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KNUTH’S COHERENT PRESENTATIONS OF
PLACTIC MONOIDS OF TYPE A

NOHRA HAGE PHILIPPE MALBOS

Abstract – We construct finite coherent presentations of plactic monoids of type A. Such coherent
presentations express a system of generators and relations for the monoid extended in a coherent way
to give a family of generators of the relations amongst the relations. Such extended presentations
are used for representations of monoids, in particular, it is a way to describe actions of monoids
on categories. Moreover, a coherent presentation provides the first step in the computation of a
categorical cofibrant replacement of a monoid. Our construction is based on a rewriting method
introduced by Squier that computes a coherent presentation from a convergent one. We compute
a finite coherent presentation of a plactic monoid from its column presentation that is known to
be finite and convergent. Finally, we show how to reduce this coherent presentation to a Tietze
equivalent one having Knuth’s generators.

M.S.C. 2010 – 20M05, 18D05, 68Q42, 05E10.
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1. Introduction

1. INTRODUCTION

Coherent presentations of plactic monoids

Plactic monoids. The structure of plactic monoids appeared in the combinatorial study of Young tableaux
by Schensted [32] and Knuth [21]. The plactic monoid of rank n > 0 is the monoid, denoted by Pn,
generated by the finite set {1, . . . , n} and subject to the Knuth relations:

zxy = xzy for all 1 6 x 6 y < z 6 n,

yzx = yxz for all 1 6 x < y 6 z 6 n.

For instance, the monoid P2 is generated by 1 and 2 and submitted to the relations 211 = 121 and
221 = 212. The Knuth presentation of the monoid P3 has 3 generators and 8 relations. Lascoux and
Schützenberger used the plactic monoid in order to prove the Littlewood-Richardson rule for the decom-
position of tensor products of irreducible modules over the Lie algebra of n by n matrices, [33, 25].
The structure of plactic monoids has several applications in algebraic combinatorics and representation
theory [24, 25, 23, 8] and several works have generalised the notion of tableaux to classical Lie alge-
bras [2, 37, 19, 29, 34].

Syzygies of Knuth’s relations. The aim of this work is to give an algorithmic method for the syzygy
problem of finding all independent irreducible algebraic relations amongst the Knuth relations and some
other presentations of the plactic monoids in type A. A 2-syzygy for a presentation of a monoid is a
relation amongst relations. For instance, using the Knuth relations there are two ways to prove the equal-
ity 2211 = 2121 in the monoid P2, either by applying the first Knuth relation 211 = 121 or the second
relation 221 = 212. This two equalities are related by a syzygy. Starting with a monoid presentation, we
would like to compute all syzygies for this presentation and in particular to compute a family of gener-
ators for the syzygies. For instance, we will prove that in rank 2 the two Knuth relations form a unique
generating syzzygy for the Knuth relations. For rank greater than 3, the syzygies problem for the Knuth
presentation is difficult due to the combinatorial complexity of the relations. In commutative algebra, the
theory of Gröbner bases gives algorithms to compute bases for linear syzygies. By a similar method, the
syzygy problem for presentation of monoids can be algorithmically solved using convergent rewriting

systems.

Rewriting and plactic monoids. Study presentations from a rewriting approach consists in the orien-
tation of the relations, then called reduction rules. For instance, the relations of the monoid P2 can be
oriented with respect to the lexicographic order as follows

η1,1,2 : 211⇒ 121 ε1,2,2 : 221⇒ 212.

In a monoid presented by a rewriting system, two words are equal if they are related by a zig-zag sequence
of applications of reductions rules. A rewriting system is convergent if the reduction relation induced
by the rules is well-founded and it satisfies the confluence property. This means that any reductions
starting on a same word can be extended to end on a same reduced word. Recently plactic monoids were
investigated by rewriting methods [22, 3, 5, 14, 4].

2



1. Introduction

Coherent presentations. In this paper, we give a categorical description of 2-syzygies of presentations
of the monoid Pn using coherent presentations. Such a presentation extends the notion of a presentation
of the monoid by globular homotopy generators taking into account the relations amongst the relations
of the monoid. We compute a coherent presentation of the monoid Pn using the homotopical completion
procedure introduced in [13, 9]. Such a procedure extends the Knuth-Bendix completion procedure,
[20], by keeping track of homotopy generators created when adding rules during the completion. Its
correctness is based on the Squier theorem, [36], which states that a convergent presentation of a monoid
extended by the homotopy generators defined by the confluence diagrams induced by critical branchings

forms a coherent convergent presentation. The notion of critical branching describes the overlapping of
two rules on a same word. For instance, the Knuth presentation of the monoid P2 is convergent. It
can be extended into a coherent presentation with a unique globular homotopy generator described by
the following 3-cell corresponding to the unique critical branching of the presentation between the rules
η1,1,2 and ε1,2,2:

2211

2η1,1,2
�.

