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The aim of this short note is to give a linear programming approach to op-
timality conditions (expressed through support criteria) in control problems

with piecewise deterministic Markov dynamics. Two classes are considered:
classical, discounted control problems and asymptotic problems associated to
two-scales (perturbed) systems.

1. Introduction

In this short note, we wish to show how linear programming methods may

be used to infer support conditions for optimality for classical control prob-

lems for piecewise deterministic Markov processes (PDMP) and asymptotic

control problems for two-scales PDMP.

We start by recalling the definition of a controlled PDMPs and by stat-

ing standard assumptions in Section 2. In Section 3, we deal with classical

control problems with discounted cost and PDMP dynamics. We begin

with recalling the linearized formulations (primal and dual) of discounted,

infinite-horizon control problems. In this context, the dual formulation

gives a reliable intuition on the structure of the support for the optimal

measures. We briefly explain the notion of optimal pair and, whenever

such pair exists, we explicitly give a support condition. In the general

case, when the optimal value is not given by a regular function, we work

with the optimality candidates using as regular function, the approximat-

ing functions obtained by the ”shaking of coefficients” method in1. The
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support will then involve inner or outer limits of such sets.

In Section 4, we deal with control problems associated to two-scales

PDMP. This is very much inspired by the literature on singularly per-

turbed systems (e.g.2–7). This kind of singular-perturbation problem is

particularly challenging because, in many cases, one fails to identify the

limit dynamics. This is the case even for simpler systems without jumps.

Thus, a fortiori, one has difficulties in characterizing the asymptotic opti-

mal controls. However, in particular cases, the value functions associated

to the perturbed problem uniformly converge to the same value as the one

obtained for the limit system. Moreover, the speed of convergence can be

made explicit. We do not aim in this short note at giving explicit condi-

tions to have this type of convergence. This makes the object of an ongoing

research exploiting non-expansive properties for temperate virus inspired

by8. The conditions are intended in the spirit of9 Corollaries 3.4 and 4.3

(for Brownian setting). For already existing conditions of convergence, the

interested reader is invited to consult the paper6 or3 and references therein.

We use a double net (regularizations of the value functions associated to

fixed scaling parameter) first to give a convenient dual asymptotic formu-

lation and, second, to infer support conditions on the optimal measures.

This is done using the intuitions already mentioned in Section 3.

2. Controlled Piecewise Deterministic Processes and

Standing Assumptions

We consider U to be a compact metric space (the control space) and RN

be the state space, for some N ≥ 1.

Piecewise deterministic control processes have first been introduced by

Davis10 (see also11,12. They can be summarized by a characteristic triplet:

a vector field f : RN × U → RN that determines the motion between two

consecutive jumps, a jump rate λ : RN ×U → R+ and a transition measure

Q : RN × U × B
(
RN
)
→ P

(
RN
)
. Here B

(
RN
)
is the Borel σ-field on RN

and P
(
RN
)
stands for the family of probability measures on RN . For every

A ∈ B
(
RN
)
, the function (u, x) 7→ Q (x, u,A) is assumed to be measurable

and, for every (x, u) ∈ RN × U , Q (x, u, {x}) = 0.

Whenever u ∈ L0
(
RN × R+;U

)
(u is a Borel measurable function) and

(t0, x0) ∈ R+ × RN , we consider the ordinary differential equation
{
dΦt0,x0,u

t = f
(
Φt0,x0,u

t , u (x0, t− t0)
)
dt, t ≥ t0,

Φt0,x0,u
t0

= x0.

We choose the first jump time T1 such that the jump rate
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λ
(
Φ0,x0,u

t , u (x0, t)
)
satisfies

P (T1 ≥ t) = exp

(
−

∫ t

0

λ
(
Φ0,x0,u

s , u (x0, s)
)
ds

)
.

The controlled piecewise deterministic Markov processes (PDMP) is defined

by

Xx0,u
t = Φ0,x0,u

t , if t ∈ [0, T1) .

The post-jump location Y1 has Q
(
Φ0,x0,u

τ , u (x0, τ) , ·
)
as conditional distri-

bution given T1 = τ. Starting from Y1 at time T1, we select the inter-jump

time T2 − T1 such that

P (T2 − T1 ≥ t / T1, Y1) = exp

(
−

∫ T1+t

T1

λ
(
ΦT1,Y1,u

s , u (Y1, s− T1)
)
ds

)
.

We set

Xx0,u
t = ΦT1,Y1,u

t , if t ∈ [T1, T2) .

