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Abstract
In this paper, we characterise the notion of preferential attachment in networks as action at a
distance, and argue that it can only be an emergent phenomenon – the actual mechanism by which
networks grow always being the closing of triangles. After a review of the concepts of triangle
closing and preferential attachment, we present our argument, as well as a simplified model in5

which preferential attachment can be derived mathematically from triangle closing.
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INTRODUCTION
Many natural and man-made phenomena are networks – i.e., ensembles of interconnected en-10

tities. To understand such structures is to understand their creation, their evolution and their
decay. In fact, many models have been described for the evolution of networks, for the simple
reason that such a large amount of systems consist of interconnected parts. Rules for the evo-
lution of networks can be broadly classified into two classes: those postulating local growth,
and those postulating global growth. An example for a mechanism of local growth is triangle15

closing: When two people become friends because they have a common friend, then a new
triangle is formed, consisting of three persons. This tendency of networks to form triangles is
a natural model not only for social networks, but for almost all types of networked data. For
instance, if Alice likes a movie and Bob is friends with Alice, Bob might also come to like that
movie. In this case, the triangle consists of two persons and one movie. In general, networks20

can contain any type of object being connected by many different types of connections, and thus
many different types of such triangle closings are possible. We call this type of growth local
because it only depends on the immediate neighbourhood of the two connected nodes; the rest
of the network does not play a role.

On the other hand, there is preferential attachment. When, for instance, two people become25

friends with each other, not because they have a common friend, or go to the same class, but be-
cause they are both popular. Given two very popular persons, i.e. with many friends, it is more
likely that they will become friends, than that two unpopular people will become friends, all else
being equal. This phenomenon is referred to as preferential attachment. Preferential attachment
is an often-used strategy to predict new connections, not only in social networks: a frequent30

movie-goer is much more likely to watch a popular film, than someone who almost never goes
out to the movies watching an obscure film almost nobody knows or has seen. These types of
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(a) Triangle closing (b) Preferential attachment

Figure 1: The two network growth mechanisms considered in this article: triangle closing and pref-
erential attachment. In both models, new edges appear (shown as dashed lines), based on the network
environment of the current graph. (a) Triangle closing: an edge is more likely to appear between nodes
that have common neighbours, (2) Preferential attachment: An edge is more likely to appear between
nodes that have high degree.

statements seem obviously true and indeed they are used widely in application systems: recom-
mender systems give a big preference to popular movies, search engines give higher weight to
well-connected web pages, and Facebook or Twitter will make a point to show you pictures that
already have many likes. In that sense, preferential attachment is true empirically, and has been
verified many times in experiments. Then, what is problematic with preferential attachment?5

Is it not always correct? No, we are not claiming that preferential attachment is wrong. What
we argue is that preferential attachment is never a primitive phenomenon, but always a derived
phenomenon, emerging as a result of more basic network evolution rules.

So, if preferential attachment is not a fundamental network evolution mechanism, what makes
a fundamental network mechanism, and which fundamental network evolution rules are then10

fundamental? We will present in this paper arguments for the thesis that only the principle of
triangle closing is fundamental, all forms of preferential attachment being derived from it. To
give an argument in favour of our thesis, we will first review basic notions of networks and net-
work evolution models, and then review preferential attachment, proposing various mechanisms
by which it can arise from triangle closing, a fundamental notion in the evolution of networks.15

NETWORKS
The statement everything is a network has become a cliché because it is true. Social networks,
knowledge networks, information networks, communication networks – many papers in the
field of network science motivate their use by enumerating fields in which they play a central
role. Biological networks, molecules, lexical networks, Feynman diagrams – hardly a scientific20

field exists in which networks do not play a fundamental role. Instead of giving a hopelessly
incomplete enumeration of examples, we will simply refer the reader to the introductory sec-
tion of our Handbook of Network Analysis (Kunegis, 2016), in case she wishes to convince
herself of this fact. In case this is not enough, we may point to the existence of entire fields of
research incorporating the word network that have emerged in the last decade: network science25

