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Inverse problem and concentration method of a continuous-in-time financial model *

In a continuous-in-time model there is the important financial quantity called Loan which can not be determined directly in terms of Algebraic Spending but has a major impact on the financial strategy. In this paper, we use a mathematical framework to discuss an inverse problem of determining the implied Loan Measure from Algebraic Spending Measure when it is possible. In addition, we build a numerical method to concentrate a measure as a sum of Dirac masses.

Introduction

The continuous-in-time financial model, first introduced by Sundaresan in [START_REF] Suresh | Continuous-time methods in finance: A review and an assessment[END_REF], constitutes a powerful tool for studying the development of continuous-in-time methods in finance. These include computational and estimation methods to test and implement continuous-time models. We refer to papers [START_REF] Chiarella | The calibration of stock option pricing models using inverse problem methodology[END_REF][START_REF] Robert | Continuous-Time Finance[END_REF], which are dealing with continuous-in-time financial model.

At the same time, inverse problems began to be studied and applied systematically in various branches of modern science as in finance. Studying problems can be classified as inverse, and they are among the most complicated ones (since they are unstable and usually nonlinear). The reason is that solutions to inverse problems describe important properties of variable under study such as density or measure and the integrability property. Many studies have used an inverse problem in finance. For example the theory of inverse problems via Tikhonov regularisation in [START_REF] Egger | Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates[END_REF] is used in order to analyse the procedure for determining volatility in the model of Black and Scholes. H. Egger, H.W. Engl [START_REF] Frénod | A continuous-in-time financial model[END_REF] study the inverse problem of option pricing under consideration and they prove a stable solution of the inverse problem and its convergence.

In recent paper [START_REF] Frénod | Optimal control of a continuous-in-time financial model[END_REF] we have also constructed a continuous-in-time model which is designed to be used for the finances of public institutions and not for the financial market. This model permit to set out annual and multiyear budgets for any organization and describes working of loan and repayment in order to forecast its future financial plans. We build this model because of the default of a discrete model which is using tables. Indeed, we justified in the introduction of [START_REF] Frénod | Optimal control of a continuous-in-time financial model[END_REF] why that we created this model. This model relies on measure theory and uses the mathematical tools such convolution and integration, etc. In addition, we check the mathematical consistency of this model in [START_REF] Frénod | Optimal control of a continuous-in-time financial model[END_REF]. Frénod & Safa [START_REF] Frénod | Two optimization problems using a continuous-in-time financial model[END_REF][START_REF] Robert C Merton | Theory of finance from the perspective of continuous time[END_REF][START_REF] Frńod | Continuous-in-time financial model for public communities[END_REF] use this model in the framework of the control theory in order to set out an optimal control method for the strategy elaboration phase to better adjust the project implementation.

In a continuous-in-time model an Algebraic Spending takes into account the spending and the income to satisfy the current needs. There exists a mathematical operator that links between Algebraic Spending and Loan. If this operator is not invertible, solutions of the posed inversion problem can be brought.

The aim of the present paper is to study the inverse problem with giving a rigorous mathematical formulation to determine Loan from the Algebraic Spending and to build a concentration method in order to concentrate a measure at positions. The paper is organized as follows. We begin by describing in section 2 a continuous-in-time model. In section 3, we study the inverse problem that link between financial quantities in the model. We analyse it on measure space in order to show its consistency. In section 4, we introduce a numerical approach which is allowing to concentrate any measure as a combinaison of Dirac measures.

Continuous-in-time financial model

In this section we recall the variables used in the model and introduced in [START_REF] Frénod | Optimal control of a continuous-in-time financial model[END_REF] in order to describe links existing between them and their meanings. These variables are defined on the set of Radon measures.

The Radon measure space

We build the continuous-in-time financial model on the Radon measure space M([t I , Θ max ]) which is a continuous and linear form acting on continuous functions space

C o c ([t I , Θ max ]) defined over a time interval [t I , Θ max ]. The usual norm on M([t I , Θ max ]) is: µ M((tI,Θmax)) = sup ψ∈C o c ([tI,Θmax]),ψ =0 µ, ψ ψ L ∞ ([tI,Θmax]) , (1) 
where

L ∞ ([tI,Θmax]) is the usual norm on C o c ([t I , Θ max ]) defined as: ψ L ∞ ([tI,Θmax]) = sup t∈[tI,Θmax] |ψ(t)| . ( 2 
)
We notice that we build the model on a Banach space M([t I , Θ max ]) in order to use the convolution and Fourier Transform.

