+ are disjoint
since A+ ⊆ a(Up(y)) which lies in Uq(y) by the above discussion.
We now intend to define b = faf−1 as a conjugate of a by an appropriate

f ∈ G, so that the corresponding properties will automatically hold for
B± = f(A±). The only requirement to secure is that the resulting two sets
B± are disjoint from both A±.

To this end, denote by Y ⊆ X the sub-dendrite obtained as the union
of Up(x), Uq(y) and [p, q]. By construction, Y contains A±. Since we have
made sure that [p, q] contains some branch point r, the sub-dendrite Y is
not all of X. Therefore, by Lemma 4.3, there is f ∈ G that f(Y )∩ Y = ∅.
This completes the proof. �

Corollary 5.1. — Any torsion group acting on a dendrite has a fixed
point.

Proof. — It is well-known (and obvious) that the group of orientation-
preserving homeomorphisms of an arc has no element of finite order. There-
fore, if G is torsion, any G-action on an arc factors through a group of order
at most two and hence fixes a point. The result now follows since Theo-
rem 1.6 shows that G can only act elementarily on a dendrite. �
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12 Bruno DUCHESNE & Nicolas MONOD

6. Co-amenable subgroups

Let G be a topological group. A subgroup H of G is co-amenable if any
continuous affine G-action on a convex compact set (in a Hausdorff locally
convex topological vector space) has a fixed point whenever it has an H-
fixed point. See [32] for equivalent definitions in the locally compact case.
A basic example is when H is a lattice in G.
For normal subgroups, co-amenability is simply the amenability of the

quotient; in general, the situation is much more interesting. For instance,
consider the following property of a group G: The group G admits two
commuting co-amenable subgroups.
It was proved in [23, §2.A] that this condition implies all the known con-

sequences of amenability in the CAT(0) setting (in particular it reduces
to amenability in the linear case). However, they are many non-amenable
groups with this property. For instance, for any group Q, the wreath prod-
uct G = Q o Z enjoys this property. This is because the two subgroups⊕

Z>0 Q and
⊕

Z<0 Q are co-amenable [69]. The non-amenable groups of
piecewise projective homeomorphisms of the line introduced in [68] also
have this property, as does the undecided Thompson group F (see e.g. [23,
§2.A]).
The proof of Theorem 1.4 hinges on the following fact.

Lemma 6.1. — Let G be a group with a continuous action on a dendrite
and with a co-amenable subgroup H. Then the H-action is elementary if
and only if the G-action is so.

Proof of the lemma. — We use Proposition 3.2. If H acts elementarily,
then there is an H-invariant probability measure on X. By co-amenability,
there is also a G-invariant probability measure. Therefore, the G-action is
elementary. The converse is immediate. �

Proof of Theorem 1.4. — Let H1, H2 6 G be two commuting co-amen-
able subgroups. Any G-action on a dendrite gives rise to a H1×H2-action.
By Corollary 4.6, one of the factors acts elementarily. Now Lemma 6.1
shows that the G-action is elementary. �

7. The fundamental bundle

We now proceed to define the fundamental bundle of a dendrite X, which
will be a locally compact second countable space Bund(X) endowed with
a topological quotient map Bund(X) → X. The points of Bund(X) are
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pairs (x, c) with x ∈ X and c a component of X \ {x}; we dot not define
Bund(X) when X is reduced to a point.

We recall that all components ofX\{x} are open inX; in particular there
are countably many for each x. The fibre above x will naturally identify
with the discrete space π0(X \ {x}).
In order to topologize Bund(X), we map it injectively into the prod-

uct space X × Con(X), where Con(X) ⊆ Cl(X) denotes the hyperspace
of closed connected subsets of X, i.e. of sub-dendrites, endowed with the
Vietoris topology, which is metrisable and compact [47, 3.7]. The map is
given by

(x, c) 7−→ (x, {x} ∪ c)

and thus the projection on the first coordinate is indeed a quotient map
Bund(X)→ X for the corresponding topology. The only point left to justify
is that Bund(X) is locally compact, or equivalently [12, I.20, I.66] that its
image can be written as the intersection of an open and a closed subset in
X × Con(X).

We claim that this image is closed in the set of pairs (x, z) with z not a
singleton (which is an open set [47, 1.15]). Suppose indeed that a sequence
(xn, {xn} ∪ cn) as above converges to (x, z). Then x ∈ z holds; suppose for
a contradiction that z \ {x} is not a component of X \ {x}. It is, however,
connected and non-empty by hypothesis; let thus c be its component and
p ∈ c \ z. Then [p, x] meets z at a point q 6= x. If U is a small enough
connected open neighbourhood of q, then xn is outside U and outside [p, q]
for n large enough because xn → x. Therefore, U and p lie in the same
component of X \ {xn}. However, the definition of the Vietoris topology
for {xn} ∪ cn → z implies that for large enough n each {xn} ∪ cn, hence
also each component cn, avoids p but meets the open set U non-trivially
(because z does so). This is a contradiction.
For later use, we also define the double fundamental bundle Bund2(X)

to be the fibred product of two copies of Bund(X) over X. Thus Bund2(X)
is a topological bundle with discrete countable fibres over X and its points
are pairs of components corresponding to a same point.
Since these constructions are natural, the group of homeomorphisms of