ε1,2,21

1E2121���

The Knuth presentation of the monoid P3 is not convergent, but it can be completed by adding 3 relations
to get a presentation with 27 3-cells corresponding to the 27 critical branchings. For the monoid P4 we
have 4 1-cells and 20 2-cells, for P5 we have 5 1-cells and 40 2-cells and for P6 we have 6 1-cells and 70
2-cells. However, in the last three cases, the completion is infinite and another approach is necessary to
compute a finite generating family for syzygies of the Knuth presentation.

The column presentation. Kubat and Okniński showed in [22] that for rank n > 3, a finite convergent
presentation of the monoid Pn cannot be obtained by completion of the Knuth presentation with the
deglex order. Then Bokut, Chen, Chen and Li in [3] and Cain, Gray and Malheiro in [5] constructed
with independent methods a finite convergent presentation by adding column generators to the Knuth
presentation. The monoid Pn corresponds to the representations of the general Lie algebra of n by n
matrices which is of type A, and now called the plactic monoid of type A, [6, 23]. The classification of
finite dimensional complex semisimple Lie algebras in classical typesA, B,C,D and in exceptional ones
allows the existence of plactic monoids of the same types. Theses monoids can be defined by a case-by-
case analysis using the Kashiwara theory of crystal bases [17, 19, 18, 1, 26, 27] or in a general way using
Littelmann path model [29]. Using the Kashiwara theory of crystal bases, the first author constructed
in [14] a finite and convergent presentation for plactic monoids of type C. Similar presentations for
plactic monoids of type B, C, D and G2 were obtained by Cain, Gray and Malheiro in [4]. Recently,
finite convergent presentations of plactic monoids for any type was also obtained by the first author
using the Littelmann path model, [15]. However, on the one hand, the proof given in [5] does not
give explicitly the critical branchings of the presentation which does not permit to use the homotopical
completion procedure. On the other hand, the construction in [3] gave an explicit description of the
critical branchings of the presentation, but this does not allow to get explicitly the relations amongst the
relations, and in particular it is difficult to reduce such a presentation.
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1. Introduction

The Knuth coherent presentation. We construct a coherent presentation of the monoid Pn that extends
the Knuth presentation in two steps. The first step consists in giving an explicit description of the critical
branchings of the column presentation. The column presentation of the plactic monoid has one genera-
tor cu for each column u, that is, a word u = xp . . . x1 such that xp > . . . > x1. Given two columns u
and v, using the Schensted algorithm, we compute the Schensted tableau P(uv) associated to the word
uv. One proves that the planar representation of the tableau P(uv) contains at most two columns. If the
planar representation is not the tableau obtained as the concatenation of the two columns u and v, one
defines a rule αu,v : cucv ⇒ cwcw ′ wherew andw ′ are respectively the left and right columns (with one
of them possibly empty). We show that the column presentation can be extended into a coherent column

presentation whose any 3-cell has at most an hexagonal form. For instance, the column presentation
for the monoid P2 has generators c1, c2, c21, with the rules α2,1 : c2c1 ⇒ c21, α1,21 : c1c21 ⇒ c21c1
and α2,21 : c2c21 ⇒ c21c2. This presentation has only one critical branching:

c21c21

���
c2c1c21

α2,1c21 &:

c2α1,21
#7 c2c21c1 α2,21c1

%9 c21c2c1

c21α2,1
\pNNNNNNNNNNN

NNNNNNNNNNN

and thus the 3-cell of the extended coherent presentation is reduced to this 3-cell defined by this conflu-
ence diagram. Note that for column presentations of the monoids P3, P4 and P5 we count respectively 7,
15 and 31 generators, 22, 115 and 531 relations, 42, 621 and 6893 3-cells.

The second step aimed at to reduce the coherent column presentation using Tietze transformations
that coherently eliminates redundant column generators and defining relations to the Knuth coherent

presentation giving syzygies of the Knuth presentation. For instance, if we apply this Tietze trans-
formation on the column coherent presentation of the monoid P2, we prove that the Knuth coherent
presentation of P2 on the generators c1, c2 and the relations η1,1,2, ε1,2,2 has a unique generating 3-cell
2η1,1,2 ⇛ ε1,2,21 described above.