Financial quantities of the model

We explained in [START_REF] Frénod | Optimal control of a continuous-in-time financial model[END_REF] the financial quantities that are involved in the models and the relations between them. For instance the Loan Measure κE and the Repayment Measure ρK are connected by a convolution operator:

ρK = κE γ, (3) 
where the Repayment Pattern Measure γ is a non-negative measure with total mass which equals 1, γ has to satisfies:

+∞ -∞ γ = 1. ( 4 
)
We denote by K RD the Debt Field, given as the solution to the following Ordinary Differential Equation:

dK RD = κE -ρK -ρI K , (5) 
where measure ρI K is the repayment of the Current Debt K RD at initial time t I . It is called initial Debt Repayment Scheme. Initial condition for equation ( 5) is given by:

+∞ tI ρI K = K RD (t I ). ( 6 
)
The solution of this ODE is expressed:

K RD (t) = K RD (t I ) + t tI κE - t tI ρK - t tI ρI K = t tI κE - t tI ρK + +∞ t ρI K . ( 7 
)
We denote by ρI the Interest Payment Measure defined by:

ρI = αK RD (t)dt, ( 8 
)
where α is the floating rate interest. Algebraic Spending Measure σ is defined such that the difference between spendings and incomes required to satisfy the current needs. Algebraic Spending Measure σ takes into account the spending and the income and it is given by:

σ = σg + β, ( 9 
)
where σg is the Current Spending Measure and β is the Measure of Isolated Spending. The balance equation between incomes and spendings is expressed by the following equality:

κE = σ + ρK + ρI K + ρI . ( 10 
)

Inverse problem of the model

In this section we inverse operators given below which are useful of the model. We study this inversibility in measure space. For that, we consider a positive number Θ γ such that Θ γ < Θ max -t I and we set the Repayment Pattern Measure γ such that:

γ ∈ M([0, Θ γ ]). ( 11 
)
In order that Repayment Measure ρK given by a convolution operator in relation [START_REF] Frénod | A continuous-in-time financial model[END_REF] 

σ = κE -κE γ -α κE -κE γ, 1 |[tI,t[ dt -α ρI K , 1 |[t,Θmax[ dt -ρI K . ( 13 
)
Let L be a linear operator defined from M([t I , Θ max -Θ γ ]) to M([t I , Θ max ]) acting on Loan Measure κE by

L[κ E ] = κE -κE γ -α κE -κE γ, 1 |[tI,t[ dt, (14) 
where κE -κE γ, 

σ = L[κ E ] + D[ρ I K ]. ( 18 
)
We define a density measure ẽα with its density e α is exponential function of coefficient α, i.e ẽα = e α (t)dt, where e α (t) = e αt .

Lemma 3.2. If Loan

Measure κE is in M([t I , Θ max -Θ γ ]
) and if γ satisfies relation (11), then we have the following equality:

(1 -F(γ))F(κ E ) = F L[κ E ] + αẽ α L[κ E ], e -α |[tI,t[ , ( 19 
)
where F stands for the Fourier Transform Operator, where operator L is defined by (14).

Proof. We have the following equality:

κE -κE γ, 1 |[tI,t[ dt = ẽα κE -κE γ -α κE -κE γ, 1 |[tI,s[ ds, e -α |[tI,t[ . ( 20 
)
Indeed, relation (20) is obtained using the integration by parts:

κE -κE γ, αe α|[t I,s[ ds, e -α |[tI,t[ dt = ẽα κE -κE γ, e -α |[tI,t[ -κE -κE γ, 1 |[tI,t[ dt. ( 21 
)
Using definition (14) of operator L, equality in (20) is multiplied by α to give:

κE -κE γ, α1 |[tI,t[ dt = αẽ α L[κ E ], e -α |[tI,t[ . ( 22 
) Replacing κE -κE γ, α1 |[tI,t[ dt in relation (22) by κE -κE γ -L[κ E ],
we obtain the following equality: 

κE -κE γ = L[κ E ] + αẽ α L[κ E ], e -α |[tI,t[ . ( 23 
∃ > 0, 1 1 -F(γ) ∈ L ∞ ((-∞, -) ∪ ( , +∞)), (24) 
and if Initial Debt Repayment Measure ρI K and Algebraic Spending Measure σ are in M([t I , Θ max ]) and satisfy the following equality:

σ -D[ρ I K ] + αẽ α σ -D[ρ I K ], e -α |[tI,t[ , 1 |[tI,Θmax[ = 0, ( 25 
)
then, there exists an unique Loan Measure κE in M([t I , Θ max -Θ γ ]) (if it exists) given by following formula:

κE = F -1 F σ -D[ρ I K ] + αẽ α σ -D[ρ I K ], e -α |[tI,t[ 1 -F(γ) , ( 26 
)
such that (18) holds.

In order to prove this theorem, we need the following lemmas: 

Lemma 3.4. If
Ker(L) = {κ E ∈ M([t I , Θ max -Θ γ ]), κE -κE γ = 0}. ( 28 
)
If Repayment Pattern Measure γ is the Dirac mass δ 0 , then, relation (28) gives that Ker(L) is equal to M([t I , Θ max -Θ γ ]). In fact, δ 0 is the identity element for the convolution operator. Thus linear operator L is not a one-to-one map if γ = δ 0 . We distinguish four cases to prove the lemma:

First case:

In the first case, we will show that if Repayment Pattern Measure γ is density measure satisfying relation (11), then, linear operator L given in relation ( 14) is a one-to-one map.

