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Abstract
In this paper, we characterise the notion of preferential attachment in networks as action at a dis-
tance, and argue that it can only be an emergent phenomenon – the actual mechanism by which
networks grow always being the closing of triangles. After a review of the concepts of triangle
closing and preferential attachment, we present our argument, as well as a simplified model in5

which preferential attachment can be derived mathematically from triangle closing. Additionally,
we perform experiments on synthetic graphs to demonstrate the emergence of preferential attach-
ment in graph growth models based only on triangle closing.
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INTRODUCTION
Many natural and man-made phenomena are networks – i.e., ensembles of interconnected en-
tities. To understand such structures is to understand their creation, their evolution and their
decay. In fact, many models have been proposed for the evolution of networks, for the simple
reason that a very large number of real-world systems can be modelled as networks. Rules for15

the evolution of networks can be broadly classified into two classes: those postulating local
growth, and those postulating global growth. An example for a mechanism of local growth is
triangle closing: When two people become friends because they have a common friend, then a
new triangle is formed, consisting of three persons.1 This tendency of networks to form trian-
gles is a natural model not only for social networks, but for almost all types of networked data.20

For instance, if Alice likes a movie and Bob is a friend of Alice, Bob might also come to like
that movie. In this case, the triangle consists of two persons and one movie. In general, net-
works can contain any type of object being connected by many different types of connections,
and thus many different types of such triangle closings are possible. We call this type of growth
local because it only depends on the immediate neighbourhood of the two connected nodes; the25

rest of the network does not play a role.

By contrast to this, there is preferential attachment. When, for instance, two people become
friends with each other, not because they have a common friend, or go to the same class, but be-

1 In this paper, we use the terms triangle closing and triadic closure exchangably. The notion of triadic closure
has been alluded to multiple times in the history of the social sciences; and became mainstream with the work of
Mark Granovetter (1985).
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(a) Triangle closing (b) Preferential attachment

Figure 1: The two network growth mechanisms considered in this article: triangle closing and pref-
erential attachment. In both models, new edges appear (shown as dashed lines), based on the network
environment of the current graph. (a) Triangle closing: an edge is more likely to appear between nodes
that have common neighbours, (2) Preferential attachment: An edge is more likely to appear between
nodes that have high degree.

cause they are both popular.2 Given two very popular persons, i.e. with many friends, it is more
likely that they will become friends, than that two unpopular people will become friends, all else
being equal. This phenomenon is referred to as preferential attachment. Preferential attachment
is an often-used strategy to predict new connections, not only in social networks: a frequent
movie-goer is much more likely to watch a popular film, than someone who almost never goes5

out to the movies watching an obscure film almost nobody knows or has seen. These types of
statements seem obviously true and indeed they are used widely in application systems: rec-
ommender systems give a big preference to popular movies, search engines give higher weight
to well-connected web pages, and Facebook or Twitter will make a point to show you pictures
that already have many likes. In that sense, preferential attachment is true empirically, and has10

been verified many times in experiments. However, preferential attachment has one problem-
atic property: It relies on connecting any two completely unrelated nodes, merely because of
their degree, without considering their interconnections. Preferential attachment can thus be
labelled an “action at a distance”. For this reason, we argue that preferential attachment is never
a primitive phenomenon, but always a derived phenomenon, emerging as a result of more basic15

network evolution rules, which itself does not involve action at a distance.

So, if preferential attachment is not a primitive network evolution mechanism, which network
evolution rules should then be considered as primitive in our network growth model? We will
present in this paper arguments for the thesis that only the principle of triangle closing is funda-
mental, all forms of preferential attachment being derived from it. To give an argument in favour20

of our thesis, we will first review basic notions of networks and network evolution models, and
then review preferential attachment, proposing various mechanisms by which it can arise from
triangle closing, a fundamental notion in the evolution of networks. Finally, we perform experi-
ments on synthetic graphs to test to what extent preferential attachment may emerge from graph
growth models that include only triangle closing and/or random addition of edges.25