Organisation and main results of the article

Two-dimensional rewriting. In this work, we use the polygraphical description of string rewriting sys-
tems. The polygraphic notions are briefly recalled in Section 2.1 and we refer the reader to [12] for a
deeper presentation. A 2-polygraph is a data made of a directed graph (Σ0, Σ1) and a globular exten-
sion Σ2 of the free monoid Σ∗

1 on Σ1. The monoid presented by Σ is the quotient of the free monoid Σ∗

1 by
the congruence generated by the 2-cells of the free 2-category Σ∗

2. A rewriting step of a 2-polygraph Σ
is a 2-cell in the 2-category Σ∗

2 generated by Σ and with shape

•
w

// •

u
  

v

>>β�� •
w ′

// •

where β is a 2-cell of Σ2 and w and w ′ are 1-cells of Σ∗

1. A rewriting sequence is a finite or infinite
sequence of rewriting steps. The 2-polygraph Σ terminates if it has no infinite rewriting sequence. A
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1. Introduction

branching of the 2-polygraph Σ is a non ordered pair (f, g) of 2-cells of Σ∗

2 with a common source as in

v

u

f %9

g %9 w

It is local if f and g are rewriting steps, aspherical if f = g and Peiffer when it is of the form (hu2, u1k)

for rewriting steps h and kwith s1(h) = u1 and s1(k) = u2. The overlapping branchings are the remain-
ing local branchings. A minimal overlapping local branching is a critical branching. A 2-polygraph Σ is
confluent if for all branching (f, g) there exist 2-cells f ′ and g ′ in Σ∗

2 as in the following diagram:

v f ′

�-
u

f &:

g $8

u ′

w g ′

2F

A 2-polygraph Σ is convergent if it terminates and it is confluent.

Plactic monoids. In Section 2.2, we recall the definition and properties of plactic monoids. We refer
the reader to [31] and [8] for a full introduction. The Knuth 2-polygraph of rank n > 0 is the 2-
polygraph Knuth2(n) whose set of 1-cells is {1, . . . , n} and the set of 2-cells is

{zxy
ηx,y,z
=⇒ xzy | 1 6 x 6 y < z 6 n} ∪ {yzx

εx,y,z
=⇒ yxz | 1 6 x < y 6 z 6 n}.

The 2-cells of Knuth2(n) correspond to the Knuth relations oriented with respect to the lexicographic
order and the monoid presented by the 2-polygraph Knuth2(n) is the monoid Pn, [21, Theorem 6].

Pre-column presentation. In 2.3, we introduce the pre-column presentation. Consider the set col(n)
of non-empty columns on the set {1, . . . , n}. One adds to the presentation Knuth2(n) one superfluous
generator cu for any u in col(n). We denote by Col1(n) the set of column generators cu for any u
in col(n) and by

γu : cxp . . . cx1 =⇒ cu

the defining relation for the column generators u = xp . . . x1 in col(n) of length greater than 2. In the
free monoid Col1(n)∗, the Knuth relations can be written in the following form

czcxcy
ηcx,y,z
=⇒ cxczcy for 1 6 x 6 y < z 6 n, and cyczcx

εcx,y,z
=⇒ cycxcz for 1 6 x < y 6 z 6 n.

The 2-polygraph Knuthcc
2 (n) whose 1-cells are columns and 2-cells are the defining relations for columns

generators and the Knuth relations ηcx,y,z and εcx,y,z is a presentation of the monoid Pn. In 2.3.3, we give
an other presentation of the column generators. One defines the 2-polygraph PreCol2(n) with column
generators and the set of 2-cells is

{
cxczy

α ′

x,zy
=⇒ czxcy | 1 6 x 6 y < z 6 n

}
∪

{
cyczx

α ′

y,zx
=⇒ cyxcz | 1 6 x < y 6 z 6 n

}
∪
{
cxcu

α ′

x,u
=⇒ cxu | xu ∈ col(n) and 1 6 x 6 n

}
,
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1. Introduction

where the 2-cells α ′
x,zy and α ′

y,zx correspond respectively to the Knuth relations ηcx,y,z and εcx,y,z. We
prove in Proposition 2.3.4 that the 2-polygraph PreCol2(n) is a presentation of the monoid Pn, then
called the pre-column presentation of Pn.

Column presentation. In 2.4, we recall the column presentation introduced in [5]. Given columns
u and v, if the planar representation of the Schensted tableau P(uv) is not the tableau obtained as the
concatenation of the two columns u and v, we will denote u v

× . In this case, the tableau P(uv) contains at
most two columns and we will denote u v

×1 if the tableau P(uv) has one column and we will denote u v
×2

if the tableau P(uv) has two columns. When u v
× , we define a 2-cell

αu,v : cucv ⇒ cwcw ′

where w = uv and cw ′ = 1, if u v
×1 , and w and w ′ are respectively the left and right columns of

the tableau P(uv), if u v
×2 . The 2-polygraph Col2(n) whose set of 1-cells is Col1(n) and the 2-cells

are the αu,v is a finite convergent presentation of the monoid Pn, called the column presentation of
the monoid Pn. The proof given in [5] for the convergence of Col2(n) consists in showing that the
2-polygraph Col2(n) has the unique normal form property. The construction in Section 3.2 gives an
other proof of the confluence of the 2-polygraph Col2(n) by showing the confluence of all the critical
branchings of the column presentation.