For any positive integer n, we define V n the vector space of density measures such its densities are polynomial functions in x of degree n and restricted to interval (t I , Θ max -Θ γ ). By density of space V m for any integer m in M([t I , Θ max -Θ γ ]), we will show that for the following Repayment Pattern Measure γ ∈ V m i=m i=0

α i t i i=m i=0 α i Θ i+1 γ i + 1 × 1 [0,Θγ ] (t)dt, ( 29 
) that Ker(L) ∩ V n = {0}. (30) 
In order to show relation (30), we will show that the coefficients of density measure κE are zero for each κE in Ker(L)

∩ V n . If κE ∈ Ker(L) ∩ V n , then, for any x ∈ (t I , Θ max -Θ γ ), κE = i=n i=0 c i x i × 1 [tI,Θmax-Θγ ] (x)dx, (31) 
where (c i ) 0≤i≤n are its coefficients and

κE -κE γ = 0. ( 32 
)
As γ is given in relation (29), expression κE γ can be simplified with using relation (31

) κE γ = dx i=m i=0 α i Θ i+1 γ i + 1 × i=n i=0 c i j=m j=0 α j [tI,Θmax-Θγ ]∩[x-Θγ ,x] y i (x -y) j dy. ( 33 
) As (x -y) j = p=j p=0 C p j (x) j-p (-y) p , ( 34 
) expression (33) gives κE γ = dx i=m i=0 α i Θ i+1 γ i + 1 × i=n i=0 c i j=m j=0 α j p=j p=0 C p j (-1) p (x) j-p × [tI,Θmax-Θγ ]∩[x-Θγ ,x] y i+p dy . (35)
Now, on the one hand, we show that coefficients (c i ) 0≤i≤n are zero, when t I + Θ γ ≤ Θ max -Θ γ . In this case, if x is chosen outside the support of κE such that t

I + Θ γ ≤ Θ max -Θ γ < x < Θ max , then, κE is null. Thus, the intersection of intervals [t I , Θ max -Θ γ ] and [x -Θ γ , x] is interval [Θ max -Θ γ , x -Θ γ ].
Then, relations (32) and ( 35) are used with the fact that Loan Measure κE is null in order to obtain the following equality:

i=n i=0 c i j=m j=0 α j p=j p=0 C p j (-1) p (x) j-p i + p + 1 × (Θ max -Θ γ ) i+p+1 -(x -Θ γ ) i+p+1 = 0. ( 36 
)
From relation (36), we get a nul polynom on interval (Θ max -Θ γ , Θ max ) which has an non empty interior. Consequently, we showed that coefficients (c i ) 0≤i≤n are zero, when

t I + Θ γ ≤ Θ max -Θ γ .
On other hand, we show that coefficients (c i ) 0≤i≤n are zero, when Θ max -

Θ γ < t I + Θ γ . Then, if x is chosen outside the support of κE such that Θ max -Θ γ < t I + Θ γ < x < Θ max , then, κE is null. Thus, the intersection of intervals [t I , Θ max -Θ γ ] and [x -Θ γ , x] is interval [Θ max -Θ γ , x -Θ γ ]
. We obtain the same null polynom in relation (36) on interval (t I + Θ γ , Θ max ) which has an non empty interior.

Consequently, coefficients (c i ) 0≤i≤n are zero. From this, we conclude that (30) is true for any integer n. The proof of the first case is achieved.

Second case:

In the second case, we will show that if Repayment Pattern Measure γ is a density measure satisfying relation (11), then, linear operator L given by relation ( 14) is a one-to-one map for any Loan Measure κE which is supposed a concentrated measure (as like as a combination of Dirac measures or a combination of Dirac measures multiplied by a continuons functions). In fact, since the convolution of γ and κE is concentrated measure, then, relation (27) gives that a density measure is equal to a concentrated measure. This equality is possible, if and only if, Loan Measure κE is zero. Consequently, the proof of the second case is achieved.

Third case:

We show in the third case that if Repayment Pattern Measure γ is a concentrated measure satisfying relation (11), i.e: γ = j=m j=1 e j δ aj .

(37)

Thus, for any Loan Measure κE which is supposed a density measure, we have:

κ E (x) = j=m j=1 e j κ E (x + a j ). ( 38 
)
Then Loan Density κ E is null. From this, linear operator L given by relation ( 14) is a one-to-one map for any Loan Density Measure κE .

Fourth case:

In the fourth case, we set the Repayment Pattern Measure γ as a combination of m Dirac measures located at points (a j ) 1≤j≤m that is different from δ 0 and satisfying relation (11) such that: γ = j=m j=1 e j δ aj .