The post-jump location Y2 satisfies

P (Y2 ∈ A / T2, T1, Y1) = Q
(
ΦT1,Y1,u

T2
, u (Y1, T2 − T1) , A

)
,

for all Borel set A ⊂ RN . And so on.

2.1. Standing Assumptions

Throughout the paper, unless stated otherwise, we assume the following:

(A1) The function f : RN × U −→ RN is uniformly continuous on

RN × U and there exists a positive real constant C > 0 such that

|f (x, u)− f (y, u)| ≤ C |x− y| , and |f (x, u)| ≤ C, (A1)

for all x, y ∈ RN and all u ∈ U.

(A2) The function λ : RN×U −→ R+ is uniformly continuous on RN×U

and there exists a positive real constant C > 0 such that

|λ (x, u)− λ (y, u)| ≤ C |x− y| , and λ (x, u) ≤ C, (A2)

for all x, y ∈ RN and all u ∈ U.

(A3) For each bounded uniformly continuous function h ∈ BUC
(
RN
)
,

there exists a continuous function ηh : R −→ R such that ηh (0) = 0 and

sup
u∈U

∣∣∣∣
∫

RN

h (z)Q (x, u, dz)−

∫

RN

h (z)Q (y, u, dz)

∣∣∣∣ ≤ ηh (|x− y|) . (A3)
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We will ask that η should only depend on the continuity modulus and bound

of h but not of h itself.

(A4) For every x ∈ RN and every decreasing sequence (Γn)n≥0 of subsets

of RN ,

inf
n≥0

sup
u∈U

Q (x, u,Γn) = sup
u∈U

Q
(
x, u,∩

n
Γn

)
. (A4)

Remark 2.1. The assumption A3 can be somewhat weakened by imposing

(A3’) For each bounded uniformly continuous function h ∈ BUC
(
RN
)
,

there exists a continuous function ηh : R −→ R such that ηh (0) = 0 and

sup
u∈U

∣∣∣∣λ (x, u)
∫

RN

h (z)Q (x, u, dz)− λ (y, u)

∫

RN

h (z)Q (y, u, dz)

∣∣∣∣ ≤ ηh (|x− y|) .

It is obvious that whenever one assumes (A3) and λ (·) is bounded, the

assumption A3’ holds true.

To simplify the arguments, we assume the following invariance condition

to hold true. There exists a compact set K such that, for every x ∈ ∂K,

every p ∈ NK (x) and every u ∈ U, one has

〈f (x, u) , p〉+ λ (x, u)Q (x, u,Kc) ≤ 0. (I)

Here, Kc stands for RN�K, while NK (x) stands for the normal cone to K

at x, denoted by NK (x) and is defined as

NK (x) =
{
p ∈ RN : ∀ε > 0, ∃η > 0 such that ∀y ∈ K ∩B (x, η) , 〈p, y − x〉 ≤ ε |y − x|

}
.

We recall that B (x, η) =
{
y ∈ RN : |y − x| ≤ η

}
. This assumption im-

plies that the set K is invariant with respect to the piecewise deterministic

Markov dynamics (every trajectory starting from a point of K remains in K

almost surely). For further details on invariance of piecewise deterministic

Markov processes, the reader is referred to13.

Remark 2.2. This condition implies that ifK is invariant w.r.t. the PDMP

with characteristic triplet (f, λ,Q) , it also holds true for
(
δf, δ′λ, δ

δ′
Q
)
, for

all δ, δ′ > 0.
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3. An LP Approach to Optimality in Classical Control

Problems With PDMP Dynamics

3.1. Linear Programming Tools for PDMP

Given a Lipschitz-continuous, bounded cost functional g : RN −→ R, we

introduce the value function by setting

vg (x) := inf
u

E

[∫ ∞

0

e−tg (Xx,u
t ) dt

]
, for all x ∈ RN . (1)

The following results are taken from14.

We denote by P
(
RN × U

)
the set of all probability measures on RN×U

and by

Θ (x) =

{
γ ∈ P

(
RN × U

)
: ∀φ ∈ C1

b

(
RN
)
:

∫

RN×U

(Uuφ (y) + φ(x)− φ (y)) γ (dy, du) = 0

}
.