Coherent column presentation. In Section 3, we recall the notion of coherent presentation of a monoid.
A (3, 1)-polygraph is a pair (Σ2, Σ3) made of a 2-polygraph Σ2 and a globular extension Σ3 of the free
(2, 1)-category Σ⊤

2 . A coherent presentation of a monoid M is a (3, 1)-polygraph whose underlying
2-polygraph is a presentation of the monoid M and such that, for every 2-sphere γ of Σ⊤

2 , there exists
a 3-cell in Σ⊤

3 with boundary γ. Using the homotopical completion procedure from [9], we extend the
2-polygraph Col2(n) into a coherent presentation Col3(n) of the monoid Pn. In particular, we explicit
all the 3-cells Xu,v,t given by the confluence diagrams of the critical branchings and having the following
hexagonal form

cece ′ct
ceαe ′,t %9

Xu,v,t���

cecbcb ′ αe,bcb ′

!5VVV
VVVV

VVVV
VVV

cucvct

αu,vct )=hhhhhhh
hhhhhhh

cuαv,t
!5VVV

VVVV
VVVV

VVV
cacdcb ′

cucwcw ′

αu,wcw ′

%9 caca ′cw ′
caαa ′,w ′

)=hhhhhhh hhhhhhh

for any columns u, v and t such that u v t
× × . This shows the first main result of this article:

Theorem 3.2.2. For n > 0, the (3, 1)-polygraph Col3(n) is a coherent presentation of the

monoid Pn.

The extended presentation Col3(n) is called the column coherent presentation of the monoid Pn.

Pre-column coherent presentation. In Section 4, using the homotopical reduction procedure given
in [9, 2.3.3], we reduce the coherent presentation Col3(n) into a smaller coherent presentation of the
monoid Pn. We proceed in three steps. Firstly, we apply a homotopical reduction on the (3, 1)-polygraph
Col3(n) with a collapsible part defined by some of the generating triple confluences of the 2-polygraph
Col2(n). In this way, we reduce the coherent presentation Col3(n) of the monoid Pn into the coherent
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1. Introduction

presentation Col3(n) of Pn, whose underlying 2-polygraph is Col2(n) and the 3-cells Xu,v,t are those of
Col3(n), but with u is of length 1. Then we reduce the coherent presentation Col3(n) into a coherent
presentation PreCol3(n) obtained from PreCol2(n) by adjunction of the 3-cell RΓ3(C

′
x,v,t) where

cxvct

C ′

x,v,t���
cxcvct

αx,vct &:

cxαv,t
#7 cxcwcw ′

αx,wcw ′

%9 cxvczl...zq+1
cw ′

cxvαzl...zq+1,w ′

^rQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQ

with x v t
×1 ×2 , and the 3-cell RΓ3(Dx,v,t) where

cece ′ct
ceαe ′,t %9

Dx,v,t���

cecbcb ′ αe,bcb ′

!5VVV
VVVV

VVVV
VVV

cxcvct

αx,vct )=hhhhhhhh
hhhhhhhh

cxαv,t
!5VVV

VVVV
VVVV

VVV
cacdcb ′

cxcwcw ′

αx,wcw ′

%9 caca ′cw ′
caαa ′,w ′

)=hhhhhhh hhhhhhh

with x v t
×2 ×2 and where the homotopical reduction RΓ3 eliminates a collapsible part Γ3 of Col3(n). In

this way, we prove that

Theorem 4.3.5. For n > 0, the (3, 1)-polygraph PreCol3(n) is a coherent presentation of

the monoid Pn.

For instance, the coherent presentation Col3(2) has only one 3-cell

c21c21

C ′

2,1,21���
c2c1c21

α2,1c21 &:

c2α1,21
#7 c2c21c1 α2,21c1

%9 c21c2c1

c21α2,1
\pNNNNNNNNNNN

NNNNNNNNNNN

In this case, the (3, 1)-polygraphs PreCol3(2) and Col3(2) coincide. We give in 4.4.9 the values of
number of cells of the (3, 1)-polygraphs Col3(n) and PreCol3(n) for plactic monoids of rank n 6 10.