X acts by homeomorphisms on Bund(X) and on Bund2(X); moreover, the
maps toX as well as the projections Bund2(X)→ Bund(X) are equivariant
for these actions.
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8. Furstenberg maps

Let G be a locally compact second countable group and B a G-measure
space, which means a standard measure space with a measurable G-action
preserving the measure class. We shall be particularly interested in the
case where B is the Poisson–Furstenberg boundary of a (spread-out, gen-
erating) random walk on G. Slightly varying definitions [20], [4] have been
introduced for a general G-measure space that satisfies the most desirable
properties of this particular example. We choose the strongest definition [4]:

Definition 8.1. — A strong G-boundary is a G-measure space such
that

• the action Gy B is amenable in Zimmer’s sense [93],
• the projections B ×B → B are isometrically ergodic [5].

We refer to [4], to [5] and to [3, §4] for more details and for a proof that
Poisson–Furstenberg boundaries are strong boundaries. We shall only need
the fact that some strong boundary exists for each G.

Regarding the second condition in Definition 8.1, we will use only the
following two particular cases of it:

(1) Ergodicity with coefficients of the diagonal G-action on B × B,
which means that any measurable equivariant map from B ×B to
any separable dual Banach G-module is essentially constant [20].
This implies in particular the usual ergodicity of the action of G or
of any lattice in G on B ×B and hence also on B.

(2) A lifting property: suppose that Z and X are standard Borel G-
spaces with a Borel G-map Z → X with countable fibres. If there
are measurable G-maps f : B × B → Z and B → X such that the
diagram

B ×B

��

f // Z

��
B //

77

X

commutes a.e. for the first projection B × B → B, then there is a
measurable G-map B → Z such that the diagram commutes a.e.; in
other words, f is essentially independent of the second variable. In
the terminology of [5] this application of the definition consists sim-
ply in viewing the fibres as separable metric spaces for the discrete
metric, which constitutes indeed a Borel field of metric spaces.
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Theorem 8.2. — Let G be a locally compact second countable group
with a continuous non-elementary action on a dendrite X. If B is a strong
G-boundary, then there exists a measurable G-map B → X.

If moreover the G-action on X is dendro-minimal, then the map B → X

ranges in Ends(X) and is unique (up to null-sets).

Remark 8.3. — In the non-dendro-minimal case, the above statement
still provides a canonical map, namely the unique map to the ends of the
unique minimal sub-dendrite of Lemma 4.1.

We start with a transversality lemma; below, P2(X) ⊆ Cl(X) denotes
the space of sets of two points in X.

Lemma 8.4. — Under the initial assumptions of Theorem 8.2, any mea-
surable G-map ϕ : B →P2(X) satisfies [ϕ(b)] ∩ [ϕ(b′)] = ∅ for almost all
(b, b′) ∈ B2.

Proof of the lemma. — Otherwise, by double ergodicity, [ϕ(b)] ∩ [ϕ(b′)]
is non-empty for almost all (b, b′) in B × B. In general, a co-null set in
B ×B need not contain any product of co-null sets in B. However, in our
situation, precisely this does happen: we claim that there is a co-null set
A ⊆ B such that [ϕ(b)] ∩ [ϕ(b′)] is non-empty for all b, b′ ∈ A.

This claim will contradict the non-elementarity. Indeed, we can assume
that A is invariant under a countable dense subgroup Λ of G. Then the
collection {[ϕ(b)]}b∈A has non-empty intersection by Lemma 2.1 and is Λ-
invariant (we can assume that ϕ is strictly G-equivariant by [93, B.5]). This
intersection is an arc or a point and is preserved by G by continuity of the
action, showing that the G-action is elementary.
We now prove the claim. By Fubini, there is a co-null set B0 ⊆ B and

for each b ∈ B0 a co-null set Bb ⊆ B such that [ϕ(b)]∩ [ϕ(b′)] is non-empty
for all b′ ∈ Bb. If A = B0 satisfies the claim, we are done. Otherwise, we
can fix b, c ∈ B0 with [ϕ(b)] ∩ [ϕ(c)] = ∅ and define A = Bb ∩ Bc. We
need to show that for all b′, c′ ∈ Bb ∩Bc the intersection [ϕ(b′)] ∩ [ϕ(c′)] is
non-empty. This follows by applying Lemma 2.2 to the arcs [ϕ(b)], [ϕ(b′)],
[ϕ(c)], [ϕ(c′)]. �

Proof of Theorem 8.2. — By Lemma 4.1, we can assume that the action
is dendro-minimal. By amenability, there is a measurable G-map B →
Prob(X). We compose it with the map obtained in Proposition 3.3 so that
by ergodicity we have either a map ϕ : B →P2(X) or a map ϕ : B → X.