Here, Uu stands for the classical infinitesimal generator (associated to frozen

control parameter u ∈ U) given by

Uuφ (y) = 〈∇φ (y) , f (y, u)〉+ λ (y, u)

∫

RN

(φ (z)− φ (y))Q (y, u, dz) , (2)

for all u ∈ U, φ ∈ C1
b

(
RN
)
, and all y ∈ RN . We recall that C1

b

(
RN
)
stands

for the class of bounded, differentiable functions φ : RN −→ R for which

the first order derivatives are continuous and bounded. With respect to

this closed, convex set Θ, one introduces the linear (primal and dual) value

functions

Λg (x) := inf
γ∈Θ(x)

∫

RN×U

g (y) γ (dy, du) , (3)

and

Λ∗
g (x) = sup

{
µ ∈ R : ∃ϕ ∈ C1

b

(
RN
)
such that ∀ (y, u) ∈ RN × U,

µ ≤ Uuϕ (y) + g(y) + (ϕ (x)− ϕ (y))

}
,

(4)

for all x ∈ RN . The link between the initial value function and the linear

values is given by14 Theorem 7.

Theorem 3.1 (14 Theorem 7). For every x ∈ RN , the equality

vg(x) = Λg (x) = Λ∗
g (x) (5)

holds true.
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Remark 3.1. As a by-product, the set Θ (x) can be seen as the closed

convex hull of occupation measures associated to the trajectories of the

process. In particular, if the assumption (I) holds true, then, for every

x ∈ K, any measure γ ∈ Θ(x) has its support in K×U. Moreover, under

the assumption (I), by introducing

Λ∗
g,K (x) := sup

{
µ ∈ R : ∃ϕ ∈ C1

b

(
RN
)
such that ∀ (y, u) ∈ K× U, µ ≤ Uuϕ (y) + g(y) + (ϕ (x)− ϕ (y))

}

one gets

Λg (x) ≥ Λ∗
g,K (x) ≥ Λ∗

g (x) .

Hence, Λ∗
g,K (x) = Λ∗

g (x) .

A careful look at the proof of the14 Theorem 7 and13 Theorem 3.6 yields

the following Krylov-type result.

Lemma 3.1. There exists a decreasing function (only depending on the

continuity moduli of Q and g but not on the functions themselves) η :

R+ −→ R+ that satisfies limδ→0 η (δ) = 0 and a family of C1
b functions

V δ such that

V δ
g (x)− g (x) +H

(
x,∇V δ

g (x) , V δ
g

)
≤ 0, (6)

for all x ∈ RN , where the Hamiltonian H is given by

H (x, p, ψ) = sup
u∈U

{
−〈f (x, u) , p〉 − λ (x, u)

∫

RN

(ψ (z)− ψ (x))Q (x, u, dz)

}
.

(7)

and such that

sup
x∈RN

∣∣V δ
g (x)− vg (x)

∣∣ ≤ Cη (Cδ) , (8)

for all δ > 0. The constant C can be chosen as the maximum between the

Lipschitz norms of f and λ.

The function η corresponding to a continuity modulus can be chosen at

best of Lipschitz-continuity type (i.e. η (x) = O (x) as x→ 0).

3.2. Support Conditions for Optimality

Due to Theorem 3.1 (the dual formulation Λ∗) and to Remark 3.1, in order

to compute vg for arguments in K, one tries to maximize, over test functions

ϕ ∈ C1
b

(
RN
)
, the infimum

inf
(y,u)∈K×U

Uuϕ (y) + g(y) + (ϕ (x)− ϕ (y)) .
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Thus, it is natural to introduce the set

Dg (x) := {(µ, ϕ) ∈ R×C1
b

(
RN
)
s.t. µ = inf

(y,u)∈K×U
Uuϕ (y)+g(y)+(ϕ (x)− ϕ (y))},

(9)

for all x ∈ K. The set Dg (x) is well defined and non-empty (consequence

of the assumptions on the characteristic triplet and cost function g). One

can alternatively write the value function(s) as

vg (x) = sup{µ, (µ, ϕ) ∈ Dg (x)}, (10)

for all x ∈ K. We introduce the following.

Definition 3.1. Whenever x ∈ K, the couple (µ, ϕ) ∈ Dg (x) is an optimal

pair if it satisfies vg (x) = µ. If such pair exists, we denote by

Ωg,(µ,ϕ) (x) := {(y, u) ∈ K× U, s.t. µ = Uuϕ (y) + g(y) + (ϕ (x)− ϕ (y))}.

(11)

As one easily understands, optimal measures have their support in such

sets (should they exist). The problem is that optimal pairs do not always

exist. A simple case when they do exist is when the value function itself be-

longs to C1
b

(
RN
)
(one just takes ϕ = vg and uses the subsolution property

for the associated HJB equation (see14 Theorem 18) to infer

vg (x) ≤ Uuvg (y) + g(y) + (vg (x)− vg (y)) ,

for all (y, u) ∈ K × U . In this case compactness of K × U implies that

Ωg,(µ,ϕ) (x) is non empty.)