(39)

We will show that the coefficients of concentrated measure κE are zero for any Loan Measure κE that can be written in the following form κE = i=n i=1 f i δ bi , where points b i are in [t I , Θ max -Θ γ ] for i from 1

to n. According to (27), we have:

i=n i=0 f i × (δ bi - j=m j=0 e j δ bi+aj ) = 0. ( 40 
)
In order to show that coefficients (f i ) 0≤i≤n are zero, we distinguish two situations of points (a j ) 1≤j≤m . The first situation is when points (a j ) 1≤j≤m are not nulls. Thus, since points (e j ) 0≤j≤m are fixed points, relation (40) proves that coefficients (f i ) 0≤i≤n are zero. The second situation is when there exists

a k = 0 for 1 ≤ k ≤ m, then relation (40) gives i=n i=0 f i × (1 -e k )δ bi - j=m j=0,j =k e j δ bi+aj = 0. (41) 
Since Repayment Pattern Measure γ is different from δ 0 , relation (41) proves that coefficients (f i ) 0≤i≤n are zero.

Consequently, the study of these four cases is achieving the proof of the lemma.

Lemma 3.5. Assuming that:

γ, t1 |[tI,Θmax[ = 0, ( 42 
)
is achieved and if operator L given by relation (14) satisfies:

L[κ E ] + αẽ α L[κ E ], e -α |[tI,t[ , 1 |[tI,Θmax[ = 0, (43) 
then, F(κ E ) ∈ L ∞ (R) and is such that

lim ξ→0 F(κ E )(ξ) = - L[κ E ] + αẽ α L[κ E ], e -α |[tI,t[ , t1 |[tI,Θmax[ γ, t1 |[tI,Θmax[ . ( 44 
)
If L does not satisfy the equality in relation (43), then, F(κ E ) has an infinite limit in 0.

Proof. As L[κ E ] ∈ M([t I , Θ max ]
), we get:

L[κ E ] + αẽ α L[κ E ], e -α |[tI,t[ ∈ M([t I , Θ max ]). ( 45 
) Function F L[κ E ] + αẽ α L[κ E ], e -α |[tI,t[
is expanded in 0 until the order 1 with using the Taylor expansion of exponential function e -iyξ in 0 until the order 1 to get:

F L[κ E ] + αẽ α L[κ E ], e -α |[tI,t[ (ξ) = L[κ E ] + αẽ α L[κ E ], e -α |[tI,t[ , 1 |[tI,Θmax[ -iξ L[κ E ] + αẽ α L[κ E ], e -α |[tI,t[ , t1 |[tI,Θmax[ + O(ξ 2 ) (46)
Since operator L satisfies equality in relation (43), relation (46) gives:

F L[κ E ] + αẽ α L[κ E ], e -α |[tI,t[ (ξ) = -iξ L[κ E ] + αẽ α L[κ E ], e -α |[tI,t[ , t1 |[tI,Θmax[ + O(ξ 2 ) ( 47 
)
According to (11), function 1 -F(γ) is Taylor expanded in 0 until the order 1 to obtain:

1 -F(γ)(ξ) = iξ γ, t1 |[tI,Θmax[ + O(ξ 2 ). ( 48 
)
According to relations (19), ( 47) and (48), we get equality (44).

As L[κ E ] and γ are integrables on their supports, the numerator and the denominator of right term in relation (44) are finites. From this and according to relation (42), function F(κ E ) admits a finite limit at 0. It is concluded

F(κ E ) is in space L ∞ (R).
On other hand, if equality in relation ( 43) is not satisfied, then, according to relations (19), ( 46) and (48), F(κ E ) has an infinite limit at 0. From this, the proof of lemma is achieved. Lemma 3.6. Under assumptions (11), ( 24), (43) and if operator L given by relation (14) satisfies:

F(L[κ E ]) ∈ L 2 ([t I , Θ max ]), ( 49 
)
then, F(κ E ) ∈ L 2 (R).

Proof. According to (49), we get:

F L[κ E ] + αẽ α L[κ E ], e -α |[tI,t[ ∈ L 2 (R). (50) 
We notice that for any positive , the product of functions in L ∞ ((-∞, -) ∪ ( , +∞)) and in L 2 (R) is a function in L 2 ((-∞, -) ∪ ( , +∞)). From relations (19), (50) and according to the assumption of γ given in relation (24), we have:

∃ > 0, F(κ E ) ∈ L 2 ((-∞, -) ∪ ( , +∞)). ( 51 
)
According to Lemma 3.5, F(κ E ) admits a finite limit at point ξ = 0. Consequently, we have the following result:

∃ > 0, F(κ E ) ∈ L 2 ([-, ]). ( 52 
)
From this and using relation (51), the lemma is proved.

Proof of Theorem 3.3. We notice that Repayment Pattern Measure γ equals to Dirac mass δ 0 doesn't satisfy relation (24). From Lemma 3.4, we obtain the uniqueness of κE , achieving the proof of the theorem.