We claim that in the second case ϕ ranges in Ends(X). By ergodicity and
since G does not fix a point in X, the points ϕ(b) and ϕ(b′) are distinct
for almost every pair (b, b′). Therefore we can define a G-map f : B ×
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B → Bund(X) by f(b, b′) = (ϕ(b), c) where c is the component of ϕ(b′)
in X \ {ϕ(b)}. The lifting property for the bundle Bund(X) → X implies
that there is a measurable G-map b 7→ cb such that for almost all (b, b′) the
point ϕ(b′) lies in the component cb independently of b′. In other words, ϕ
ranges essentially in cb; dendro-minimality implies readily that b is an end.
We now proceed to rule out the first case. By Lemma 8.4, we have [ϕ(b)]∩

[ϕ(b′)] = ∅ almost surely. For such pairs (b, b′) there is a unique (x, c) in
Bund(X) such that x ∈ [ϕ(b)], c ⊇ ϕ(b′) and c ∩ ϕ(b) = ∅. We define
f(b, b′) = (x, c). Applying again the lifting property, we conclude that (x, c)
depends on b only. This implies as above that x is almost surely an end;
this, however, is impossible since c ∩ ϕ(b) = ∅.
It remains to show the uniqueness of the map B → Ends(X). This fol-

lows, using ergodicity, from the fact that there is no G-map to P2(X). �

Corollary 8.5. — Let G be a locally compact second countable group
with a continuous non-elementary action on a dendrite X.
Then the amenable radical Ramen(G) acts trivially on the unique mini-

mal G-invariant set M of Lemma 4.1.

In general, the conclusion does not hold for all of X instead of M . This
is illustrated by the following example which is non-elementary, dendro-
minimal and even topologically transitive.

Example 8.6. — Let Q be a group acting on a locally finite simplicial
tree T , transitively on the set E of unoriented edges; for instance, SL2(Z)
or SL2(Qp). Choose a discrete abelian group A acting minimally on R,
for instance Z2 viewed as Z[

√
2]. Let X be the dendrite obtained as end-

compactification of the geometric realization of T (thus it is homeomorphic
to Gehman’s dendrite [38] in both above cases, if p = 2, although the trees
are different). Then the permutational wreath product

G =
(⊕

E

A

)
oQ

has an action on X obtained by identifying the interior of each edge of T
with R. The action has the claimed properties, but the normal amenable
subgroup

⊕
E A acts faithfully.

The above example is a special case of a situation discussed again after
Proposition 12.2 below.

Proof of Corollary 8.5. — Since the action is non-elementary, we can
assume that it is dendro-minimal upon replacing X by its minimal G-
invariant dendrite. Any strong boundary B for G/Ramen(G) is also a
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strong boundary for G. The existence of a map as in Theorem 8.2 im-
plies that some points of X are fixed by Ramen(G). However, the set of
Ramen(G)-fixed points is closed and G-invariant. Therefore, this set con-
tains M . �

9. An invariant in bounded cohomology

The first goal of this section is to define a canonical 2-cocycle ω for any
dendrite X not reduced to a point. This cocycle will be a topological gener-
alisation of the cocycle introduced for trees in [70]; see however Remark 9.2
below for an important difference.
Given p, q ∈ X we define a Borel function α(p, q) on the double bundle

Bund2(X) by

α(p, q)(x, c, c′) =


1 if p ∈ c, q ∈ c′ and c 6= c′

−1 if p ∈ c′, q ∈ c and c 6= c′

0 otherwise

recalling that c and c′ are components of X \ {x} (in particular the cases
above are indeed mutually exclusive). Observe that the above expression is
alternating in (p, q) and in (c, c′), is invariant under the homeomorphisms
of X and is non-zero in x if and only if x ∈ [p, q] with x 6= p, q.
Now the cocycle ω is defined as the homogeneous coboundary of α, which

in view of the alternation can be written as

ω(p, q, r) = α(p, q) + α(q, r) + α(r, p).

It follows that ω is a canonical alternating 2-cocycle with values in alternat-
ing Borel functions on Bund2(X). By construction, ω(p, q, r) takes only the
values ±1, 0 and indeed vanishes at all points (x, c, c′) unless x is the unique
point in the intersection of the three arcs [p, q], [q, r] and [r, p]. When x is
this point, a direct inspection shows that there are at most six pairs (c, c′)
such that ω(p, q, r)(x, c, c′) is non-zero. More precisely, there are exactly six
such pairs when p, q, r span a tripod with center x, two pairs when they
span an arc but are pairwise disjoint, and none otherwise.
It will be convenient to restrict ω to range in a smaller space. To this end,

we denote by Λ(X) the sub-bundle of Bund2(X) above the branch points
of X and consider Λ(X) as a set without topology but with its natural
action by Homeo(X). In particular, Λ(X) is countable and `p(Λ(X)) is a
separable isometric dual Banach Homeo(X)-module for all 1 6 p <∞. We
can summarize some of the above discussion as follows.
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Proposition 9.1. — There is a canonical Homeo(X)-equivariant alter-
nating bounded (norm-)Borel cocycle

ω : X3 −→ `p(Λ(X))

which is non-zero on all triples in X3 that are not contained in a common
arc. �

One aspect that will be important later on is the following. Although
ω is the coboundary of α, which can be restricted to range in `∞(Λ(X)),
there is in general no equivariant bounded map ranging in `p(Λ(X)) with
p < ∞ of which ω is the coboundary. This fact will be a by-product of
boundary theory.