(Börner et al., 2007; Newman, 2010), web science (Hendler et al., 2008) and others (Tiropanis
et al., 2015). Then, why is everything a network? To find an answer, it is instructive to consider
the field of machine learning. Most classical machine learning algorithms deal with datasets
consisting of data points, each consisting of the same features. Mathematically, we may model
such a dataset as a set of points in a space whose dimensions are the individual features (Salton30

et al., 1975). This formalism is very powerful, and still constitutes the backbone of many ma-
chine learning and data mining methods to this day. The standard formulation of classification,
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clustering and other learning problems all rely on the set-of-points-in-a-space model. However,
not all do. While the set of words contained in text documents are well represented by the bag
of words model, a social network is not. We may try to represent a social network as a bag of
friends, but this representation is very unsatisfactory: each person has a set of friends, but the
model does not consider the fact that a person contained in one of these bags is the same person5

as one having a bag of friends. Thus, the vector space model cannot find connections such as
“the friend of my friend” – it can only find “a person that has the same friend as me”. In other
words, the vector space model disconnects the role of having friends and that of being a friend.
Instead, the natural way to represent friendships is as a network. Using a network model, the
symmetry of the friend relationship is included automatically in the model, and relationships10

such as the friend of my friend arise as the natural way to create new edges in the network, i.e.,
triangle closing. In fact, we will argue that this is the only way new edges can be created in a
network, and that other models are merely consequences of it, such as preferential attachment.

PREFERENTIAL ATTACHMENT
Preferential attachment, also referred to by the phrase “the rich get richer”, or as the Matthew15

effect, is observed in many social networks. In other words, who has many friends, will get
more new friends than who has few. Movies that have been seen by many people will be seen
by more people than movies that have not. Websites that have been linked to many times will
receive more new links because of this. These statements seem true, and indeed, they are true
empirically for many different network types (Kunegis et al., 2013).20

In fact, preferential attachment is the basis for a whole class of network models. The most basic
of these, the model of Albert-László Barabási and Réka Albert (1999), describes the growth of
a network as follow: Start with a small graph, and at each step, add a node, and connect that
node to k existing nodes with a probability proportional to the number of neighbours for each
existing node. In the limit where many nodes have been added in that way, the network tends25

to become scale-free, i.e. tends to have a distribution of neighbour counts that follow a power
law. Since power law degree distributions are observed in many natural networks, the usual
conclusion is that preferential attachment is correct.

Preferential attachment is thus undeniably real. Why then, are we arguing against it? The reason
is that preferential attachment cannot be a fundamental driving force for tie creation. How are30

two nodes, completely unconnected from each other, be supposed to choose to connect with
each other? How can two completely disconnected nodes even know of each others existence?
This is a fundamental problem with all nonlocal interactions. For instance, the classical theory
of gravitation as defined and used by Isaac Newton (1687) includes nonlocal interactions. In
that theory, two masses exert a force on each other, regardless of their position. While the35

force decreases with distance, it is always nonzero, and instantaneous. The conceptual problem
with this type of interaction has been identified even by Newton himself (Hesse, 1955). In
modern physics, Newton’s formalism is replaced by more precise theories that do not include
any action at a distance. The theory of general relativity as defined by Albert Einstein in 1916
for instance, only includes local interaction in the from of the Einstein field equations (Einstein,40

1916). Einstein’s general relativity is thus free from any problematic action at a distance, and
has been verified at many experimental scales. This is also true for other types of physical
interactions – instead of a force that acts at a distance between matter particles, quantum field
theory models bosons that connect particles. In fact, such interactions can be represented by
Feynman diagrams: graph-like representations of particles in which edges are particles and45

nodes are interactions – any interacting particles must be connected in one diagram, directly

3



or indirectly. In this light, we may interpret preferential attachment as a theory that is true
superficially, but must be explained by an underlying phenomenon. Specifically, an underlying
phenomenon that does not rely on action at a distance. As this phenomenon, we propose the
known mechanism of triangle closing.