A concentration method of the model

We developped a new approach of concentrating a measure to enrich the model. This approach is allowing to generate the result measure which is called the concentrated measure. Indeed, concentrate Repayment Measure ρK can be interpreted from the financial slant as follow. It means that Repayment amount presented by ρK is associated with localized actions or payments at differents instants in order to express how these payments are distributed at these instants. Thus, the total repayment amount is equal to the sum of these amounts. This equality defines a principle of conservation that we explain it below.

For any integer n strictly greater than 1, we define J the set of integers between 1 and n, i.e J = [ [1; n]]. To concentrate a given measure m, we assume that its integral over R is finite

+∞ -∞ m < ∞. ( 53 
)
The concentrated measure of measure m is defined as a sum of Dirac masses (M i ) i∈J located in given positions. The basic idea of concentrating the measure m is to determine the adequate partition of unity which is defined by a set of nonnegative compactly supported functions (φ i ) i∈J . Afterwards, measures defined by a multiplication of measure m by functions (φ i ) i∈J are integrated in order to compute Dirac masses (M i ) i∈J .

To construct this partition of unity, we need three quantities. The first one is the set of intervals ([d i , f i ]) i∈J , where d i < f i for each i ∈ J. In order that the intersection of intervals [d i , f i ] and [d i+1 , f i+1 ] is non empty for each i ∈ J \ {n}, we state the following assumption:

∀i ∈ J \ {n}, d i+1 < f i . ( 54 
)
The second one is the fuzzy index F I which influences on calculated Dirac masses 

(M i ) i∈J .
i , f i ] for each i ∈ J ∀i ∈ J, Supp(φ i ) = [d i , f i ]. ( 55 
)
This allows us to define Dirac masses (M i ) i∈J as follows:

∀i ∈ J, M i = fi di m × φ i , ( 56 
)
where, a measure m × φ i is the product of measure m by function φ i . Now, we show the principle of conservation of masses which states that the sum of Dirac masses (M i ) i∈J and the total mass of measure m presented by its integral are equals. Since functions (φ i ) i∈J form a partition of unity, we have i∈J φ i = 1 which is multiplied by measure m to get:

m = i∈J m × φ i . ( 57 
)
By integrating over R measure m given by relation (57) and by permuting a finite sum and finite integral, we get the following relation:

+∞ -∞ m = i∈J M i , ( 58 
)
which expresses that the total mass +∞ -∞ m is the sum of the Dirac masses (M i ) i∈J . It is concluded that the principle of conservation is proved.

Construction of the partition of unity

It is difficult to build explicitly the partition of unity in our model. Consequently, this partition of unity is determined with approximated numerical method in two steps. The first step is an initialization and the second step is an iteration. We explain these steps as follows:

Initialization step

The aim of the initialization step is to initialize positives functions (φ 0 i ) i∈J defined on R which are not necessary a partition of unity. We notice that the expression of functions (φ 0 i ) i∈J depends on the fuzzy index F I and on its support which is given by following relation:

∀i ∈ J, Supp(φ 0 i ) = [d i , f i ]. (59) 
We determine functions (φ 0 i ) i∈J in three cases of the fuzzy index F I which are F I = 0, F I = 1 and F I ≥ 2.

If F I = 0, function φ 0 i (see Figure 1) is a constant piecewise function, which is 1 over

[d i , f i ] for each i ∈ J. ∀i ∈ J, φ 0 i (x) = 1 [di,fi] (x). (60) 
x di fi

• • φ 0 i 1 0 y Figure 1: Definition of functions (φ 0 i ) i∈J when F I = 0
If F I = 1, we define the point c i as the mid-point of the line segment [d i , f i ]. Then, function φ 0 i (see Figure 2) is an affine piecewise function on intervals [d i , c i ] and [c i , f i ] for each i ∈ J, which is defined as follows. The restriction of function φ 0 i on interval [d i , c i ] is an affine function which is 0 at point d i and is 1 at point c i for each i ∈ J. The restriction of function

φ 0 i on interval [c i , f i ] is an affine function which is 1 at point c i and is 0 at point f i for each i ∈ J. ∀i ∈ J, φ 0 i (x) = x -d i c i -d i 1 [di,ci[ (x) + x -f i c i -f i 1 [ci,fi] (x). (61) 
If F I ≥ 2, function φ 0 i (see Figure 3) is an affine piecewise function on intervals [d i , c i ] and [c i , f i ] for each i ∈ J, where the points d i and f i are to be determined respectively in terms of values (d i ) i∈J and (f i ) i∈J and where the point c i is the mid-point of the line segment [d i , f i ]. Now we will determine the points d i and f i for each i ∈ J as follows. We define each value d i by a value

dj x di ci fi • • • φ 0 i 1 0 y Figure 2: Definition of functions (φ 0 i ) i∈J when F I = 1 ∀i ∈ J, d i = { d j 2 F I , min dj (d i -d j ) > 0} ∪ { d i 2 F I }. (62) 
Similarly for the point d i , the point f i is determined by a value fj 2 F I , where point f j is the right neighborhood of the point f i such that a distance f j -f i is strictly positive and is minimized. If there is any point strictly superior than f i , we take f j = f i . Formally, points (f i ) i∈J are defined as follows:

∀i ∈ J, f i = { f j 2 F I , min fj (f j -f i ) > 0} ∪ { f i 2 F I }. (63) 
Since points (d i ) i∈J and (f i ) i∈J are given respectively by relations ( 62) and (63), we determine function φ 0 i on interval [d i , f i ] for each i ∈ J when F I ≥ 2 as follows. The restriction of function φ 0 i on interval [d i , c i ] is an affine function which is 0 at point d i and is 1 at point c i for each i ∈ J. The restriction of function φ 0 i on interval [c i , f i ] is an affine function which is 1 at point c i and is 0 at point f i for each i ∈ J. Formally, functions (φ 0 i ) i∈J are defined as follows:

∀i ∈ J, φ 0 i (x) = x -d i c i -d i 1 [d i ,c i [ (x) + x -f i c i -f i 1 [c i ,f i ] (x). ( 64 
)
x

d i c i f i • • • φ 0 i 1 0 y Figure 3: Definition of functions (φ 0 i ) i∈J when F I ≥ 2

Iteration step

The aim of the iteration step is to compute functions (φ i ) i∈J which form a partition of unity in terms of initialized functions (φ 0 i ) i∈J given by relation (60) if F I = 0 or by relation (61) if F I = 1 or by relation (64) if F I ≥ 2. Since (CL i ) i∈J is an optional parameter in our modeling, functions (φ i ) i∈J are determined in two cases. The first case is when we don't utilize (CL i ) i∈J . The second case is when we utilize (CL i ) i∈J . In the first case, functions (φ i ) i∈J are defined as follows:

∀i ∈ J, ∀x ∈ i∈J [d i , f i ], φ i (x) = φ i 0 (x) i∈J φ i 0 (x) . ( 65 
)
In the second case, functions (φ i ) i∈J are defined as follows:

∀i ∈ J, ∀x ∈ i∈J [d i , f i ], φ i (x) = CL i × φ i 0 (x) i∈J CL i × φ i 0 (x) . ( 66 
)
Now, we can verify that functions (φ i ) i∈J given by relation (65) or by relation (66) form a partition of unity. Indeed, functions (φ i ) i∈J are positives because of the positivity of functions (φ 0 i ) i∈J and of values (CL i ) i∈J and the sum of functions (φ i ) i∈J is 1 satisfying following equality:

i∈J φ i (x) = 1.
(67)

Examples of the partition of unity

In order to illustrate the construction of the partition of unity developped in subsection 4.1, we draw examples of functions φ 1 and φ 2 in Figures 4 and5 which are defined on R with support being respectively [0, 6] and [START_REF] Egger | Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates[END_REF][START_REF] Frénod | Optimal control of a continuous-in-time financial model[END_REF], i.e d 1 = 0, f 1 = 6, d 2 = 2 and f 2 = 4. In addition, since the fuzzy index F I is equal to 0 in simulation of Figure 4, functions φ 1 and φ 2 are piecewise constants functions and are computed with relation (65) or relation (66).

The left picture of Figure 4 shows the partition of unity formed by functions φ 1 and φ 2 which are computed with relation (65). The top diagram presents function φ 1 which is equal to 1 2 between instants 2 and 4 and to 1 between instants 0 and 2 and between instants 4 and 6 and to 0 elsewhere. The middle diagram presents function φ 2 which is equal to 1 2 between instants 2 and 4 and to 0 elsewhere. The bottom diagram shows that function φ 1 + φ 2 is equal to 1 between instants 0 and 6. This example illustrates that formula (65) computes correctly the partition of unity.

The right picture of Figure 4 shows the partition of unity formed by functions φ 1 and φ 2 which are computed with relation (66) using coefficients CL 1 = 1 and CL 2 = 10. The top diagram presents function φ 1 which is equal to 1 11 between instants 2 and 4 and to 1 between instants 0 and 2 and between instants 4 and 6. The middle diagram presents function φ 2 which is equal to 10 11 between instants 2 and 4 and to 0 elsewhere. The bottom diagram shows that the sum of functions φ 1 and φ 2 is equal to 1 between instants 0 and 6. This example illustrates that formula (66) computes correctly the partition of unity. Now, if the fuzzy index F I is equal to 1 in simulation of Figure 5, functions φ 1 and φ 2 are piecewise rational fractions over time periods [START_REF] Egger | Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates[END_REF][START_REF] Frénod | A continuous-in-time financial model[END_REF] and [START_REF] Frénod | A continuous-in-time financial model[END_REF][START_REF] Frénod | Optimal control of a continuous-in-time financial model[END_REF] that are in form of fractions of affines functions.

