
HAL Id: hal-01359755
https://hal.science/hal-01359755

Preprint submitted on 4 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Algorithm based fault tolerance with wavelets
Roman Andreev

To cite this version:

Roman Andreev. Algorithm based fault tolerance with wavelets. 2016. �hal-01359755�

https://hal.science/hal-01359755
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

ALGORITHM BASED FAULT TOLERANCE WITH WAVELETS

ROMAN ANDREEV

Abstract. In wavelet Galerkin discretizations of partial differential equations the value
of a coefficient of the discrete solution directly translates into its importance. In the
context of a parallel iterative computation on faulty computational nodes we propose to
use this information to distribute the coefficients in a way that minimizes the expected
loss upon hard node failure, thus dramatically increasing the chances of approaching the
discretization accuracy.

1. Introduction

A parallel computation may experience hardware or software failure [3]. We focus
here on the so-called hard failure of computational nodes. We devise a data allocation
scheme that, based on the failure probability of those nodes, distributes the data such
as to minimize the expected loss, assuming that every piece of data (item) has a certain
additive importance (item value) associated with it independently of other items. This
situation appears in iterative solution algorithms for linear algebraic systems arising from
discretizations of partial differential equations. Changing to a wavelet basis allows to
interpret each coefficient as an item and to assign an item value to it in a natural way.
Thus we propose to dynamically redistribute the coefficients in the course of the iterative
solution algorithm across the computational nodes in a way that minimizes the expected
accuracy loss due to the potential node failure. This redistribution is an instance of
algorithm based fault tolerance and complements other fault resilience techniques such as
checkpointing.

In the first part we introduce our data allocation model and propose algorithms for
optimizing the allocation. In the second part we present proof-of-concept numerical
experiments with a wavelet discretization of a simple differential equation.

2. Data allocation model

2.1. Definitions. A collection I of items is to be stored on N nodes. With each item i
we associate an item value vi ≥ 0, and set

vtot :=
∑

i vi.

All items have the same size of one unit. The n-th node can store an integer number
Cn ≥ 0 of distinct items, called the capacity of node n. We assume that each item can
be replicated and stored at any node at no cost while within the capacity. We call

1
#I

(
∑

nCn)− 1

the redundancy index. It is nonnegative if and only if the joint capacity of nodes is
sufficient to store all items. A pure allocation map is a binary matrix A ∈ {0, 1}I×N with
the column sum

∑
i ain ≤ Cn for each node n. Let

A01 := {A = (ain)in ∈ {0, 1}I×N :
∑

i ain ≤ Cn}(1)

Date: September 4, 2016.
2010 Mathematics Subject Classification. 35Q68, 65N30, 65Y05, 68M15.

1

collect all such pure allocation maps. A node status vector is a binary vector x ∈ {0, 1}N
with the interpretation that

the n-th node is operational if and only if xn = 1.

Given a node status vector x and a pure allocation map A we call

φx(A) :=
∑

i(1−
∏

n(1− xnain))vi(2)

the accessible value. Note that (1 − xnain) is zero if xn = 1 and ain = 1, which means
that node n is operational and stores item i. Thus the product over n equals zero if
item i is available on some node, and equals one otherwise. The accessible value φx(A) is
therefore the total value of available items, where each item is counted at most once. An
alternative and sometimes more convenient way to write the product in the definition of
φx(A) for binary x and A is

∏
n(1− xnain) =

∏
n(1− xn)ain , where 00 := 1.

We extend φx(A) as defined in equation (2) to a function on x ∈ RI and A ∈ RI×N in
the obvious multiaffine way, so that φx(A) is affine in each column of A. By nonnegativity
of the item values, φx(A) is nondecreasing in x and in A in the sense that φx(A) ≥ φy(B)
whenever A ≥ B and x ≥ y componentwise. Let A := convA01 denote the closed convex
hull of A01 ⊂ RI×N . A point in A is called a mixed allocation map.