Knuth’s coherent presentation. In a final step, we reduce in 4.4 the coherent presentation PreCol3(n)
into a coherent presentation of the monoid Pn whose underlying 2-polygraph is Knuth2(n). We define
an extended presentation Knuth3(n) of the monoid Pn obtained from Knuth2(n) by adjunction of the
following set of 3-cells

{R(C ′

x,v,t)
∣∣ x v t

×1 ×2
} ∪ {R(Dx,v,t)

∣∣ x v t
×2 ×2

},

where R : Col3(n)⊤ → Knuthcc
3 (n)

⊤ is a Tietze transformation constructed throughout Section 4. We
obtain our main result:

Theorem 4.4.7. For n > 0, the (3, 1)-polygraph Knuth3(n) is a coherent presentation of

the monoid Pn.
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1. Introduction

For instance, the Knuth coherent presentation of the monoid P2 has generators c1 and c2 subject to
the Knuth relations ηc1,1,2 : c2c1c1 ⇒ c1c2c1 and εc1,2,2 : c2c2c1 ⇒ c2c1c2 and the following 3-cell

c2c2c1c1

2ηc1,1,2
�/

εc1,2,21

.Bc2c1c2c1C ′′���

Note that the Knuth coherent presentation of the monoid P2 corresponds to the coherent presentation that
one can compute directly using the fact that the 2-polygraph Knuth2(2) is convergent.

Coherence and Lakshmibai-Seshadri’s paths. The plactic monoid admits a description in terms of the
Kashiwara theory of crystal bases, [6, 17, 19, 18], and the Littelmann path model, [29]. In a last part of the
paper, we compute a coherent presentation of the monoid Pn using these two approaches. In Section 5,
we construct a convergent presentation of the monoid Pn using the notions of tableaux and Yamanouchi
paths. In this case, the plactic congruence ∼path(n) is defined in terms of a crystal isomorphism, see 5.3.1.
We recall in 5.1, the notion of paths from [29]. Consider Rn with its canonical basis (ε1, . . . , εn). A path

is a piecewise linear continuous map π : [0, 1] −→ X⊗Z R where X the lattice Zε1⊕ . . .⊕Zεn. Denote
by πεi the path that connects the origin with εi by a straight line.

2-polygraph of crystals. In 5.2, we recall the notion of tableaux, Lakshmibai-Seshadri’s paths and
Yamanouchi’s paths from [28, 29, 31, 35]. Using these notions, we define in 5.3.2 the 2-polygraph of

crystals as follows. Consider the 2-polygraph Crys02(n) whose 1-cells are πε1 , . . . πεn and whose 2-
cells are of the form ϑπw : πw ⇒ Y(πw), where πw is a non-Yamanouchi path tableau and Y(πw) is
its corresponding Yamanouchi path tableau such that πw(1) = Y(πw)(1). For k > 0, we define the 2-
polygraph Crysk2(n) whose 1-cells are πε1 , . . . πεn and whose 2-cells are of the form ϑ

αjk
πw : fαjk

(πw)⇒
fαjk

(Y(πw)), where πw and Y(πw) are respectively non-Yamanouchi and Yamanouchi paths tableaux
such that πw(1) = Y(πw)(1) and where fαjk

is a composite of roots operators fαi
, defined in 5.1.3. We

define the 2-polygraph of crystals Crys2(n) as the union ∪
i>0

Crysi2(n). We prove that

Theorem 5.3.3. For n > 0, the 2-polygraph Crys2(n) is a convergent presentation of the

monoid Pn.

Path coherent presentation. Finally, we end Section 5 by constructing a coherent presentation of the
monoid Pn in terms of Lakshmibai-Seshadri’s paths. We consider the 1-polygraph Path1(n) with only
one 0-cell and whose 1-cells are all Lakshmibai-Seshadri’s paths. For each pair (πu, πv) in Path1(n)
such that πu ⋆ πv is not a tableau, we define a 2-cell απu,πv : πu ⋆ πv ⇒ πw ⋆ πw ′ , where πw ⋆ πw ′ is
the unique tableau such that πu ⋆ πv ∼path(n) πw ⋆ πw ′ . The 2-polygraph of paths, denoted by Path2(n),
is the 1-polygraph Path1(n) extended by the set of 2-cells απu,πv , where πu and πv are in Path1(n) such
that πu ⋆ πv is not a tableau. Then we consider the extended presentation Path3(n) of the monoid Pn

8



1. Introduction

obtained from Path2(n) by adjunction of the following 3-cell

πe ⋆ πe ′ ⋆ πt
πeαπe ′ ,πt%9

���

πe ⋆ πb ⋆ πb ′ απe,πbπb ′

"6YYYY
YYYY

YYYYY
YYY

πu ⋆ πv ⋆ πt

απu,πvπt (<eeeeeeee eeeeeeee

πuαπv,πt
"6YYYY

YYYY
YYYYY

YYY
πa ⋆ πd ⋆ πb ′

πu ⋆ πw ⋆ πw ′

απu,πwπw ′

%9 πa ⋆ πa ′ ⋆ πw ′
πaαπa ′ ,πw ′

(<eeeeeeee eeeeeeee

where the paths πu ⋆ πv and πv ⋆ πt are not tableaux. As a consequence of Theorem 3.2.2, we deduce
that the (3, 1)-polygraph Path3(n) is a coherent presentation of the monoid Pn.