Remark 9.2. — In the geometric setting of trees [70], the cocycle could be
considered as a quasification of the well-known Haagerup 1-cocycle which
underlies the connection between actions on trees and on Hilbert spaces.
For dendrites, in contrast, there is no obvious connection to actions on
Hilbert spaces; compare Problem 1.1. We can still define a related 1-cocycle
ranging in the space of functions of the (non-double) bundle Bund(X), but
it is unclear how to make any use of it since the space of points (or of
branch points) of a given arc admits no invariant measure or mean unless
we are in a discrete or non-nesting case, which would precisely be accessible
to tree or R-tree methods.

We now obtain a cohomological obstruction to non-elementary group
actions on dendrites:

Theorem 9.3. — Let G be a locally compact second countable group
with a non-elementary continuous action on a dendrite X. Then
H2

cb(G, `p(Λ(X))) contains a canonical non-trivial element for all 1 6
p <∞.

Theorem 1.2 from the introduction follows by choosing p = 2; we only
need to justify that `2(Λ(X)) contains no (non-zero) G-invariant vector.
Any non-trivial level-set of such a vector would be a non-empty finite G-
invariant subset of Λ(X) and its projection to X would witness the elemen-
tarity of G according to Proposition 3.23.

Proof of Theorem 9.3. — Let B be a strong boundary for G as in Sec-
tion 8. By Theorem 8.2, there exists a measurable G-map ϕ : B → X; we
choose the canonical map of Remark 8.3. Combining ϕ with the cocycle ω
of Proposition 9.1, we obtain a bounded measurable G-equivariant cocycle

ϕ∗ω : B3 −→ `p(Λ(X))

ANNALES DE L’INSTITUT FOURIER



GROUP ACTIONS ON DENDRITES AND CURVES 19

which is moreover alternating. By Theorem 2 in [20], the fact that B is
an amenable G-measure space implies that ϕ∗ω represents a continuous
bounded cohomology class [ϕ∗ω] in the space H2

cb(G, `p(Λ(X))). The fact
that B is doubly ergodic with coefficients together with the alternating
property of ϕ∗ω shows that this class [ϕ∗ω] vanishes only if the map ϕ∗ω
vanishes almost everywhere, see [20] and [65, §11].
Suppose thus for a contradiction that ϕ∗ω is a.e. zero. By the above

description of ω, this implies that ϕ sends almost every triple of points in
B to a triple contained in some arc in X. We claim that this contradicts
the non-elementarity, thus finishing the proof of Theorem 9.3.
One way to prove this claim is as follows. Since ϕ ranges in the ends

of some sub-dendrite (Remark 8.3), it sends in fact almost every triple
of points in B to a set of at most two points. An application of Fubini’s
theorem now shows that ϕ essentially ranges in a set of at most two points,
which implies that G preserves this set and therefore acts elementarily. �
Proof of Theorem 1.3. — Suppose that an irreducible lattice Γ in a

product G1 × · · · × Gn of n > 2 locally compact σ-compact groups has
a non-elementary action on a dendrite X. Choose 1 6 p < ∞; then
H2

b(Γ, `p(Λ(X))) is non-trivial by Theorem 9.3. We now apply Theorem 16
from [20], namely: there is an index 1 6 i 6 n and a non-zero closed Γ-
invariant subspace V ⊆ `p(Λ(X)) such that the representation of Γ on V
extends to a continuous G-representation which factors through the pro-
jection G→ Gi. (See also §5.1 in [20] and Lemma 4.4 in [67].)
Choose a non-zero vector v ∈ V . Since the non-zero level-sets of v are

finite and since Γ acts non-elementarily, Γ does not fix v (we recall here that
there is an equivariant map Λ(X) → X). Thus there is a non-zero value
λ 6= 0 of v, an element z ∈ Λ(X) and γ ∈ Γ with v(z) = λ and γv(z) 6= λ.
By p-summability, there is ε > 0 such that no other value λ′ 6= λ of v
satisfies |λ− λ′| < ε. Consider the disjoint subsets

A = {v′ : v′(z) = λ}, B = {v′ : |v′(z)− λ| > ε}

of `p(Λ(X)). Both are closed, and their union contains the orbit Γv. There-
fore this union contains the extended orbit Gv since Γ projects densely to
Gi. Since both A and B meet Γv non-trivially, this shows that Gi cannot
be connected. �

10. Dynamics on dendrites

We start with the global picture. Let G be a group acting by homeomor-
phisms on a compact space X. As in Section 3, the space Prob(X) of Borel
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probability measures is compact for the weak-* topology; we observe that
for any closed subspace Y ⊆ X, the canonical map Prob(Y )→ Prob(X) is
an embedding.
Recall that the G-action on X is called strongly proximal if the closure

of any G-orbit in Prob(X) contains a Dirac mass. This condition was intro-
duced by Furstenberg [37] and nowadays a G-space that is both minimal
and strongly proximal is called a (topological) G-boundary in the sense of
Furstenberg, not to be confused with the (measurable) Poisson–Furstenberg
boundaries mentioned in Section 8. See e.g. [41] for an introduction.

Theorem 10.1. — Let G be a group acting on a dendrite X.
If the action is non-elementary and dendro-minimal, then it is strongly

proximal.