2.2. Allocation optimization. We suppose now that x above is a vector of independent
binary random variables with probabilities pn := P[xn = 0] and p̂n := P[xn = 1] = 1− pn.
In particular E[xn] = p̂n. We refer to pn as the failure probability of node n. Given A ∈ A,

φ̄(A) := E[φ(·)(A)] =
∑

i(1−
∏

n(1− p̂nain))vi

is the expected accessible value. Observe that φ̄ is multilinear and nonnegative on A, and
φ̄(0) = 0. We can now formulate the allocation problem:

Find some A ∈ A01 s.t. φ̄(A) ≥ φ̄(B) ∀B ∈ A.

Alternatively, one can minimize the expected loss

ψ̄(A) :=
∑

i vi
∏

n p
ain
n ,

which is related to the expected accessible value by φ̄+ ψ̄ = vtot for pure allocation maps
A ∈ A01. Since the solution may not be unique, the problem could be supplemented
by the proximity condition that the number of differing entries |Aref − A|0 for a given
Aref ∈ A01 be minimal, or relaxed to argminA∈A01

{φ̄(A) + γ 1
p
|Aref − A|pp}, where | · |p

denotes the vector p-norm of all entries (neither condition guarantees uniqueness).

2.3. Case of two items. Suppose #I = 2. We can assume that each node has capacity
Cn = 1, excluding uninteresting cases. Assume also vi = 1 for the item values. A
pure allocation map that minimizes the expected cost is then determined by its first row
a ∈ {0, 1}N , the second one being the complementary b := 1 − a, so that we can write
ψ̄(a) = pa + pb using the multiindex notation. Setting α := pa and β := pb, observe that
the product αβ is independent of a. This implies that the correspondence (α + β) 7→
| log(α/β)| is nondecreasing. Consequently, minimizing ψ̄(a) = α + β is equivalent to
minimizing | log(α/β)| = |S1− S0|, where S1 =

∑
n an log pn and S0 =

∑
n(1− an) log pn,

over a ∈ {0, 1}N . This is the optimization version of the set partition problem, which is
NP-hard in N . Hence we will not be aiming at solving the allocation problem exactly.

2

2.4. Case of two nodes. The case N = 2 of two nodes can be treated explicitly. By
symmetry suppose 0 < p1 ≤ p2 < 1 for the failure probabilities. Let vσ(1) ≥ vσ(2) ≥
. . . ≥ vσ(#I) be a nonincreasing rearrangement of the item values. If an allocation map
A ∈ A01 is a minimizer of the expected loss ψ̄, the capacity Cn =

∑
i ain of each node is

exhausted, and (Cn−C12) items are stored on node n only, where C12 ≥ 0 is the number
of shared items that are stored on both nodes. For any fixed number C12 of shared items,
the allocation map A with rows

(1) ai = (1, 1) for 1 ≤ σ(i) ≤ C12,
(2) ai = (1, 0) for C12 < σ(i) ≤ C1,
(3) ai = (0, 1) for C1 < σ(i) ≤ C1 + C2 − C12,
(4) ai = (0, 0) else,

minimizes the expected loss φ̄(A) =
∑

i vi
∏

n p
ain
n , as can be seen with the rearrangement

inequality and p1p2 ≤ p1 ≤ p2 < 1. Increasing C12 by one decreases the expected loss by
the amount (1− p2)(p1vσ(C12+1) − vσ(C1+C2−C12)), which is nonnegative as long as

p1vσ(C12+1) ≥ vσ(C1+C2−C12).(3)

Once this condition is violated, it remains false by the monotonicity of vσ(·). We arrive
at the following algorithm for finding an optimal pure allocation map for two nodes:

(1) Initialize C12 = min{max{C1 + C2 −#I, 0},#I}.
(2) While C12 < min{C1, C2} and condition (3) is satisfied: Increase C12 by one.
(3) Construct A as above.

We remark that the algorithm does not require Cn ≤ #I or #I ≤ C1 + C2.