RELATED WORK
The debate over the nature of preferential attachment mechanisms dates back to the 1960s, when
the economist H. Simon defended the role of randomness and the mathematician B. Mandelbrot
defended the role of optimization (Barabási, 2012). The concept of preferential attachment is
also able to explain the nature of scale-free degree distributions in biological networks such as30

2Preferential attachment, too, is a concept with a long history, having been alluded to under multiple names.
See the references in (Kunegis et al., 2013) for an account of the early work on it.
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metabolic networks (Jeong et al., 2000) and protein networks (Jeong et al., 2001). There are
various suggestions to explain the nature of preferential attachment for instance by introducing
hidden variable models in which nodes possess an intrinsic fitness to other nodes in unipartite
(Boguñá and Pastor-Satorras, 2003) or bipartite networks (Kitsak and Krioukov, 2011). In a
recent Nature paper, Papadopoulos et al. proposed a model based on geometric optimization of5

homophily space (Papadopoulos et al., 2012). However, in these models, triadic closure is not
defined as the main principle for the formation of edges.

Triadic closure, a tendency to connect to the friend of a friend (Rapoport, 1953), has been
observed undeniably in many social networks such as friendship at a university (Kossinets and
Watts, 2006), in scientific collaborations (Newman, 2001) and in the World Wide Web (Adamic,10

1999). The concept of triadic closure was first suggested by German sociologist Georg Simmel
and colleagues (1950) and later on popularised by Fritz Heider and Mark Granovetter as the
theory of cognitive balance in which if two individuals feel the same way about an object or
a person, they seek closure by closing the triad between themselves (Heider, 2013). Since the
classic preferential attachment model fails to explain the number of clusters in many social net-15

works, many attempts have been made to include triadic closure to the model (Holme and Kim,
2002; Vázquez, 2003), in which nodes with certain probability connect based on the principle
of triadic closure. These works have shown that the scaling law for the degree distribution and
clustering coefficient can be reproduced based on these models (Klimek and Thurner, 2013).

Hence, the scale-free nature of networks and the abundance of triangles in social and related20

networks beg for a more fundamental explanation. Moreover, the observable part of the systems
is not necessarily completely representative for the entire system. Networks are generally multi-
layered or multiplex, in which some layers can be hidden or simply not possible to observe
(Kivelä et al., 2014). For instance, the creation of a new Facebook tie can be caused by attending
the same class, sharing the same hobby or living in a same neighborhood, which is hidden from25

the observable data. Consequently, these “focal” points contribute to the tie creation known as
“focal closure” and need to be considered in modeling realistic networks, as argued by Kossinets
and Watts (2006).

NETWORKS
The assertion that networks are to be found everywhere has become a cliché because it is true.30

Social networks, knowledge networks, information networks, communication networks – many
papers in the field of network science motivate their use by enumerating fields in which they
play a central role. Biological networks, molecules, lexical networks, Feynman diagrams –
hardly a scientific field exists in which networks do not play a fundamental role. Instead of
giving a hopelessly incomplete enumeration of examples, we will simply refer the reader to the35

introductory section of our Handbook of Network Analysis (Kunegis, 2016), in case she wishes
to convince herself of this fact. In case this is not enough, we may point to the existence of
entire fields of research incorporating the word network and synonyms that have emerged in the
last decade: network science (Börner et al., 2007; Newman, 2010), web science (Hendler et al.,
2008) and others (Tiropanis et al., 2015). There are many ways to justify the ubiquitous use of40

networks as a model. As an example, we may consider their use in the field of machine learning.
Most classical machine learning algorithms deal with datasets consisting of data points, each
consisting of the same features. Mathematically, we may model such a dataset as a set of points
in a space whose dimensions are the individual features (Salton et al., 1975). This formalism
is very powerful, and still constitutes the backbone of many machine learning and data mining45