TRIANGLE CLOSING5

How do we make new friends? By meeting the friends of our friends. This represents a triangle
formed by us, our previous friend and our new friend. What if we meet our new friend in
another way – maybe at a party, or a concert, or at work . . . in any case there is always some
element in common. If we meet our new friend at a party, then we are both connected to the
party, and by modelling the party as a node in our network, that new friendship is indeed created10

by the closing of a person–person-party triangle. Of course, we may continue to ask how our
connection to the party arose. After all, we did not come to a random party or to a random
party with many guests. No – we came to the party because a friend invited us, or for any
other reason, as long as there is some connection. This game of connections can be played to
any desired degree of precision. Maybe we really went from door to door until we found a15

party with many people. But then, how did we get from door to door? We surely have started
somewhere, likely near to our home, and have then gone on to the next door, and to the next
door, and so on. In doing this, we have only followed links: We are connected to our home
by living there; our home is connected to the neighbouring house, which itself is connected to
the next house, and so on. This example is of course exaggerated, but serves to illustrate the20

principle: in order for a new edge to appear, a path has to exist from one node to another; this
can go over node representing any type of entity, and these nodes may be visible or hidden. All
in all, there is no escaping the principle of triangle closing. However we arrived at the party, it
must have been by a series of triangle closings.

Thus, triangles fulfil our expected as a fundamental mechanism of network growth, as it is25

purely local. However, we cannot deny the existence of preferential attachment, for which we
must now find suitable explanations.

EXPLANATIONS
In recommender systems, such as that used on web sites that recommend movies to watch,
preferential attachment is often taken as a solution to the cold start problem. The cold start30

problem in recommender systems refers to the situation in which a user has not yet entered any
information about herself, and thus triangle closing cannot be used to recommend her anything.
If the user has watched only a single movie, then we can find similar movies and recommend
them. If a user has added only a single friend, then we can take movies liked by that friend
and recommend them. But if the user is completely new, as has no friends and no ratings yet,35

then this strategy will not work. How then, do recommender systems give recommendations
to new users? The solution is simple: they recommend the most popular items. If you sub-
scribe to Twitter, you will be recommended popular accounts to follow. If you subscribe to
Last.fm, you will be recommended popular music. For these sites, this strategy is better than
not recommending anything, and in fact is a form of preferential attachment: Create, or rather40

recommend, links to nodes with many neighbours. How can we interpret this in terms of tri-
angle closing? If a node has no connections yet, then surely it cannot acquire new nodes by
triangle closing. How then will a node ever acquire new edges, if it starts without neighbours?
The answer is that a node does not start without any neighbours. Everything is connected. A
child when it is born does not start without connections; it is already connected to its parents45
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and to its birthplace. Likewise a user on the Web never starts from scratch: every page has a
referrer, and thus the user can be connected to another website. Even if the referring web page
is not known, there has to be a referrer. If a user types in a URL by hand, she has to have taken
it somewhere: maybe a friend gave it to her, maybe she read it in a magazine, on a billboard, or
on a truck . . . in all cases, the newly created connection is not created ex nihilo – it is created5

by triangle closing.

The explanation for preferential attachment thus lies in hidden nodes: Nodes that make indi-
rect connections between things, but do not appear in the modelled system. On Facebook for
instance, many new friendships are created between people who do not have common friends.
These new friendships seemingly appear without the help of triangle closing. However, that is10

always due to the fact that Facebook does not know everything. Some people are simply not
on Facebook, which means that if I meet a new friend through a friend of mine that is not on
Facebook and then connect with my new friend via Facebook, then from the point of view of
Facebook a new edge was created without triangle closing. But that is only true because Face-
book does not know my initial friend. If it did, it could correctly infer the new friendship via15

triangle closing. Thus, any two nodes in a network can potentially be linked, even if they do not
share common neighbours in the network at hand, because they may share a hidden common
neighbour. The same argumentation applies to hidden nodes that represent non-actors, such as
classes, hometowns, parties, etc.