Proposition 3.1. Let x ∈ K and assume that (µ, ϕ) ∈ Dg (x) is an optimal

pair. Then, γ ∈ Θ(x) is optimal for vg (x) if and only if γ
(
Ωg,(µ,ϕ) (x)

)
=

1.

Proof. To prove the necessity of the support condition, let us consider

γ ∈ Θ(x) which is optimal. It follows, by optimality and the definition of

Θ (x), that

vg (x) =

∫

K×U

g (y) γ (dydu) =

∫

K×U

(Uuϕ (y) + g(y) + (ϕ (x)− ϕ (y))) γ (dydu) .

Then, the definition of Dg (x) implies that vg (x) ≥ µ and the equality holds

true if and only if

Uuϕ (y) + g(y) + (ϕ (x)− ϕ (y)) = µ,
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γ-almost surely (or, equivalently, γ
(
Ωg,(µ,ϕ) (x)

)
= 1). But the optimality

of the pair (µ, ϕ) can only happen if vg (x) = µ and, thus, the conclusion

follows.

For sufficiency, one writes

Uuϕ (y) + g(y) + (ϕ (x)− ϕ (y)) = µ = vg (x) ,

γ-almost surely and integrates on K× U w.r.t. γ to get optimality.

In general, one simply picks the test functions V δ
g and µδ such that(

µδ, V δ
g

)
∈ Dg (x) . If among these functions an optimal pair does not exist

(thus implying the existence of a strictly increasing sequence denoted, by

abuse of notation, (µn)n≥1 such that supn µ
n = vg (x)), one introduces an

approximate set

Ωn
g (x) := {(y, u) ∈ K×U, s.t. vg (x)+η

(
(vg (x)− µn)

1
2

)
≥ Uuϕ (y)+g(y)+(ϕ (x)− ϕ (y))}.

(12)

and the usual (inner ant outer) limit sets

Ωin
g (x) := lim inf

n→∞
Ωn

g (x) = ∪
n≥1

∩
n≥n

Ωk
g (x) , Ω

out
g (x) := lim sup

n→∞

Ωn
g (x) = ∩

n≥1
∪

k≥n
Ωk

g (x) ,

Ωout,cl
g (x) := ∩

n≥1
cl

(
∪

k≥n
Ωk

g (x)

)
,

where cl is the usual Kuratowski closure operator. Again by abuse of no-

tation, we let V n
g be such that

(
µn, V n

g

)
∈ Dg (x) . The support of optimal

measures is characterized as follows.

Proposition 3.2.

(i) For every x ∈ K, if γ ∈ Θ(x) is an optimal measure, then its support

is contained in Ωout
g (x) ⊂ Ωout,cl

g (x). In particular, when the limit of the

sets exists (i.e. Ωin
g (x) = Ωout

g (x)), one has

sup
n≥1

γ

(
∩

k≥n
Ωk

g (x)

)
= 1.

(ii) As a (partial) converse, for x ∈ K, if γ ∈ Θ(x) is such that max
n≥1

γ

(
∩

k≥n
Ωk

g (x)

)
= 1, then γ is optimal.

Proof. (i) When γ ∈ Θ(x) is optimal, one has

vg (x) =

∫

K×U

g (y) γ (dydu) =

∫

K×U

(
UuV k

g (y) + g(y) +
(
V k
g (x)− V k

g (y)
))
γ (dydu)

≥

∫

K×U

(
µk1Ωk

g(x)
+
[
vg (x) + η

((
vg (x)− µk

) 1
2

)]
1(K×U)8Ωk

g(x)

)
γ (dydu)
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for all k ≥ 1. It follows that

(
η
((
vg (x)− µk

) 1
2

)
+ 1
)
γ
(
Ωk

g (x)
)
≥


 vg (x)− µk

η
(
(vg (x)− µk)

1
2

) + 1


 γ

(
Ωk

g (x)
)
≥ 1.

One passes to lim sup
k→∞

to get γ
(
Ωout

g (x)
)
= 1 and the proof is complete.

(ii) Whenever γ

(
∩

k≥n0

Ωk
g (x)

)
= 1, it follows that γ

(
Ωk

g (x)
)
= 1, for

all k ≥ n0. Then, one simply writes down

vg (x) ≤

∫

K×U

g (y) γ (dydu) =

∫

K×U

(
UuV k

g (y) + g(y) +
(
V k
g (x)− V k

g (y)
))
γ (dydu)

≤ vg (x) + η
((
vg (x)− µk

) 1
2

)
,

for all k ≥ n0. Passing to the limit as k → ∞, one infers that γ ∈ Θ(x) is

optimal.