2.5. Pairwise optimization. One might attempt to minimize the expected loss ψ̄(A)
by optimizing A node by node, but it is more effective to optimize over pairs of nodes:

(1) Let an initial guess A ∈ A be given.
(2) Repeat:

(a) Choose two nodes n1 6= n2 uniformly at random.
(b) Update the columns n1 and n2 of A using the two node optimization proce-

dure with the effective item weights ṽi := vi
∏

n/∈{n1,n2} p
ain
n .

Once each node has been selected, the current allocation map A will necessary be a pure
allocation map that exhausts the node capacities, even if the initial guess was not a pure
allocation map. The optimization process can be stopped as soon as the value of ψ̄(A)
stabilizes, but for simplicity, in the experiments below we always perform exactly 100
iterations (observed to be more than sufficient) starting with the zero allocation map.

In a (near-)optimum solution the most reliable nodes tend to store the most valuable
items. The random pair selection step could therefore be replaced by a systematic process
which proceeds from the most reliable to the least reliable nodes starting with the zero
allocation map. In a similar vein, the likelihood of a random selection of a pair of nodes
could be anticorrelated with the probability of their simultaneous failure.

3. Application to wavelet discretization

3.1. Model problem. As a model problem we take the elliptic equation u′′ = 1 on the
unit interval (0, 1) with zero Dirichlet boundary conditions. The problem is discretized
with P1 finite elements (hat functions) on an equidistant mesh consisting of 210 subin-
tervals. This leads to the algebraic equation Au = f , where the boundary degrees of
freedom have already been eliminated. Now we suppose we have a wavelet basis [2] at
hand that forms a Riesz basis in H1 (we will use the heuristic wavelet construction from

3

[1] with a slight adaptation to the boundary conditions). Let T denote the matrix such
that waveleti =

∑
k Tik hatk, or in other words, TT applied to a vector of multiscale

coefficients yields a vector of single scale coefficients. By the Riesz basis property, the
matrix TATT is well-conditioned uniformly in the discretization level. Thus we consider
the convergent stationary Richardson iteration

w`+1 = w` + (Tf −TATTw`), w0 := 0,(4)

where w` is the vector of coefficients of the `-th iterate u` ≈ u with respect to the
wavelet basis. Specifically, we scale the wavelet basis such that the contraction factor is
ρ(I − TATT) = 0.95, which entails an error reduction factor of about 0.95100 ≈ 0.006
every 100 iterations, cf. Figure 1. Much lower contraction factors are in fact possible but
we wish to simulate here a more general situation.

We consider the following model scenario. Suppose the iterate w` is distributed across
N computational nodes. We wish to perform one Richardson iteration, but some of the
nodes might fail in the process and corrupt the accuracy (measured in the H1 semi-norm).
How should we distribute the coefficients such as to minimize the loss of accuracy? To
that end we interpret the coefficients as data items and use the Riesz basis property to
interpret vi := |(w`)i|2 as the item value of the i-th coefficient.

3.2. Numerical experiments. We use the pairwise optimization algorithm from Sec-
tion 2.5 in each Richardson iteration to determine an allocation map. The wavelet coeffi-
cients which are not covered by the allocation map after a possible simulated node failure
are set to zero. The failure probability pn of the n-th node during one Richardson itera-
tion is fixed at the beginning of the iteration as a random number distributed uniformly
between 1% and 2%. We perform 105 Richardson iterations for different number of nodes
N with different capacities Cn to obtain statistics on the error e` := |u−u`|H1 . The capac-
ities are determined through the redundancy index r by setting Cn := (1+r)d(210+1)/Ne
for each node. We vary N = 2, 4, 8, and 2r = −1, 0, 1, 2, If N = 2 then only r ≤ 1 is
meaningful.