methods to this day. The standard formulation of classification, clustering and other learning
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problems all rely on the set-of-points-in-a-space model. However, not all machine learning
problems are well described by the set of points model. While the set of words contained in
text documents are well represented by the bag of words model (Baeza-Yates and Ribeiro-Neto,
1999), a social network is not. We may try to represent a social network as a bag of friends,
but this representation is very unsatisfactory: each person has a set of friends, but the model5

does not consider the fact that a person contained in one of these bags is the same person as
one having a bag of friends. Thus, the vector space model cannot find connections such as “the
friend of my friend” – it can only find “a person that has the same friend as me”. In other words,
the vector space model disconnects the role of having friends and that of being a friend. Instead,
the natural way to represent friendships is as a network. Using a network model, the symmetry10

of the friend relationship is included automatically in the model, and relationships such as the
friend of my friend arise as the natural way to create new edges in the network, i.e., triangle
closing. In fact, we will argue that this is the only way new edges can be created in a network,
and that other models are merely consequences of it, such as preferential attachment.

The terms network and graph are often used interchangeably. Strictly speaking, a network is15

the real-world object to be analysed, such as a social network, while a graph is a mathematical
structure used to model it.

PREFERENTIAL ATTACHMENT
Preferential attachment, also referred to by the phrase “the rich get richer”, or as the Matthew
effect, is observed in many social networks (Kunegis et al., 2013). In fact, the phenomenon of20

preferential attachment is known by many other names in different contexts; see the references
within (Kunegis et al., 2013) for an account. In other words, who has many friends, will get
more new friends than who has few. Movies that have been seen by many people will be seen
by more people than movies that have not. Websites that have been linked to many times will
receive more new links because of this. These statements seem true, and indeed, they are true25

empirically for many different network types.

In fact, preferential attachment is the basis for a whole class of network models. The most basic
of these, the model of Albert-László Barabási and Réka Albert (1999), describes the growth of
a network, which proceeds as follow: Start with a small graph, and at each step, add a node,
and connect that node to k existing nodes with a probability proportional to the number of30

neighbours for each existing node. In the limit where many nodes have been added in that way,
the network tends to become scale-free, i.e. tends to have a distribution of neighbour counts
that follow a power law. Since power law degree distributions are observed in many natural
networks, the usual conclusion is that preferential attachment is correct.

Preferential attachment is thus undeniably real. Why then, are we arguing against it? The reason35

is that preferential attachment cannot be a fundamental driving force for tie creation. How are
two nodes, completely unconnected from each other, be supposed to choose to connect with
each other? How can two completely disconnected nodes even know of each others existence?
This is a fundamental problem with all nonlocal interactions. For instance, the classical theory
of gravitation as defined and used by Isaac Newton (1687) includes nonlocal interactions. In40

that theory, two masses exert a force on each other, regardless of their position. While the
force decreases with distance, it is always nonzero, and instantaneous. The conceptual problem
with this type of interaction has been identified even by Newton himself (Hesse, 1955). In
modern physics, Newton’s formalism is replaced by more precise theories that do not include
any action at a distance. The theory of general relativity as defined by Albert Einstein in 191645
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for instance, only includes local interaction in the form of the Einstein field equations (Einstein,
1916). Einstein’s general relativity is thus free from any problematic action at a distance, and
has been verified at many experimental scales. This is also true for other types of physical
interactions – instead of a force that acts at a distance between matter particles, quantum field
theory models bosons that connect particles. In fact, such interactions can be represented by5

Feynman diagrams: graph-like representations of particles in which edges are particles and
nodes are interactions – any interacting particles must be connected in one diagram, directly
or indirectly. In this light, we may interpret preferential attachment as a theory that is true
superficially, but must be explained by an underlying phenomenon. Specifically, an underlying
phenomenon that does not rely on action at a distance. As this phenomenon, we propose the10

known mechanism of triangle closing.