Applications and perspectives. In [9], a description of the category of actions of a monoid on categories
is given in terms of coherent presentations. Using this description, Theorem 4.4.7 allows to present ac-
tions of plactic monoids on categories as follows. The category Act(Pn) of actions of the monoid Pn
on categories is equivalent to the category of 2-functors from the (2, 1)-category Knuth2(n)⊤ to the
category Cat of categories, that sends the 3-cells of Knuth3(n) to commutative diagrams in Cat. One
potential application is the actions of the plactic monoid in the category of finite dimensional representa-
tions of the general Lie algebra or in the category O of finite and infinite dimensional representations of
the general Lie algebra, [16].

Following [11], a convergent presentation of a monoid can be extended into a polygraphic resolution
of the monoid, that is, a cofibrant replacement of the monoid in the category of (∞, 1)-categories. The
column presentation Col2(n) of the monoid Pn can then be extended into a polygraphic resolution whose
n-cells, for every n > 3, are indexed by (n−1)-fold branching of Col2(n). We can explicit the 4-cells of
this resolution, which correspond to the confluence diagrams induced by critical triple branchings with
source cucvctce for all columns u, v, t and e such that u v

× , v t
× and t e

× . These 4-cells have a
permutohedral form. More generally, one may conjecture that the generating n-cells of the resolution
have the form of the permutohedron of order n corresponding to a confluence diagram of (n − 1) over-
lapping reductions. This construction should generalise the construction of the Anick resolution for the
monoid Pn starting with the column presentation, given by Lopatkin in [30].

Finally, by extending our construction to plactic monoids of other types, we expect other potential
applications in representation theory. In particular, our approach for plactic monoids of type A could
be applied for computations of finite coherent presentations for the plactic monoids of type B, C and D.
The column rules for the type A are defined by the Schensted insertion algorithm. For the other types,
the column rules are defined by Lecouvey’s insertion algorithm, [26, 27], as was shown in [14]. We
expect that the syzygies for the classical types have an hexagonal form as shown for type A. Finally, this
question is more difficult for the exceptional types that we are not able to give a conjectural form.

9



2. Column presentation of plactic monoids

2. COLUMN PRESENTATION OF PLACTIC MONOIDS

In this work, rewriting methods are presented in the language of polygraphs, that we recall in this section.
We refer the reader to [11] and [12] for a deeper presentation.

2.1. Presentations of monoids by two-dimensional polygraphs

2.1.1. Two-dimensional polygraphs. A 1-polygraph is a directed graph

Σ0 Σ1
t0

oo

s0
oo

given by a set Σ0 of 0-cells, a set Σ1 of 1-cells together with two maps s0 and t0 sending a 1-cell x
on its source s0(x) and its target t0(x). We will denote by Σ∗

1 the free category generated by the
1-polygraph (Σ0, Σ1). Its set of 0-cells is Σ0 and for any 0-cells p and q, the 1-cells of the hom-
set Σ∗

1(p, q) are paths from p to q in the 1-polygraph (Σ0, Σ1). The composition is the concatenation of
paths and the identity on a 0-cell p is the empty path with source and target p. A globular extension of
the free category Σ∗

1 is a set Σ2 equipped with two maps

Σ∗

1 Σ2
t1

oo

s1
oo

such that, for every β in Σ2, the pair (s1(β), t1(β)) is a 1-sphere in the category Σ∗

1, that is,

s0s1(β) = s0t1(β) and t0s1(β) = t0t1(β).

An element of the globular extension Σ2 can be represented by a 2-cell with the following globular shape

p

u
  

v

==
β�� q

that relates parallel 1-cells u and v of Σ∗

1. A 2-polygraph Σ is a triple (Σ0, Σ1, Σ2), where (Σ0, Σ1) is a 1-
polygraph and Σ2 is a globular extension of the free category Σ∗

1. The elements of Σ2 are called the 2-cells

of the 2-polygraph Σ, or the rewriting rules defined by Σ. If there is no possible confusion, Σ2 will denote
the set of 2-cells of the 2-polygraph Σ or the 2-polygraph itself. A 2-category is a category enriched in
categories. When two 1-cells, or 2-cells, f and g of a 2-category are i-composable, for i = 0, 1, that
is ti(f) = si(g), we denote by f ⋆i g their i-composite. A (2, 1)-category is a category enriched in
groupoid, that is a 2-category whose 2-cells are invertible for the 1-composition. We will denote by
Σ∗

2 (resp. Σ⊤

2 ) the 2-category (resp. (2, 1)-category) freely generated by the 2-polygraph Σ. We refer
the reader to [12, Section 2.4.] for expended definitions of 2-categories and constructions of the 2-
categories Σ∗

2 and Σ⊤

2 .
In this article, we deal with rewriting in monoids, that is, categories with only one 0-cell, so that the

set Σ0 is reduced to a set with exactly one element denoted •. In this case, the 1-polygraph (Σ0, Σ1) will
be identified to a set Σ1 and Σ∗

1 will be identified to the free monoid on Σ1.