The left picture of Figure 5 shows the partition of unity formed by functions φ 1 and φ 2 which are computed with relation (65). The top diagram presents function φ 1 which is a rational function over time periods [START_REF] Egger | Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates[END_REF][START_REF] Frénod | A continuous-in-time financial model[END_REF] and [START_REF] Frénod | A continuous-in-time financial model[END_REF][START_REF] Frénod | Optimal control of a continuous-in-time financial model[END_REF] and is equal to 1 2 at instant 3. Function φ 1 is equal to 1 over time periods [0, 2] and [START_REF] Frénod | Optimal control of a continuous-in-time financial model[END_REF][START_REF] Frńod | Continuous-in-time financial model for public communities[END_REF]. The middle diagram presents function φ 2 which is a rational function over time periods [START_REF] Egger | Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates[END_REF][START_REF] Frénod | A continuous-in-time financial model[END_REF] and [START_REF] Frénod | A continuous-in-time financial model[END_REF][START_REF] Frénod | Optimal control of a continuous-in-time financial model[END_REF] and is equal to 1 2 at instant 3. Function φ 2 is null over time periods [0, 2] and [START_REF] Frénod | Optimal control of a continuous-in-time financial model[END_REF][START_REF] Frńod | Continuous-in-time financial model for public communities[END_REF]. The bottom diagram shows that function φ 1 + φ 2 is equal to 1 between instants 0 and 6. Consequently, relation (65) computes correctly the partition of unity.

The right picture of Figure 5 shows the partition of unity formed by functions φ 1 and φ 2 which are computed with relation (66) using coefficients CL 1 = 1 and CL 2 = 10. The top diagram presents 
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  The first function φ1 of the partition of unityThe second function φ2 of the partition of unityThe first function φ1 of the partition of unityThe second function φ2 of the partition of unity

Figure 4 :

 4 Figure 4: In each of the two pictures, the fuzzy index F I is equal to 0. In the left picture, function φ 1 is represented at the top, function φ 2 in the middle which are computed with relation (65) and their sum φ 1 + φ 2 at the bottom. In the right picture, function φ 1 is represented at the top, function φ 2 in the middle which are computed with relation (66) with coefficients CL 1 = 1 and CL 2 = 10 and the sum φ 1 + φ 2 at the bottom.
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  The first function φ1 of the partition of unityThe second function φ2 of the partition of unityThe first function φ1 of the partition of unityThe second function φ2 of the partition of unity
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 5 Figure 5: In each of the two pictures, the fuzzy index F I is equal to 1. In the left picture, function φ 1 is represented at the top, function φ 2 in the middle which are computed with relation (65) and their sum φ 1 + φ 2 at the bottom. In the right picture, function φ 1 is represented at the top, function φ 2 in the middle which are computed with relation (66) with coefficients CL 1 = 1 and CL 2 = 10 and the sum φ 1 + φ 2 at the bottom.

  with FI = 1, CL1 = 1, CL2 = 10

Figure 6 :

 6 Figure 6: In each of the two pictures. In the left picture, fuzzy index F I equals to 0, Loan Measure κE is represented at the top, in the middle the concentrated measure of κE is computed with the partition of unity presented at the left picture of Figure4, in the bottom the concentrated measure of κE is computed with the partition of unity presented at the right picture of Figure4. In the right picture, fuzzy index F I equals to 1, κE is represented at the top, in the middle the concentrated measure of κE is computed with the partition of unity presented at the left picture of Figure5, in the bottom the concentrated measure of κE is computed with the partition of unity presented at the right picture of Figure5.

  If Repayment Pattern Measure γ satisfies relation (11) and if Loan Measure κE is in M([t I , Θ max -Θ γ ]) and Initial Debt Repayment Measure ρI K is in M([t I , Θ max ]), then Algebraic Spending Measure σ is also in M([t I , Θ max ]) and has the next expression in terms of Loan Measure κE :

		has its support in
	[t I , Θ max ], we need to choose Loan Measure κE with support being included in [t I , Θ max -Θ γ ]. Indeed,
	the support of convolution of two compactly supported measures κE and γ is included in the sum of
	their supports which is translated by following relation	
	Supp(κ E γ) ⊂ Supp(κ E ) + Supp(γ).	(12)
	Theorem 3.1.	