We immediately deduce Theorem 1.7; more precisely:

Corollary 10.2. — Let G be a group with a non-elementary action
on a dendrite X. Then the unique minimal invariant set M of Lemma 4.1
is a G-boundary in the sense of Furstenberg.

Proof of the corollary. — Apply Theorem 10.1 to the dendrite [M ]. �
Proof of Theorem 10.1. — We shall prove that for any x ∈ Ends(X)

and any probability measure m ∈ Prob(X), the Dirac mass δx lies in Gm.
Recall the notation Us(t) introduced in Section 5. We shall use the fact

that when t is an end point and s varies over a given arc abutting to t,
the family Us(t) is a nested basis of neighbourhoods of t; this follows e.g.
from [72, 9.3].
Since the action is non-elementary, there are infinitely many end points

and therefore we can choose a sequence (yn) of distinct end points yn 6= x.
In particular, m({yn}) → 0. We now choose a sequence (xn) of regular
points xn ∈ [yn, x] converging to x. Upon extracting sub-sequences, we
can assume that [xn, x] ⊂ [xm, x] holds for all n > m. Finally, we choose
a sequence (zn) of regular points zn ∈ [yn, xn] such that m(Uzn

(yn)) 6
m({yn}) + 1/n; this is possible in view of the nested neighbourhood prop-
erty.
Since zn is regular, the two sub-dendrites Uzn

(x) and Uzn
(yn) cover

X; likewise for Uxn(yn) and Uxn(x). Therefore, by Lemma 4.3, there are
gn, hn ∈ G such that gn(Uzn

(x)) ⊂ Uzn
(yn) and hn(Uxn

(yn)) ⊂ Uxn
(x).

Using Uzn(yn) ⊆ Uxn(yn), we deduce hngn(Uzn(x)) ⊂ Uxn(x). Since
m(Uzn

(x)) > 1−m({yn})− 1/n → 1 and since (Uxn
(x)) is a nested basis

of neighbourhoods of x, we have (hngn)∗m→ δx. �
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We now discuss the dynamics of individual homeomorphisms of den-
drites.

Definition 10.3. — Let g be a homeomorphism of a dendrite X. We
say that an arc [x, y] ⊆ X is austro-boreal for g if it is not reduced to a
point and

Fix(g) ∩ [x, y] = {x, y}
wherein Fix(g) denotes the compact set of g-fixed points in X.

This is a local analogue of a hyperbolic behaviour for g. Observe that
an austro-boreal arc for g is g-invariant and that the induced action is
conjugated to an action by translations on R∪{±∞}. There can, of course,
be several austro-boreal arcs for g, even infinitely many, together with non-
austro-boreal g-invariant arcs.
The fixed-point set Fix(g), which is always non-empty (cf. Lemma 2.5),

can be complicated. For instance, even if X is just an arc, Fix(g) can be a
Cantor set. The following (exclusive) alternative is a disjunction between
the connectedness of this set and the presence of an austro-boreal arc some-
where in the dendrite.

Lemma 10.4. — Let g be a homeomorphism of a dendrite X. Then
either Fix(g) is a sub-dendrite, or there exists an austro-boreal arc for g.

Proof. — Suppose that g does not admits any austro-boreal arc. Ob-
serve that any arc between points in Fix(g) is G-invariant. Therefore, our
assumption implies that any such arc contains a fixed point in its inte-
rior. By a minimality argument, we deduce that it contains a dense subset
of fixed points and hence that this arc is fixed point-wise. It follows that
Fix(g) is connected and therefore it is a sub-dendrite. �

The dynamics of g can be described further in the presence of austro-
boreal behaviour, see Proposition 10.6 below; but first, we argue that this
case does indeed occur in any non-elementary group:

Theorem 10.5. — Let G be a group with a non-elementary action on
a dendrite X.
Then G contains an element admitting an austro-boreal arc in X.

Proof. — We argue again as in the beginning of the proof of Theorem 1.6.
Thus, we have an element a ∈ G and disjoint sub-dendrites Up(x), Uq(y)
in X such that a(X \ Up(x)) ⊆ Uq(y). In particular, a(Uq(y)) ⊆ Uq(y) and
hence the intersection K+ of an(Uq(y)) over all n > 0 is a (non-empty)
a-invariant sub-dendrite.
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On the other hand, a−1(Up(x)) ⊆ Up(x). Therefore, we deduce similarly
that the intersection K− of an(Up(x)) over all n 6 0 is an a-invariant
sub-dendrite.
We now have two a-invariant sub-dendrites K±; by Lemma 2.5, there

must be an a-fixed point in each. If the fixed-point set of a in X were
connected, it would now contain [p, q] because K+ ⊆ Uq(y) and K− ⊆
Up(x). This is not possible because a(p) ∈ Uq(y). The conclusion now
follows from Lemma 10.4. �

Let g be an arbitrary homeomorphism of a dendrite X. If I = [x, y] is an
austro-boreal arc for g, we write I ′ = I \ {x, y} and denote by O(I) ⊆ X

the component of X \ {x, y} that contains I ′. Further, we denote by D(g)
the union of all O(I) when I ranges over all austro-boreal arcs of g. Finally,
let K(g) ⊆ X be the complement of D(g).