10



2.1. Presentations of monoids by two-dimensional polygraphs

2.1.2. Presentations of monoids by 2-polygraphs. The monoid presented by a 2-polygraph Σ, denoted
by Σ, is defined as the quotient of the free monoid Σ∗

1 by the relations s1(β) = t1(β), for every 2-cell
β of Σ∗

2. A presentation of a monoid M is a 2-polygraph whose presented monoid is isomorphic to M.
Two 2-polygraphs are Tietze equivalent if they present isomorphic monoids.

2.1.3. Tietze transformations of 2-polygraphs. A 2-cell β of a 2-polygraph Σ is collapsible, if t1(β) is
a 1-cell of Σ1 and the 1-cell s1(β) does not contain t1(β). The target of a collapsible 2-cell is a redundant

1-cell. Tietze transformations were introduced in group theory in order to transform a presentation of a
group into a presentation of the same group by adding or removing generators and rules, [38]. This notion
can be defined for 2-polygraphs. Recall from [9, 2.1.1.], that an elementary Tietze transformation of a
2-polygraph Σ is a 2-functor with domain Σ⊤

2 that belongs to one of the following four transformations:

i) adjunction ι1β : Σ⊤

2 → Σ⊤

2 [x](β) of a redundant 1-cell x with its collapsible 2-cell β:

•
u

// • �
ι1β

///o/o/o/o/o •

u
  

x

>>
β�� •

ii) elimination πβ : Σ⊤

2 → (Σ1 \ {x}, Σ2 \ {β})
⊤ of a redundant 1-cell x with its collapsible 2-cell β:

•

u
  

x

>>
β�� • � πβ

///o/o/o/o/o •
u

// •

which maps x to u and the 2-cell β to 1u and being identity on the others cells,

iii) adjunction ιβ : Σ⊤

2 → Σ⊤

2 (β) of a redundant 2-cell β:

•
  

>>
γ�� • � ιβ

///o/o/o/o/o •
  

>>
γ�� β�� •

iv) elimination π(γ,β) : Σ
⊤

2 → Σ⊤

2 /(γ,β) of a redundant 2-cell β:

•
  

>>
γ�� β�� • �

π(γ,β)
///o/o/o/o/o •

  

>>
γ�� •

If Σ and Υ are 2-polygraphs, a Tietze transformation from Σ to Υ is a 2-functor F : Σ⊤ → Υ⊤ that
decomposes into sequence of elementary Tietze transformations. Two 2-polygraphs are Tietze equivalent
if, and only if, there exists a Tietze transformation between them [9, Theorem 2.1.3.].

11



2. Column presentation of plactic monoids

2.1.4. Nielsen transformation. Recall the notion of Nielsen transformation from [9, 2.1.4.]. Given a
2-polygraph Σ and a 2-cell

u1
γ1
=⇒ u

γ
=⇒ v

γ2
=⇒ v2

inΣ⊤

2 , the Nielsen transformation κγ←β is the Tietze transformation that replaces in the (2, 1)-category Σ⊤

2

the 2-cell γ by a 2-cell β : u1 ⇒ v2. The transformation κγ←β can be decomposed into the following
composition of elementary Tietze transformations:

Σ⊤

2

ιβ
−→ Σ⊤

2 (β)
π
(γ−

1
⋆1β⋆1γ

−
2
,γ)

−→ Σ⊤

2 /(γ
−
1 ⋆1 β ⋆1 γ

−
2 , γ).

When γ2 is identity, we will denote by κ
′

γ←β the Nielsen transformation which, given a 2-cell u1
γ1
=⇒ u

γ
=⇒ v

in Σ⊤

2 , replaces the 2-cell γ by a 2-cell β : u1 ⇒ v.