In Figure 1 we document the error e` during the first 300 Richardson iterations. Each
plot contains the runs a) without node failure, b) on one faulty node of sufficient capacity,
and c) on N nodes with the optimized allocation. These are labeled “ideal”, “faulty”,
and “optim”, respectively. We see that the optimization strategy, even if the redundancy
index is negative, allows to greatly reduce the loss of accuracy at the cost of a slightly
elevated error as ` → ∞. Figure 2 documents the distribution of the error for the same
runs over 105 Richardson iterations and shows that the optimized allocation forces the
error to hover close to the discretization error, whereas the error is typically much larger in
the single faulty node scenario. Increasing the number of nodes (for the same redundancy
index) slightly increases the error of the optimized strategy because node failure becomes
slightly more likely. Increasing the redundancy index (for the same number of nodes)
strongly decreases that error and practically recovers the ideal faultless situation.

4. Conclusions

Under idealized assumptions such as negligible node to node communication cost and
uniform data item size, we have developed a framework for data redistribution across
faulty computational nodes with the aim of minimizing the expected data loss under
potential node failure. We have then proposed and illustrated the notion that wavelet
discretizations of partial differential equations naturally fit that framework and thus
induce algorithm based fault tolerance.

4

5. Acknowledgment

Supported by French ANR-12-MONU-0013 and Swiss NSF #164616.

References

[1] Roman Andreev. Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution equations.
SIAM J. Sci. Comput., 38(1):A216–A242, 2016.

[2] Wolfgang Dahmen. Wavelet and multiscale methods for operator equations. In Acta numerica, 1997,
volume 6 of Acta Numer., pages 55–228. Cambridge Univ. Press, Cambridge, 1997.

[3] Ifeanyi P. Egwutuoha, David Levy, Bran Selic, and Shiping Chen. A survey of fault tolerance mech-
anisms and checkpoint/restart implementations for high performance computing systems. J. Super-
comput., 65(3):1302–1326, 2013.

(R. Andreev) Université Paris Diderot, Sorbonne Paris Cité, LJLL (UMR 7598 CNRS), F-75205 Paris, France

E-mail address: roman.andreev@upmc.fr

5

0 100 200 300 0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300 0 100 200 300

faulty

optim

ideal 0 100 200 300 0 100 200 300

Figure 1. Estimated error |u−ui|H1 as a function of the iteration number
1 ≤ i ≤ 300, for ideal, faulty, and optimized computation. The vertical
logarithmic scale ranges from 10−4 to 1. Crosses/circles indicate node fail-
ure. The optimized computation is performed on N = 2, 4, 8 nodes (→)
with redundancy index r given by 2r = −1, 0, 1, 2, 3 (↓).

6

2
-13

2
-12

2
-11

2
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-13

2
-12

2
-11

2
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-13

2
-12

2
-11

2
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-13

2
-12

2
-11

2
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-13

2
-12

2
-11

2
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-13

2
-12

2
-11

2
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-13

2
-12

2
-11

2
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-13

2
-12

2
-11

2
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-13

2
-12

2
-11

2
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-13

2
-12

2
-11

2
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-13

2
-12

2
-11

2
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-13

2
-12

2
-11

2
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

faulty

optim

ideal
2

-13
2

-12
2

-11
2

-10
2

-9
2

-8
2

-7
2

-6
2

-5
2

-4
2

-3
2

-2
2

-13
2

-12
2

-11
2

-10
2

-9
2

-8
2

-7
2

-6
2

-5
2

-4
2

-3
2

-2

Figure 2. Distribution of the error (as in Figure 1) over 105 Richardson
iterations. The bins are delimited by 2−13, 2−12, . . . , 2−2, the area under
each curve equals 100%.

7

	1. Introduction
	2. Data allocation model
	2.1. Definitions
	2.2. Allocation optimization
	2.3. Case of two items
	2.4. Case of two nodes
	2.5. Pairwise optimization

	3. Application to wavelet discretization
	3.1. Model problem
	3.2. Numerical experiments

	4. Conclusions
	5. Acknowledgment
	References