This notation provides the following tectonic decomposition:

Proposition 10.6. — Let X be a dendrite and g an arbitrary homeo-
morphism ofX. Then the decompositionX = D(g)tK(g) has the following
properties.

(1) D(g) is a (possibly empty) open g-invariant set on which g acts
properly discontinuously. In particular, K(g) is a non-empty com-
pact g-invariant set.

(2) Every connected component of D(g) is of the form O(I) for some
austro-boreal arc I, and g acts co-compactly on each O(I).

(3) K(g) is a disjoint union of sub-dendrites ofX. Moreover, g preserves
each such sub-dendrite and has a connected fixed-point set in each.

There are at most countably many austro-boreal arcs for g, or equiva-
lently, countably many components of D(g). In fact, any subset of X has
at most countably many components that are not reduced to a point, see
e.g. [91, V.2.6]. Nonetheless,K(g) can have 2ℵ0 connected components with
Cantor spaces of fixed points.
Proof of Proposition 10.6. — If I is an austro-boreal arc for g, then g pre-

serves O(I). The fact that the g-action on I ′ is conjugated to a translation
action on the line implies that the g-action on O(I) is properly discon-
tinuous and co-compact. (This is particularly apparent, for instance, if we
consider the continuous retraction O(I) → I ′ provided by the first-point
map X → I, see e.g. 10.24 and 10.25 in [72].)

Next, if I1 and I2 are two distinct austro-boreal arcs for g, then I ′1 and
I ′2 are disjoint. This follows from Definition 10.3 because the boundary of
I ′1 ∩ I ′2 in X must be g-fixed. It further follows that O(I1) and O(I2) are
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disjoint because every non-empty connected invariant subset of O(Ii) must
meet I ′i.

At this point, all statements of 1 and 2 are justified, noting that K(g) is
non-empty since it contains Fix(g).

Turning to 3, let Y be a connected component of K(g). Then Y is closed
in X since K(g) is so, and thus Y is a sub-dendrite of X. Let p ∈ Y and
suppose for a contradiction that gp /∈ Y . Then the arc [p, gp] in X meets
O(I) for some austro-boreal arc I = [x, y]. It follows that [p, gp] contains I
since the boundary of O(I) in X is {x, y}. Notice that {p, gp}∩ {x, y} = ∅
since x, y are g-fixed; upon changing the order of our labels x, y, the point x
separates p from y. Thus gx separates gp from gy, i.e. x separates gp from y,
which contradicts our choice of the order. We have proved that g preserves
Y ; now the fixed-point set of g in Y is connected by Lemma 10.4. �

11. Curves

Many of our results for dendrites have known counterparts for group
actions on the circle S1. An adjustment that sometimes needs to be made
for such analogies is that elementary actions on the circle should include
those with finite orbits of size > 2. In fact, the usual notion of elementarity
that allows for satisfying theorems turns out to be that the group preserves
a probability measure. This is natural since S1 is homogeneous (as is the
Menger curve [1, Thm. III], but no other curve [2, Thm. XIII]). It is also
compatible with the case of dendrites by Proposition 3.2.
However, our results certainly cannot hold for the most general curves.

To begin with, every residually finite countable group (this includes all
lattices of Theorem 1.1) admits a free action on the Menger curve, as follows
from [30, Thm. 1]. (It is apparently unknown if this holds for all countable
groups [9, 2.20], though faithful actions exist [56, Prop. 2], [51]. In this
context, we recall that every countable group is the full homeomorphism
group of some curve [42].)
One could argue that the free action from [30] preserves a probability

measure since it comes from an action of the profinite completion. Yet for
non-amenable groups, there is always an action without invariant probabil-
ity measure on some more general curve if we relax the second countability
assumption, as the following example shows. Perhaps a technical modifica-
tion of that example could provide metrisable examples.

Example 11.1. — Let G be a countable group. We shall assume that G is
finitely generated; this will be no restriction for the construction thanks to
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the HNN embedding theorem [45]. Consider the G-action on the topological
realization G of a locally finite Cayley graph of G. This extends to an
action by homeomorphism on the Stone–Cech compactification βG of the
locally compact space G . By Proposition 5 in [49], the compact connected
space βG has dimension one. It remains only to show that if G preserves
a probability measure on βG then G is amenable. The restriction map
C(βG ) ∼= Cb(G )→ `∞(G) admits a G-equivariant (linear, unital, positive)
right inverse `∞(G)→ Cb(G ) given by extending functions affinely on the
edges. Therefore, the probability measure provides an invariant mean on
`∞(G).

It turns out that there is a setting to which most of our results can be
extended, namely local dendrites. Although they can be defined abstractly
as curves that are absolute neighbourhoods retracts, the key property for us
is that they contain at most finitely many embedded copies of S1, see [54,
§46 VII]. We deduce:

Lemma 11.2. — Let G be a group acting by homeomorphisms on a
local dendrite X. Then either X is a dendrite or G admits a finite index
subgroup preserving a circle in X. �

Here is a case where no work at all is needed to combine our results on
dendrites with results for the circle:

Proof of Corollary 1.8. — Suppose that Γ acts on a local dendrite X. If
X is a dendrite, then we are done by Theorem 1.1. Otherwise, let Γ′ < Γ be
a finite index subgroup as in Lemma 11.2. The group Γ′ is still a lattice in
the ambient simple algebraic group and therefore we can apply the theorem
of [39, 19] which states that any Γ′-action on the circle has a finite orbit.
It follows that Γ also has a finite orbit in X. �

We now turn to an extension of Theorem 1.4. This time we need the
broader notion of elementarity discussed above, as for instance even the
S1-action on itself illustrates.