TRIANGLE CLOSING
How do we make new friends? By meeting the friends of our friends. This represents a triangle
formed by us, our previous friend and our new friend. What if we meet our new friend in
another way – maybe at a party, or a concert, or at work . . . in any case there is always some15

element in common. If we meet our new friend at a party, then we are both connected to
the party, and by modelling the party as a node in our network, that new friendship is indeed
created by the closing of a person–person–party triangle. Of course, we may continue to ask
how our connection to the party arose. After all, we did not come to a party randomly. No –
we came to the party because a friend invited us, or for any other reason, as long as there is20

some connection. This game of connections can be played to any desired degree of precision.
Maybe we really went from door to door until we found a party with many people. But then,
how did we get from door to door? We surely have started somewhere, likely near to our home,
and have then gone on to the next door, and to the next door, and so on. In doing this, we have
only followed links: We are connected to our home by living there; our home is connected to25

the neighbouring house, which itself is connected to the next house, and so on. This example is
of course exaggerated, but serves to illustrate the principle: in order for a new edge to appear,
a path has to exist from one node to another; this can go over node representing any type of
entity, and these nodes may be visible or hidden. All in all, there is no escaping the principle
of triangle closing. However we arrived at the party, it must have been by a series of triangle30

closings.

Thus, triangles fulfil our expected as a fundamental mechanism of network growth, as it is
purely local. However, we cannot deny the existence of preferential attachment, for which we
must now find suitable explanations.

EXPLANATIONS35

In recommender systems, such as those used on web sites that recommend movies to watch,
preferential attachment is often taken as a solution to the cold start problem. The cold start
problem in recommender systems refers to the situation in which a user has not yet entered any
information about herself, and thus triangle closing cannot be used to recommend her anything.
If the user has watched only a single movie, then we can find similar movies and recommend40

them. If a user has added only a single friend, then we can take movies liked by that friend
and recommend them. But if the user is completely new, as has no friends and no ratings yet,
then this strategy will not work. How then, do recommender systems give recommendations
to new users? The solution is simple: they recommend the most popular items. If you sub-
scribe to Twitter, you will be recommended popular accounts to follow. If you subscribe to45
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Last.fm, you will be recommended popular music. For these sites, this strategy is better than
not recommending anything, and in fact is a form of preferential attachment: Create, or rather
recommend, links to nodes with many neighbours. How can we interpret this in terms of tri-
angle closing? If a node has no connections yet, then surely it cannot acquire new nodes by
triangle closing. How then will a node ever acquire new edges, if it starts without neighbours?5

The answer is that a node does not start without any neighbours. Everything is connected. A
child when it is born does not start without connections; it is already connected to its parents
and to its birthplace. Likewise a user on the Web never starts from scratch: every page has a
referrer, and thus the user can be connected to another website. Even if the referring web page
is not known, there has to be a referrer. If a user types in a URL by hand, she has to have taken10

it somewhere: maybe a friend gave it to her, maybe she read it in a magazine, on a billboard, or
on a truck . . . in all cases, the newly created connection is not created ex nihilo – it is created
by triangle closing.

The explanation for preferential attachment thus lies in hidden nodes: Nodes that make indirect
connections between things, but do not appear in the model. On Facebook for instance, many15

new friendships are created between people who do not have common friends. These new
friendships seemingly appear without the help of triangle closing. However, that is always due
to the fact that Facebook does not know everything. Some people are simply not on Facebook,
which means that if I meet a new friend through a friend of mine that is not on Facebook and
then connect with my new friend via Facebook, then from the point of view of Facebook a new20

edge was created without triangle closing. But that is only true because Facebook does not know
my initial friend. If it did, it could correctly infer the new friendship via triangle closing. Thus,
any two nodes in a network can potentially be linked, even if they do not share common neigh-
bours in the network at hand, because they may share a hidden common neighbour. The same
argumentation applies to hidden nodes that represent non-actors, such as classes, hometowns,25

parties, etc.