If any edge can be explained by hidden nodes, how can it then be that edges connecting nodes20

with high degree are observed more often? Imagine a network, for instance a social network.
Call this the known network. Then imagine a certain number of nodes outside of that network,
that are connected at random to the nodes in the known network. Call these the unknown nodes.
How many common neighbours do two members of the known network have outside of the
known network? Without knowing the distribution of hidden edges, this question cannot be25

answered. But consider that triangle closing acts not only on known–unknown–known trian-
gles, but also on known–known–unknown triangles. Starting with an equal probability for all
known–unknown edges, performing triangle closing will lead to the creation of known–known–
unknown triangles. The newly created known–unknown edges can then be combined with other
unknown–known edges to perform, again, triangle closing, leading to new known–known edges.30

The result are new edges in the observed social network, with a probability proportional to the
number of the initial known node’s neighbours. Thus, preferential attachment emerges as a nec-
essary consequence of iterated triangle closing, if hidden nodes are admitted. The next section
will make this heuristic argument precise.

DERIVATION35

This section gives an exemplary derivation of a simplified model that we introduce to illustrate
our explanation, in which preferential attachment arises as a consequence of triangle closing in
the presence of hidden nodes. The given scenario is very general and may be generalised easily
for instance by considering multiple node or edge types. In this model, we distinguish two types
of nodes: visible nodes in the set V , and hidden nodes in the set W . We will assume that there40

is a given, fixed number of visible nodes |V |, and a possibly very large number of hidden nodes
|W |. In particular, we will consider the limit |W | → ∞.

Let G = (V ∪ W,E) be a bipartite network in which only the nodes V and their degree are
visible, the edges E and the nodes W are not visible. Assuming that two nodes in V connect
with a probability proportional the number of common nodes they have. Edge between nodes45
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in V will not be considered, except for their effect on the degree of nodes in V . Likewise, edges
between nodes in W need not be considered. Thus, the considered network G is bipartite. We
will use the convention that n = |W |, and the degree of a node x is denoted by d(x). Seeing
only nodes in V and their degree, preferential attachment can be observed in the following way.

In order to make our derivation, we need to make two assumptions:5

• The edges of the graph are randomly distributed between possible node pairs.
• The typical degree of nodes are significantly smaller than the number of nodes, i.e.,
d(x)� n. This is precise when n goes to infinity.

Let u, v ∈ V be two nodes of the network. Under the assumption that the edges are distributed
randomly in the graph, the probability p that u and v are connected can be derived combina-
torically by considering the number of configurations in which the two nodes do not share a
common neighbor. Given that u and v have degree d(u) and d(v) respectively, the total number
of configurations for the edges connected to the nodes is(

n

d(u)

)(
n

d(v)

)
.

Out of those, the number of configurations in which the neighbours of the two nodes are disjoint
is given by(

n

d(u)

)(
n− d(u)

d(v)

)
.

Thus, the probability that the two nodes share a common neighbour is given by

p = 1−

(
n

d(u)

)(
n−d(u)
d(v)

)(
n

d(u)

)(
n

d(v)

) = 1−

(
n−d(u)
d(v)

)(
n

d(v)

) .

We now use the falling factorial to express binomial coefficients, i.e.,

na = n(n− 1)(n− 2) · · · (n− a+ 1).

The falling factorial has the property that in the limit where a is constant and n goes to infinity,
we have

lim
n→∞

na

na
= 1

and also,(
n

a

)
=

na

a!
,

and thus

p = 1− (n− d(u))d(v)d(v)!

d(v)!nd(v)
=

(n− d(u))d(v)

nd(v)

with the limit

p = 1− (n− d(u))d(v)

nd(v)
= 1−

(
1− d(u)

n

)d(v)
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and using the limit n→∞ again:

p =
d(u)d(v)

n
.