Theorem 11.3. — Let G be a group admitting two commuting co-
amenable subgroups.
Then any G-action on a local dendrite preserves a probability measure.

Although the following lemma is very simple, we warn the reader that
the statement would fail if G′ were merely supposed co-amenable in G,
even with G′ normal in G and containing H, see [69].

Lemma 11.4. — Let G be a group, H < G a co-amenable subgroup and
G′ < G a subgroup of finite index. Then G′ ∩H is co-amenable in G′.
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Proof of the lemma. — One of the equivalent characterisation of co-
amenability is the existence of a G-invariant mean µ on the coset space
G/H [32]. We can realize G′/(G′ ∩H) as a G′-invariant subset of G/H. If
µ gives positive mass to this subset, then we can renormalize µ to witness
the co-amenability of G′ ∩ H in G′. Otherwise, we reach a contradiction
because G/H can be covered by finitely many G-translates of G′/(G′ ∩H)
using coset representatives for G′ in G. �

Proof of Theorem 11.3. — Let X be a local dendrite with a G-action.
In view of Theorem 1.4, we can assume that X contains a simple closed
curve. By Lemma 11.4, we can assume that G preserves such a curve by
replacing G with the stabiliser of a curve and the subgroups accordingly.
Therefore it remains only to consider the case where X is the circle.
Let H1, H2 < G be two commuting co-amenable subgroups. We suppose

for a contradiction that G does not preserve a probability measure on
X, and therefore neither H1 nor H2 do. Recall that each Hi admits a
unique minimal closed non-empty invariant subset Mi ⊆ X, see e.g. [74,
Thm. 2.1.1]. By minimality and since the Hi commute, we have M1 = M2.
For the purpose of reaching a contradiction, we may assume that Mi = X

after passing to a circle quotient, see p. 64 in [74] for the fact that an
invariant measure on the quotient would lift. Now the action of any given
element h ∈ H1 can be conjugated to a rotation since it commutes to
the group H2 acting minimally, and at least some h ∈ H1 is not of finite
order (e.g. by applying Margulis’ alternative [59] to H1). In particular this
element h has a unique invariant probability measure on X ∼= S1, the Haar
measure, since it generates a dense subgroup of S1. By uniqueness, H2
preserves this measure, which is a contradiction. �

The cohomological obstruction of Theorem 1.2 can be extended as fol-
lows.

Corollary 11.5. — Let G be a group such that H2
b(G,V ) = 0 for

every unitary representation V .
Then any G-action on a local dendrite preserves a probability measure.

Proof. — The cohomological assumption made onG is preserved by pass-
ing to finite index subgroups. Indeed, this follows by the appropriate version
of cohomological induction, see [65, §10.1]; for subgroups of finite index, the
induction modules used in bounded cohomology preserve unitarity. There-
fore, we can again consider separately the cases when G acts on a dendrite
and when G acts on the circle. In the first case, the statement follows from
Theorem 1.2.
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In the latter case, we can furthermore assume that G preserves the ori-
entation of the circle by passing again to a finite index subgroup. We con-
sider the bounded Euler class [40] in H2

b(G,Z). Since its image in H2
b(G,R)

vanishes, the G-action is quasi-conjugated to an action by rotations (see
e.g. [18, 3.2]). Once again, we conclude as in [74, p. 64] that G preserves a
probability already before quasi-conjugation. �

Finally, combining the Tits alternative of Theorem 1.6 with Margulis’
Tits alternative [59], we obtain:

Corollary 11.6. — Let G be a group acting on a local dendrite.
Then either G contains a non-abelian free subgroup or it preserves a

probability measure.

Proof. — Let X be a local dendrite with a G-action. If X is a dendrite,
we apply Theorem 1.6. Otherwise, we apply Theorem 3 from [59] to the
subgroup G′ < G of Lemma 11.2 acting on a circle in X. This result pro-
vides either a non-abelian free subgroup of G′, hence of G, or a probability
measure µ on the circle preserved by G′. We can regard µ as a G′-fixed
measure on X, and now the average over G/G′ of its G-translates provides
a G-invariant probability measure on X. �

12. Further considerations

It is not difficult to design (non-trivial) dendrites without any home-
omorphism, see e.g. p. 443 in [42]. Much more strikingly, dendrites were
constructed that are not homeomorphic to any subset of themselves [63]
and are even chaotic, or totally heterogeneous, see [7, §3]. (For the com-
plexity of dendrite homeomorphisms and embeddings, see [21, Thm. 6.7]
respectively [58].)
However, other dendrites admit such a profusion of homeomorphisms

that it seems impossible to associate any rigid structure to them (in contrast
to Bowditch’s non-nesting actions on dendrites). We shall illustrate this on
universal dendrites.