  1 |[tI,t[ dt is density measure which density stands for the function

	t		
	t →	κE -κE γ.	(15)
	tI		
	Let D be an operator defined in M([t I , Θ max ]) acting on Initial Debt Repayment Measure ρI K by	
	D[ρ I K ] = -α ρI K , 1 |[t,Θmax[ dt -ρI K ,	(16)
	where ρI K , 1 |[t,Θmax[ dt is density measure which density stands for the function	
		Θmax	
	t →	ρI K .	(17)
		t	
	Expression (13) of Measure σ can be written as follows:	

F I , where point d j is the left neighborhood of the point d i such that a distance d i -d j is strictly positive and is minimized. If there is any point strictly inferior than d i , we take d j = d i . Formally, points (d i ) i∈J are defined as follows:
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function φ 1 and the middle diagram presents function φ 2 . Functions φ 1 and φ 2 are rational functions over time periods [START_REF] Egger | Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates[END_REF][START_REF] Frénod | A continuous-in-time financial model[END_REF] and [START_REF] Frénod | A continuous-in-time financial model[END_REF][START_REF] Frénod | Optimal control of a continuous-in-time financial model[END_REF]. Function φ 1 is equal to 1 over time periods [0, 2] and [START_REF] Frénod | Optimal control of a continuous-in-time financial model[END_REF][START_REF] Frńod | Continuous-in-time financial model for public communities[END_REF], whereas function φ 2 is null over time periods [0, 2] and [START_REF] Frénod | Optimal control of a continuous-in-time financial model[END_REF][START_REF] Frńod | Continuous-in-time financial model for public communities[END_REF]. The bottom diagram shows that function φ 1 + φ 2 is equal to 1 between instants 0 and 6.

Financial simulation

We will justify, in this section, relation (56), that computes Dirac masses of the concentrated measure. We will adopt both mathematical and financial point of view.

The left picture of Figure 6 represents two concentrated measures of Loan Measure κE . This Loan Measure κE is shown in the top diagram which is a piecewise function that is equal to 1 between instants 0 and 0.5, to 4 between instants 1 and 2, to 6 between instants 3 and 4, to 8 between instants 4 and 5, to 3 between instants 5 and 5.5 and to 0 elsewhere. The first concentrated measure (see middle diagram) is computed with fuzzy index F I equals to 0 . The second concentrated measure (see bottom diagram) is computed with fuzzy index F I equals to 0 and with coefficients CL 1 = 1 and CL 2 = 10. We precise that we use the partition of unity presented at the left picture and at the right picture of Figure 4 to compute respectively the first concentrated measure and the second concentrated measure.

The measure drawn in the middle diagram is computed with formula (56) and is a combination of two Dirac masses (the first Dirac mass has the mass 17 at time 2.5 and the second Dirac mass has the mass 3 at time 3.5). This simulation can be interpreted from the financial slant as follows. It means that the loan is shared into two pieces, the first one consists in borrowing 17 at time 2.5 and the second one consists in borrowing 3 at time 3.5. Thus, the total borrowed amount is equal to 17 + 3 = 20. This makes that formula (58) is homogeneous with regard to this simulation.

The bottom diagram shows the concentrated measure which is computed with relation (56). It is a combination of two Dirac masses (the first Dirac mass has the mass 160 11 at time 2.5 and the second Dirac mass has the mass 60 11 at time 3.5). The meaning of this simulation can be given as follows. It means that the loan is shared into two pieces, the first one consists in borrowing 160 11 at time 2.5 and the second one consists in borrowing 60 11 at time 3.5. This loan is the localized loan of κE at instants 2.5 and 3.5. It means that the total borrowed amount is made of amount 160 11 at times 2.5 and amount 60 11 at time 3.5, which is equal to 160 11 + 60 11 = 20. Consequently, since the amount borrowed associated to Loan Measure κE between times 0 and 6 is 20, relation (58) is homogeneous.

In order to illustrate formulas (56) and (58), in the right picture of Figure 6, we draw examples of concentrated measures of κE with fuzzy index F I equals to 1. This picture shows three measures, the first measure is Loan Measure κE shown in the top diagram which is the same as previously (see top diagram of the left picture). The other measures are the concentrated ones of κE . We use the partition of unity presented at the left picture and at the right picture of Figure 5 to compute respectively the first concentrated measure (see middle diagram) and the second concentrated measure (see bottom diagram).

These two concentrated measures are computed with formula (56). The first concentrated measure in the middle diagram is 17.5δ t=2.5 + 2.5δ t=3. [START_REF] Frénod | Two optimization problems using a continuous-in-time financial model[END_REF] . This illustrates that the loan gives the way that an amount 17.5 is borrowed at time 2.5 and an amount 2.5 is borrowed at time 3.5. It means that the total borrowed amount is equal to 20. The second concentrated measure in the bottom diagram is 15.2δ t=2.5 + 4.8δ t=3. [START_REF] Frénod | Two optimization problems using a continuous-in-time financial model[END_REF] . This concentrated measure means that an amount 15.2 is borrowed at time 2.5 and an amount 4.8 is borrowed at time 3.5. It means that the total borrowed amount is equal to 20. As the amount borrowed associated to Loan Measure κE between times 0 and 6 is equal to 20, formula (58) is correct. It is concluded that this financial simulation using concentrated measures gives realistic results.