In order to justify preferential attachment as an emergent phenomenon, we must thus derive
the mechanism that leads to edges being created specifically between nodes of high degrees.
Consider a network, for instance a social network. Call this the known network. Then, consider
a certain number of nodes outside of that network, that are connected at random to the nodes30

in the known network. Call these the unknown nodes. How many common neighbours do two
members of the known network have outside of the known network? Without knowing the
distribution of hidden edges, this question cannot be answered. But consider that triangle clos-
ing acts not only on known–unknown–known triangles, but also on known–known–unknown
triangles. Starting with an equal probability for all known–unknown edges, performing trian-35

gle closing will lead to the creation of known–known–unknown triangles. The newly created
known–unknown edges can then be combined with other unknown–known edges to perform,
again, triangle closing, leading to new known–known edges. The result are new edges in the ob-
served social network, with a probability proportional to the number of the initial known node’s
neighbours. Thus, preferential attachment emerges as a necessary consequence of iterated tri-40

angle closing, if hidden nodes are admitted. The next section will make this heuristic argument
precise.

DERIVATION
This section gives an exemplary derivation of a simplified model that we introduce to illustrate
our explanation, in which preferential attachment arises as a consequence of triangle closing45

in the presence of hidden nodes. The given scenario is very general and may be generalised
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easily for instance by considering multiple node types or multiple edge types. In this model, we
distinguish two types of nodes: visible nodes in the set V , and hidden nodes in the set W . We
will assume that there is a given, fixed number of visible nodes |V |, and a possibly very large
number of hidden nodes |W |. In particular, we will consider the limit |W | → ∞.5

Let G = (V ∪W,E) be a bipartite graph in which only the nodes V and their degree are visible,
the edges E and the nodes W are not visible. A graph is defined as bipartite when the set of
its nodes can be divided into two groups such that every edge connects a node of the first group
to a node of the second group. In the case of G, the groupings are given explicitly by V and
W . Assuming that two nodes in V connect with a probability proportional to the number of10

common nodes they have. Edges between nodes in V will not be considered, except for their
effect on the degree of nodes in V . Likewise, edges between nodes in W need not be considered,
since they do not contribute to the degree of nodes in V . Thus, the considered network G is
bipartite. We will use the convention that n = |W |, and the degree of a node x is denoted by
d(x). Seeing only nodes in V and their degree, preferential attachment can be observed in the15

following way.

In order to make our derivation, we need to make two assumptions:
• The edges of the graph are randomly distributed between possible node pairs.
• The typical degree of nodes is significantly smaller than the number of nodes, i.e., d(x)�
n. This is precise when n goes to infinity.5

Let u, v ∈ V be two nodes of the network. Under the assumption that the edges are distributed
randomly in the graph, the probability p that u and v are connected can be derived combina-
torically by considering the number of configurations in which the two nodes do not share a
common neighbor. Given that u and v have degree d(u) and d(v) respectively, the total number
of configurations for the edges connected to the nodes is(

n

d(u)

)(
n

d(v)

)
.

Out of those, the number of configurations in which the neighbours of the two nodes are disjoint
is given by(

n

d(u)

)(
n− d(u)

d(v)

)
.

Thus, the probability that the two nodes share a common neighbour is given by

p = 1−

(
n

d(u)

)(
n−d(u)
d(v)

)(
n

d(u)

)(
n

d(v)

) = 1−

(
n−d(u)
d(v)

)(
n

d(v)

) .

We now use the falling factorial to express binomial coefficients, i.e.,

na = n(n− 1)(n− 2) · · · (n− a+ 1).

The falling factorial has the property that in the limit where a is constant and n goes to infinity,
we have

lim
n→∞

na

na
= 1
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and also,(
n

a

)
=

na

a!
,

and thus

p = 1− (n− d(u))d(v)d(v)!

d(v)!nd(v)
= 1− (n− d(u))d(v)

nd(v)
.

In the limit when n goes to infinity we may thus assume that

p = 1− (n− d(u))d(v)

nd(v)
= 1−

(
1− d(u)

n

)d(v)

and using again the limit n→∞, and the property that in the limit where ε goes to zero, (1−ε)k
goes to (1− kε),

p =
d(u)d(v)

n
.