4. Two-Scale Systems. Asymptotic Optimality

4.1. A PDMP Description of Scales

We consider a piecewise deterministic model set on RN+M in which the

second component (say regime) is faster than the first one and so is the

frequency of its jumps. (To have a simple example, think of this second

component as a discrete one rapidly toggling between the elements of the

Euclidian basis of RM and specifying different regime evolutions for some

proteins). At any point, jumps can occur by:

- either changing the regime but, to express in terms of the previous

example, keep continuous protein level;

- or, within the same regime, a slower (and much more rare) jump (say

transcription) occurs and it is seen at protein level.

This amounts to considering a PDMP governed by a controlled charac-

teristic triple (fε, λε, Qε) such that

fε =
(
f1,

1
ε
f2
)
, λε (y, u) = λ1 (y, u) +

1
ε
λ2 (y, u)

Qε ((y1, y2) , u, dz1dz2) =
λ1(y,u)
λε(y,u)Q1 (y2) (y1, u, dz1) +

λ2(y,u)
ελε(y,u)Q2 (y1) (y2, u, dz2) .

Here, f1 : RN+M × U −→ RN , f2 : RN+M × U −→ RM are bounded,

uniformly continuous and Lipschitz-continuous in space, uniformly w.r.t.

the control (i.e. satisfy the same assumptions as in the classical context).

Similar regularity is assumed for λ1,2 and Q. Moreover, we assume the
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existence of invariant sets K1 and K2 for (f1, λ1 (·, y2) , Q1 (y2)) , for all

y2 ∈ K2 respectively (f2, λ2 (y1, ·) , Q2 (y1)) , for all y1 ∈ K1. We will also

use the notation Q1 (y1, y2, u, dz1) for Q1 (y2) (y1, u, dz1) .

This kind of singular-perturbation problem is particularly challenging

because, in many cases, one fails to identify the limit dynamics. This is

the case even for simpler systems without jumps. Thus, a fortiori, one has

difficulties in characterizing the asymptotic optimal controls. However, in

particular cases, the value functions associated to the perturbed problem

uniformly converge to the same value as the one obtained for the limit

system. Moreover, the speed of convergence can be made explicit.

We do not aim in this short note at giving explicit conditions to have

this type of convergence. This makes the object of an ongoing research

exploiting non-expansive properties for temperate virus inspired by8. The

conditions are intended in the spirit of9 Corollaries 3.4 and 4.3 (for Brown-

ian setting). For already existing conditions of convergence, the interested

reader is invited to consult the paper6 or3 and references therein.

4.2. Asymptotics of Linearized Formulations

Inspired by the considerations on classical discounted control problems pre-

sented in the first part, we introduce the perturbed set of constraints

Θε (x) =

{
γ ∈ P

(
RN+M × U

)
: ∀φ ∈ C1

b

(
RN+M

)
,∫

RN×U
(Uu;εφ (y) + φ(x)− φ (y)) γ (dy, du) = 0

}
,

were Uu.ε stands for the infinitesimal generator associated to (fε, λε, Qε)

and given by

Uu.εφ (y1, y2) = 〈∇y1
φ (y) , f1 (y, u)〉+

1
ε
〈∇y2

φ (y) , f2 (y, u)〉

+λ1 (y, u)
∫
RN (φ (z, y2)− φ (y1, y2))Q1 (y, u, dz)

+ 1
ε
λ2 (y, u)

∫
RM (φ (y1, z)− φ (y1, y2))Q2 (y, u, dz)

(13)

for all u ∈ U, φ ∈ C1
b

(
RN+M

)
, and all y = (y1, y2) ∈ RN+M . We consider a

cost functional g having the same regularity as in the first part, but defined

on RN+M and set

vεg (x) := inf
u

E

[∫ ∞

0

e−tg (Xx,u;ε
t ) dt

]
, for all x ∈ RN+M ,

where Xx,u;ε
t is the PDMP admitting the local characteristics (fε, λε, Qε)

and constructed as described before. Moreover, we set

Λε
g (x) := inf

γ∈Θε(x)

∫

RN+M×U

g (y) γ (dy, du) (14)
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and

Λε∗
g (x) := sup

{
µ ∈ R : ∃ϕ ∈ C1

b

(
RN+M

)
such that, ∀ (y, u) ∈ RN+M × U,

µ ≤ Uu;εϕ (y) + g(y) + (ϕ (x)− ϕ (y))

}
,

(15)

for all x ∈ RN+M . The arguments on classical control problems yield that

the value function vεg (·) associated to a regular cost g can, alternatively, be

given by

vεg (x) = Λε
g (x) = Λε∗

g (x) , for all x ∈ RN+M .