Ważewsi’s universal dendrite D∞, introduced in [87, p. 9], [88, p. 57]
with the notation D∗, has the following properties. Every branch point has
infinite order, Br(D∞) is dense inD∞, and every dendrite can be embedded
into D∞.
There are similar constructions of universal dendrites Dn whose branch

points all have order n ∈ N and variants where several orders are allowed,
see e.g. [27, §6].
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For any 3 6 n 6∞, the action of the homeomorphism group Homeo(Dn)
on Dn is non-elementary and dendro-minimal. In fact, much more is true:

Proposition 12.1. — The action of Homeo(Dn) on Ends(Dn) is oligo-
morphic.

Recall that oligomorphy [22] means that for each p ∈ N there are finitely
many Homeo(Dn)-orbits for the diagonal action on Ends(Dn)p.
It follows that there is a finite number of p-tuples in Ends(Dn)p such

that the union of their orbits is dense in (Dn)p, because Ends(Dn) is dense
in Dn. In particular, this constitutes a strong negation of the convergence
action property of Bowditch’s setting and certainly ruins any hope for a
meaningful geometric interpretation of the Homeo(Dn)-action on Dn.
We will establish stronger statements in that direction in the forthcoming

article [31].

Proof of Proposition 12.1. — Given x1, . . . , xp ∈ Ends(Dn), consider
the compact tree [{x1, . . . , xp}] spanned in Dn. We claim that the combi-
natorial type of this tree is a complete invariant for the diagonal action of
Homeo(Dn), which establishes the proposition.
Following [24], [25], we denote for any distinct x, y ∈ Dn by Dn(x, y)

the closure of the component of Dn \ {x, y} containing the interior of the
arc [x, y]. (This coincides with the closure of the set O([x, y]) in the nota-
tion of Proposition 10.6.) Then Dn(x, y) is homeomorphic to Dn and this
homeomorphism can be chosen so as to send x, y to any pair of ends of
Dn, see Proposition 4.1 in [24]. Now the claim follows by decomposing Dn

into the different sub-dendrites Dn(x, y) obtained from all adjacent nodes
(including leaves) of the tree [{x1, . . . , xp}] and pasting the corresponding
homeomorphisms together.
This is exactly the argument used in [24, Prop. 4.3] for the transitivity

on distinct triples in Ends(Dn) (the case n = 3 was previously established
in [50] and more general dendrites were treated in [25]). We refer to [24],
[25] for more details. �

A completely opposite case arises from compactifying simplicial trees.
Consider a simplicial tree T and denote by T it geometric realization. Let
∂T be its ideal boundary (in the CAT(0) sense [16, §II.8]). There is a
compact Hausdorff topology on T = T t ∂T with sub-basis given by the
connected components of complements of points; see e.g. [71, §1]. When T
is locally finite, this is the usual cone topology, which is none other than
Freudenthal’s construction [34], [35]; but in general, ∂T is not closed in T .
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Proposition 12.2. — For any countable simplicial tree, T is a dendrite
such that any two branch points are separated by at most finitely many
branch points.
Conversely, suppose that X is a dendrite satisfying this finiteness con-

dition. Then there exists a canonical countable simplicial tree TX with a
canonical homeomorphism TX

∼= X.

(Since we do not use Proposition 12.2, we only sketch its straightforward
proof below.)

This correspondence is not quite bijective because the passage T 7→ T

erases degree two vertices. Nonetheless, the canonical aspect of Proposi-
tion 12.2 highlights the more limited nature of the homeomorphism group
of such dendrites, since it leads to a decomposition

Homeo(X) ∼= Fix(V ) o Aut(TX)

where Fix(V ) denotes the fixator in Homeo(X) of the vertex set V of TX
(viewed as a subset of X).
Without canonicality, a metrisation as above would have little inter-

est. Recall that any dendrite can be metrised to become an R-tree. This
can be deduced already from [62, §9]; see also [55, §12], or [64, Thm. 4]
and [8, Thm. 8] for the ultimate generalisation. Conversely, an R-tree can
be equipped with a weak topology (or better, uniform structure) and com-
pactified, becoming a dendrite [29] provided it was separable. This weak
topology has also been called the observer’s topology in [29] and is the
convex topology Tc of [66]; cf. also [33, §5.1].
This metrisation has no bearing on the study of the homeomorphism

group unless there is at least some metric restriction on the dynamics,
such as the non-nesting condition of Bowditch, which utterly lacks in the
situation described in Proposition 12.1.

Sketch of proof for Proposition 12.2. — Notice that the weak topology
coincides with the ordinary topology on any arc in T . In particular, T is
a continuum; criterion 1 of Section 2 makes it easy to check that it is a
dendrite. The finiteness condition is immediate.
Conversely, let X be dendrite satisfying that finiteness condition. Con-

sider those ends of X that are not limits of branch points; there are at most
countably many such ends. We define the vertex set V of the tree TX as
the union of this subset of ends with Br(X). We declare that a pair v 6= v′

in V forms an edge if v and v′ cannot be separated by a branch point. The
resulting graph TX is connected thanks to the finiteness condition (and to
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the fact that X is arcwise connected). This graph is acyclic because X is a
dendrite.
Finally, the inclusion map V → X can be extended on the edges to yield

a map TX → X which extends to a homeomorphism TX
∼= X for the weak

topology. �
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