It thus follows that p ∼ d(u)d(v), i.e., the probability of the nodes u and v being connected is
proportional to both d(u) and d(v). Thus, we find that preferential attachment is a consequence
of the triangle closing model. Preferential attachment itself then leads to a scale-free degree
distribution, as per Barabási and Albert (1999).

EXPERIMENTS10

In this section, we give empirical evidence for the emergence of preferential attachment in graph
growth models that do not include it.

In the experiments, we generate synthetic networks via a random growth processes that does
not include preferential attachment, as well as using random growth processes that do include
preferential attachment. In all generated networks, effects of preferential attachment are then15

measured empirically. All generated networks have 100 nodes and 1,000 edges, and are undi-
rected, loopless, and do not allow multiple edges. In all cases, the graphs are generated by
starting with an empty graph of 100 nodes, and adding edges one by one, chosen randomly
from one of the following three methods:
• Random: With probability pr, an edge is added randomly between two unconnected20

nodes. All pairs of unconnected nodes are chosen with equal probability.
• Triangle closing: With probability ptc, among all unclosed triads, one is chosen randomly

(with equal probability), and the third edge is added. An unclosed triad is a triple (u, v, w)
of nodes such that (u, v) and (u,w) are edges, but v and w are not connected. If chosen,
the triangle is completed by adding the edge (v, w). If no unclosed triads are present, an25

edge is added at random as described in the first case.
• Preferential attachment: With probability ppa, a node is chosen with a probability pro-

portional to the node’s current degree. Then, out of all nodes not connected to that node,
one is chosen randomly and with equal probability, and an edge is added between the two
selected nodes. If all nodes have degree zero, an edge is added at random as described in30

the first case.
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Random = 100%

Pref. att. = 100% Triangle cl. = 100%

Not computed

0.42

0.31

0.21

0.10

0.00

gini =

Figure 2: Experimental results: Each cell shows one experimental run with a different probability of
adding each edge at random (top), via triangle closing (bottom right), and preferential attachment (bottom
left). The bottom row was not executed due to the tendency of models with random edges to attach all
edges to a single node, giving values of the Gini coefficient very close to the theoretical maximum of
one.

In each experimental trial, the three probabilities are chosen such that pr + ptc + ppa = 1. The
probabilities are varied from 0 to 1 in increments of 1/11, excluding the case pr = 0 in order to
avoid the runaway case of an individual node accumulating all edges.

We measure the equality of the distribution of edges, or its opposite, its skewness, as the primary
consequence of the preferential attachment process. As a measure, we use the Gini coefficient5

of the degree distribution, as defined in (Kunegis and Preusse, 2012). The Gini coefficient is
zero when all nodes have equal degree, and attains its theoretical maximum of one when all
nodes except a single one have degree zero.3

The experimental results are shown in Figure 2. In the triangle shown in figure, the top-to-
bottom-right edge shows the cases in which preferential attachment is excluded, while the10

bottom-left corner represents the case of exclusive preferential attachment. As expected, the
100% random case results in an Erdős–Rényi graph in which the degres have a Poisson distri-
bution, and thus a very uniform number of edges over all nodes, giving a small Gini coefficient
of 0.104. The pure preferential attachment case gives a higher value of about 0.406.4 The pure
triangle closing method results in a value of the Gini coefficient of 0.417, a value similar to15

(and even slightly superior to) the value in the pure preferential attachment case. Thus, it is

3Since an edge always connects two nodes, the actual maximum is attained in star graphs, in which all edges
attach to a single node, and other nodes have a degree of zero and one. In the large-graph limit, the Gini coefficient
in such graphs tends to one.