It thus follows that p ∼ d(u)d(v), i.e., the probability of the nodes u and v being connected
is proportional to both u and v. Thus, preferential attachment is a consequence of the triangle10

closing model. Preferential attachment itself then leads to a scale-free degree distribution, as
per Barabási and Albert (1999).

RELATED WORK
The debate over the nature of preferential attachment mechanism dates back to the 1960s, when
the economist H. Simon defended the role of randomness and the mathematician B. Mandelbrot5

defended the role of optimization (Barabási, 2012). The concept of preferential attachment is
also able to explain the nature of scale-free degree distribution in biological networks such as
metabolic networks (Jeong et al., 2000) and protein networks (Jeong et al., 2001). There are
various suggestions to explain the nature of preferential attachment for instance by introducing
hidden variable models in which nodes possess an intrinsic fitness to other nodes in unipartite10

(Boguñá and Pastor-Satorras, 2003) or bipartite networks (Kitsak and Krioukov, 2011). In a
recent Nature paper, Papadopoulos et al. proposed a model based on geometric optimization of
homophily space (Papadopoulos et al., 2012). However, in these models, triadic closure is not
defined as the main principle for the formation of edges.

Triadic closure, a tendency to connect to friend of a friend (Rapoport, 1953), has been observed15

undeniably in many social networks such as friendship at university (Kossinets and Watts,
2006), scientific collaboration (Newman, 2001) and World Wide Web (Adamic, 1999). The
concept of triadic closure was first suggested by German sociologist Georg Simmel 1950 and
later on popularized by Fritz Heider and Mark Granovetter as the theory of cognitive Balance
in which if two individuals feel the same way about the an object/person, they seek closure by20

closing the triad between themselves (Heider, 2013). Since the classic preferential attachment
model lacks to explain the number of clusters in many social networks, many attempts have
been make to include triadic closure to the model (Holme and Kim, 2002; Vázquez, 2003), in
which nodes with certain probability connect based on the principle of triadic closure. These
works have shown that the scaling law for the degree distribution and clustering coefficient can25

be reproduced based on these models (Klimek and Thurner, 2013).

Hence,the scale-free nature of networks and the abundance of triangles beg for a more funda-
mental explanation. Moreover, the observable part of the systems is not necessarily completely
representative for the entire system. Networks are generally multi-layered or multiplex, in
which some layers can be hidden or simply not possible to observe (Kivelä et al., 2014). For30

instance, the creation of a new Facebook tie can be caused by attending the same class, sharing
the same hobby or living in a same neighborhood, which is hidden from the observable data.
Consequently, these “focal” points contribute to the tie creation known as “focal closure” and
need to be considered in modeling realistic networks, as argued by Kossinets and Watts (2006).

DISCUSSION35

The status of a mechanism as fundamental is not clear cut. When a phenomenon is explained by
another, more fundamental phenomenon, then we can consider it as derived. But how can we be
sure that a phenomenon is not explained by a more basic phenomenon? What does it mean for a
phenomenon to be fundamental? Just as physics cannot declare one theory to be final, network
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science cannot declare one network growth mechanism to be final. Thus, individual instances40

of triangle closing can for instance be explained by several layers of triangle closing, just as in
physics a direct interaction can be explained by a new mediating particle. In the end however,
this applies only to specific instances of triangle closing, as it replaces them with other, more
detailed instances of triangle closing. Thus triangle closing does play a fundamental role in
network models, only that we cannot state which triangle closing is the fundamental one. In
the end, the only judge of the validity of a model remains the experiment, and in practice, used
models do not have to be fundamental – recommenders and information retrieval systems have
had enough success by applying preferential attachment directly.
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