It is natural, at this point, to set

Θ
(
y01 , y

0
2

)
:= lim inf

ε→0
Θε
(
y01 , y

0
2

)
, for

(
y01 , y

0
2

)
∈ RN+M . (16)

(This is the classical lower limit for sets with the usual weak∗ convergence

of measures). We begin with some simple considerations on the structure

of this set of constraints.

Proposition 4.1. The following inclusion holds true

Θ
(
y01 , y

0
2

)
⊂





γ ∈ P
(
RM × RN × U

)
s.t. ∀ψ ∈ C1

b

(
RN
)
and ∀φ ∈ C1

b

(
RN+M

)
,∫

RN+M×U

[
Uu.1,y2ψ (y1) + g(y1, y2) +

(
−ψ (y1) + ψ

(
y01
))]

γ (dy1dy2du) = 0 and

∫

RN+M×U

[
Uu,2φ (y1, y2) + g(y1, y2) +

(
−φ (y1, y2) + φ

(
y01 , y

0
2

))]
γ (dy1dy2du) = 0




,

where

Uu,1,y2ψ (y1) := 〈∇ψ (y1) , f1 (y1, y2, u)〉+λ1 (y1, y2, u)

∫

RN

(ψ (z)− ψ (y1))Q1 (y1, y2, u, dz)

and

Uu,2φ (y1, y2) := 〈∇y2
φ (y1, y2) , f2 (y1, y2, u)〉+λ2 (y1, y2, u)

∫

RM

(φ (y1, z)− φ (y1, y2))Q1 (y1, y2, u, dz) ,

for all φ ∈ C1
(
RN+M

)
, ψ ∈ C1

(
RN
)
and all (y1, y2) ∈ RN × RM , u ∈ U .

Proof. The proof is standard and will be omitted.

We define the linearized problem with respect to the new set of con-

straints

Λg

(
y01 , y

0
2

)
:= inf

γ∈Θ(y0
1
,y0

2)

∫

RN+M×U

g (z) γ (dzdu) .
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4.3. First Main Result: An Asymptotic Formulation

Throughout the remaining of the paper, unless stated otherwise, we assume

that there exists a continuity modulus ω only depending on the bound and

continuity modulus of the cost function g and the bound and continuous

moduli of the characteristics of the PDMP and some function ξ ∈ Cb

(
RN
)

(which may depend on g and (f, λ,Q)) such that

sup
(y1,y2)∈K=K1×K2

∣∣vεg (y1, y2)− ξ (y1)
∣∣ ≤ ω (ε) . (17)

In the Brownian setting, for further details and conditions implying this

kind of convergence, the reader is referred to9; see also15.

If δ > 0 and vε,δg is the value function associated with the ”shaken”

problem (i.e. in which ϕ ∈ {g, f, λ} are replaced with ϕδ (x, (u, v)) :=

ϕ (x+ δv, u) , v ∈ RN+M , |v| ≤ 1 respectively Q is replaced by

Qδ (x, (u, v) , dy) = Q̃ (x+ v, u, dy + v)), under analogous assumptions, the

inequality (17) holds true for some ξδ replacing ξ. Since ω only depends on

the continuity moduli, the right-hand member is a generic ω independent

of δ > 0. In particular,
∣∣vε,δg (y1, y2)− vε,δg (y1, y

′
2)
∣∣ ≤ 2ω (ε) ,

for all y1 ∈ K1 and all y2, y
′
2 ∈ K2. Now, let us consider (ψδ)δ to be a

sequence of standard mollifiers ψδ (x) := 1
δM+N ψ

(
x
δ

)
, x ∈ RN+M , δ > 0,

where ψ ∈ C∞
(
RM+N

)
is a positive function such that

Supp(ψ) ⊂ B (0, 1) and

∫

RN+M

ψ(x)dx = 1.