4In this and all subsequent cases labelled as “pure”, the method in question has a probability of ptc,pa = 10/11
while a random edge is added with a probability of pr = 1/11.
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indeed the case that a skewed degree distribution is generated by a purely local process of trian-
gle closing, without the need for explicit preferential attachment. We note also that preferential
attachment is observed even though the number of nodes in the network (n = 100) is relatively
small when compared to the theoretical model described in the previous section in which the
limit n→∞ is taken.5

DISCUSSION
The status of a mechanism as fundamental is not clear cut. When a phenomenon is explained
by another, more fundamental phenomenon, then we can consider it as derived. But how can
we be sure that a phenomenon is not explained by a more basic phenomenon? What does it
mean for a phenomenon to be fundamental? Just as physics cannot declare one theory to be10

final, we cannot declare one network growth mechanism to be final. Thus, individual instances
of triangle closing can for instance be explained by several layers of triangle closing, just as in
physics a direct interaction can be explained by a new mediating particle. In the end however,
this applies only to specific instances of triangle closing, as it replaces them with other, more
detailed instances of triangle closing. Thus, triangle closing does play a fundamental role in15

growing network models, only that it cannot always be derived which three nodes are taking
part in it, as one of the three nodes is often hidden. In the end, the only judge of the validity
of a model remains the experiment, and in practice, used models do not have to be fundamen-
tal – recommenders and information retrieval systems have had enough success by applying
preferential attachment directly.20

As mentioned in the introduction, triangle closing is itself a general phenomenon that not only
applies to pure social networks, but also to other types of networks. In the case of property
networks, i.e., networks containing edges between persons and the properties they have, triangle
closing can be identified with the concept of homophily, i.e., the concept that friends tend to
be similar. As an example, the fact that two smokers become friends can be modelled as the25

closure of the personA–smoker–personB triangle, in which “smoker” is a non-person node of
the network representing the property of being a smoker. Thus, the fact that friends of smokers
are more likely to be smokers too (a classical example of homophily) can be analysed as a form
of triangle closing in a graph that is not purely a social network, as it contains non-person nodes.
Homophily is thus consistent with the view that triangle closing is fundamental.30

The problem posed in this paper can be generalised to other graph growth mechanisms. For
instance, we may ask whether assortativity (the tendency of connected nodes to have correlated
degrees) or community structures emerge from triangle closing alone. In the case of commu-
nity structures, triangle closing trivially plays a role, as triangle closing by construction leads
to tightly connected graphs. As for assortativity, the fact that both assortativity (a positive cor-35

relation between degrees) and dissortativity (a negative correlation between degrees) have been
observed in social networks points to the fact that a single model such as triangle closing cannot
(and is not expected to) explain all properties of a social network, and other phenomena must
be at work, which may or may not be local.
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Boguñá M., Pastor-Satorras R. (2003). Class of correlated random networks with hidden variables. Phys. Rev.
E 68(3), 036112.

Börner K., Sanyal S., Vespignani A. (2007). Network science. Annual Rev. of Information Science and Technol-
ogy 41(1), 537–607.

Einstein A. (1916). Die Grundlagen der allgemeinen Relativitätstheorie. Ann. Phys. 49, 769–822.5

Granovetter M. (1985). The strength of weak ties. American J. of Sociology 91, 481–510.

Heider F. (2013). The Psychology of Interpersonal Relations. Psychology Press.

Hendler J., Shadbolt N., Hall W., Berners-Lee T., Weitzner D. (2008, July). Web science: An interdisciplinary
approach to understanding the web. Commun. ACM 51(7), 60–69.

Hesse M. B. (1955). Action at a distance in classical physics. Isis 46(4), 337–353.10

Holme P., Kim B. J. (2002). Growing scale-free networks with tunable clustering. Phys. Rev. E 65(2), 026107.

Jeong H., Mason S. P., Barabási A.-L., Oltvai Z. N. (2001). Lethality and centrality in protein networks. Na-
ture 411(6833), 41–42.

Jeong H., Tombor B., Albert R., Oltvai Z. N., Barabási A.-L. (2000). The large-scale organization of metabolic
networks. Nature 407(6804), 651–654.15

Kitsak M., Krioukov D. (2011). Hidden variables in bipartite networks. Phys. Rev. E 84, 026114.
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