Then, the convoluted functions V ε,δ
g := vε,δg ∗ ψδ satisfy (with the modulus

η given in Lemma 3.1 and due to the inequality (17)):
∣∣V ε,δ

g (y1, y2)− vεg (y1, y2)
∣∣ ≤ c0

(
1 + 1

ε

)
η
(
c0
(
1 + 1

ε

)
δ
)
,∣∣V ε,δ

g (y1, y2)− V ε,δ
g (y1, y

′
2)
∣∣ ≤ 2c0

(
1 + 1

ε

)
η
(
c0
(
1 + 1

ε

)
δ
)
+
∣∣vεg (y1, y2)− ξ (y1)

∣∣
≤ 2c0

(
1 + 1

ε

)
η
(
c0
(
1 + 1

ε

)
δ
)
+ ω (ε) ,

(18)

where c0 is independent of δ and ε. Finally, by recalling that ∇V ε,δ
g =

1
δ
vε,δg ∗ ∇ψδ, one gets

∣∣∇V ε,δ
g (y1, y2)−∇V ε,δ

g (y1, y
′
2)
∣∣ ≤ 1

δ
2ω (ε) and

∥∥∇V ε,δ
g

∥∥
∞

≤
c0
δ
, (19)

for some constant c0 > 0 independent of δ and ε. As consequence, one gets

the following representation theorem.
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Theorem 4.1. Let us assume that the value functions for the perturbed

systems converge uniformly to a function ξ ∈ Cb

(
RN
)
(in the sense of

(17)). Then the limit value function has the following representation (for

all y02 ∈ K2)

ξ
(
y01
)
= Λg

(
y01 , y

0
2

)
,

for all y01 ∈ K1. This common value is given by

Λ∗
g

(
y01
)
:= sup





η ∈ R : ∃α ∈ C (R+;R+) , lim
ε→0

α (ε) = 0 s.t. ∀ε > 0, ∃ϕ ∈ C1
b

(
RN+M

)
s.t.

sup
y,y′∈RM

‖ϕ (·, y)− ϕ (·, y′)‖∞ ≤ α (ε) and s.t. ∀ (y, u) ∈ RN+M × U,

η ≤ Uu;εϕ (y1, y2) + g(y1, y2) + ‖−ϕ (y1, ·)‖∞ +
∥∥ϕ
(
y01 , ·

)∥∥
∞




,

(20)

for all y01 ∈ K1.

Proof. The first assertion is obvious by invoking the equality between the

classical value vεg and its linearized formulation Λε
g and the construction of

the asymptotic constraints set (16). We only need to prove that Λ∗
g

(
y01
)

gives the same object which is less obvious from simply passing to the limit

in the dual formulations Λε∗
g in (15). To this purpose, let us fix, for the

time being, γ ∈ Θ
(
y01 , y

0
2

)
as the limit of some sequence γε ∈ Θε

(
y01 , y

0
2

)
.

Moreover, let us take

η ∈ R : ∃α ∈ C (R+;R+) , lim
ε→0

α (ε) = 0 s.t. ∀ε > 0, ∃ϕ ∈ C1
b

(
RN+M

)
s.t.

sup
y,y′∈RM

‖ϕ (·, y)− ϕ (·, y′)‖∞ ≤ α (ε) and s.t. ∀ (y, u) ∈ RM × U,

η ≤ Uu;εϕ (y1, y2) + g(y1, y2) + ‖−ϕ (y1, ·)‖∞ +
∥∥ϕ
(
y01 , ·

)∥∥
∞

It is clear that

η ≤ Uu;εϕ (y1, y2) + g(y1, y2) +
(
ϕ
(
y01 , y

0
2

)
− ϕ (y1, y2)

)
+ 2α (ε)

and, by integrating w.r.t. γε, passing to the limit as ε → 0 and recalling

that both η and γ are arbitrary, one infers Λ∗
g

(
y01
)
≤ Λg

(
y01 , y

0
2

)
.

To prove the remaining (converse) inequality, we consider the family of

functions V ε,δ
g regular subsolutions of the Hamilton Jacobi integrodifferen-

tial equation associated to vε,δg i.e. satisfying

Uu;εV ε,δ
g (y1, y2) + g(y1, y2)− V ε,δ

g (y1, y2) ≥ 0.

Then, one easily gets using (18) and (17)

ξ
(
y01
)
−α (δ, ε) ≤ Uu;εV ε,δ

g (y1, y2)+g(y1, y2)+
∥∥−V ε,δ

g (y1, ·)
∥∥
∞
+
∥∥V ε,δ

g

(
y01 , ·

)∥∥
∞
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and
∣∣V ε,δ

g (y1, y2)− V ε,δ
g (y1, y

′
2)
∣∣ ≤ α (δ, ε)

where

α (δ, ε) := 2c0

(
1 +

1

ε

)
η

(
c0

(
1 +

1

ε

)
δ

)
+ ω (ε) .

The reader is invited to note that lim inf
ε→0

lim inf
δ→0

α (δ, ε) = lim inf
ε→0

ω (ε) = 0 to

deduce that ξ
(
y01
)
≤ Λ∗

g

(
y01
)
which concludes the proof of our theorem.

4.4. Second Main Result: Support for Asymptotic

Optimality

In most of the interesting cases, the function η can be computed explicitly

(e.g. if Q has some Lipschitz continuity property). For fixed ε > 0, we let

δε := ε2 × sup
{
δ > 0 : η (δ) ≤ ε3

}
. (21)

Motivated by the classical case, we let, by abuse of notation, ξ
(
y01 , y

0
2

)
=

ξ
(
y01
)
and we introduce the one-approximating and two-approximating sets

by setting

Ω1,n
g (x) :=





(y, u) ∈ K× U, s.t. ξ (x) + η
(
(ξ (x)− µn)

1
2

)

≥ Uu;n−1

V n−1,δn
−1

g (y) + g(y) +
(
V n−1,δn

−1

g (x)− V n−1,δn
−1

g (y)
)



 ,

(22)

where
(
µn, V n−1,δn

−1

g

)
∈ Dn−1

g (x) (defined as in (9) but for the infinites-

imal operator Uu;n−1

), respectively Ω2,n
g (x) in which ξ (x) is replaced by

vn
−1

g and the usual (inner ant outer) limit sets

Ω2,in
g (x) := lim inf

n→∞
Ω2,n

g (x) , Ω2,out,cl
g (x) := ∩

n≥1
cl

(
∪

k≥n
Ω2,k

g (x)

)
.

Remark 4.1. A glance at the proof of the main result shows that the value

function ξ is the common limit to both vn
−1

g (x) and such µn.

We get the following result stating that optimal measures can be ob-

tained as limit of optimal measures for the perturbed problems and, then,

the support is included in the outer limit. Conversely, if one takes admis-

sible measures whose support is reasonably close to Ω1,n
g (x) , any limit of

such sequence provides an optimal measure.

Theorem 4.2. Let us fix some
(
y01 , y

0
2

)
∈ K1 ×K2.
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i. If γn ∈ Θ
1
n

(
y01 , y

0
2

)
is optimal, then any limit γ is optimal and

γ
(
Ω2,out,cl

g

)
= 1.

ii. If γn ∈ Θ
1
n

(
y01 , y

0
2

)
is such that γn

((
Ω1,n

g (x)
)c)

= o
(

δn
−1

n

)
, then

any limit of γn is optimal.

Proof. For the first assertion, since γn ∈ Θ
1
n

(
y01 , y

0
2

)
is optimal, one has

vn
−1

g

(
y01 , y

0
2

)
=

∫

RN+M×U

[
Uu;n−1

V n−1,δn
−1

g (y) + g(y) +

(
V n−1,δn

−1

g (x)− V n−1,δn
−1

g (y)

)]
γn (dydu)

≥ µnγn
(
Ω2,n

g (x)
)
+

[
vn

−1

g (x) + η

((
vn

−1

g (x)− µn
) 1

2

)]
γn

((
Ω2,n

g (x)
)c)

.

As in the classical case, one infers that

γn
(
Ω2,n

g (x)
)
≥

1

1 +
vn−1

g (x)−µn

η

(

(vn−1

g (x)−µn)
1
2

)

.

Therefore, for every n ≥ n0 ≥ 1, one has

γn

(
cl

(
∪

k≥n0

Ω2,k
g (x)

))
≥

1

1 +
vn−1

g (x)−µn

η

(

(vn−1

g (x)−µn)
1
2

)

and the conclusion follows by letting n→ ∞ (and recalling Remark 4.1).

For the second assertion, one begins with noting that, due to (19), the

following inequatity holds Uu;n−1

V n−1,δn
−1

g (y) ≤ c0(1+n)

δn
−1 . Consequently,

ξ
(
y01
)
≤ lim

n→∞

∫

RN+M×U

[
Uu;n−1

V n−1,δn
−1

g (y) + g(y) +

(
V n−1,δn

−1

g (x)− V n−1,δn
−1

g (y)

)]
γn (dydu)

≤ lim
n→∞

[
ξ
(
y01
)
+ η

((
ξ
(
y01
)
− µn

) 1
2

)
+

(
c0 (1 + n)

δn−1
+ 3 ‖g‖∞

)
γn

((
Ω1,n

g (x)
)c)
]

and the conclusion follows.
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