2.1.5. Rewriting sequences. A rewriting step of a 2-polygraph Σ is a 2-cell of Σ∗

2 with shape

•
w

// •

u
  

v

>>
β�� •

w ′

// •

where β is a 2-cell of Σ2 and w and w ′ are 1-cells of Σ∗

1. A rewriting sequence of Σ is a finite or infinite
sequence

u1 %9 u2 %9 · · · %9 un %9 · · ·

of rewriting steps. If Σ has a rewriting sequence from u to v, we say that u rewrites into v. A 1-cell u
of Σ∗

1 is a normal form if there is no rewriting step with source u. The 2-polygraph Σ terminates if it has
no infinite rewriting sequence. In that case, every 1-cell of Σ∗

1 has at least one normal form.

2.1.6. Branchings. A branching of the 2-polygraph Σ is a non ordered pair (f, g) of 2-cells of Σ∗

2 with
a common source, that is s1(f) = s1(g). A branching (f, g) is local if f and g are rewriting steps. A
branching is aspherical if it is of the form (f, f), for a rewriting step f and Peiffer when it is of the
form (fv, ug) for rewriting steps f and g with s1(f) = u and s1(g) = v. The overlapping branchings are
the remaining local branchings. Local branchings are ordered by the order ⊑ generated by the relations

(f, g) ⊑
(
wfw ′,wgw ′)

given for any local branching (f, g) and any possible 1-cellsw andw ′ of the category Σ∗

1. An overlapping
local branching that is minimal for the order ⊑ is called a critical branching.

2.1.7. Confluence. A branching (f, g) is confluent if there exist 2-cells f ′ and g ′ in Σ∗

2, as in the follow-
ing diagram:

v f ′

�-
u

f &:

g $8

u ′

w g ′

2F
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2.2. Plactic monoids

We say that a 2-polygraph Σ is confluent (resp. locally confluent) if all of its branchings (resp. local
branchings) are confluent. If Σ is confluent, every 1-cell of Σ∗ has at most one normal form. The critical
branching Lemma, [12, Theorem 3.1.5.], states that a 2-polygraph is locally confluent if and only if all its
critical branchings are confluent. The Newman Lemma, [12, Theorem 3.1.6.], states that for terminating
2-polygraphs, local confluence and confluence are equivalent properties.

2.1.8. Convergence. A 2-polygraph Σ is convergent if it terminates and it is confluent. Such a Σ is
called a convergent presentation of any monoid isomorphic to Σ. In that case, every 1-cell u of Σ∗

1 has a
unique normal form.

2.2. Plactic monoids

We recall the definition and properties of plactic monoids. We refer the reader to [31] and [8] for a full
introduction to the plactic structure and tableaux.

2.2.1. Rows, columns and tableaux. For a natural number n > 0, we denote by [n] the finite
set {1, 2, . . . , n} totally ordered by 1 < 2 < . . . < n. A row is a non-decreasing 1-cell x1 . . . xk in
the free monoid [n]∗, i.e., with xi 6 xi+1 for 1 6 i 6 k − 1. A column is a decreasing 1-cell xp . . . x1
in the free monoid [n]∗, i.e., with xi+1 > xi, for 1 6 i 6 p − 1. We will denote by col(n) the set of
non-empty columns in [n]∗. We denote by ℓ(w) the length of a 1-cell w and we denote by ℓnds(w) the
length of the longest non-decreasing subsequence in w.

A row x1 . . . xk dominates a row y1 . . . yl, and we denote x1 . . . xk ⊲ y1 . . . yl, if k 6 l and xi > yi,
for 1 6 i 6 k. Any 1-cell w in [n]∗ has a unique decomposition as a product of rows of maximal
length w = u1 . . . uk. Such a 1-cell w is a (semistandard) tableau if u1 ⊲ u2 ⊲ . . . ⊲ uk. It
is usual to write tableaux in a planar form, with the rows placed in order of domination from bottom
to top and left-justified as in [8]. For example, the 1-cells 13123 and 23412 are not tableaux and the
1-cell 6745662233461112234 is a tableau whose planar representation is

1 1 1 2 2 3 4
2 2 3 3 4 6
4 5 6 6
6 7 (1)

The column reading of the planar representation of a tableau w constructs a 1-cell, denoted by C(w),
obtained by reading the planar representation ofw column-wise from bottom to top and from left to right.
For example, the column reading of the tableau (1) is 6421752163163242634.

2.2.2. Total orders on columns. We will denote by 4deglex the total order on col(n) defined by u 4deglex v

if
ℓ(u) < ℓ(v) or

(
ℓ(u) = ℓ(v) and u <lex v

)
,

for all u and v in col(n), where <lex denotes the lexicographic order on [n]∗ induced by the total order
on [n]. We will denote by 4rev the total order on col(n) defined by u 4rev v if

ℓ(u) > ℓ(v) or
(
ℓ(u) = ℓ(v) and u <lex v

)
,

for all u and v in col(n).
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2. Column presentation of plactic monoids

2.2.3. Schensted’s algorithm. The Schensted algorithm computes for each 1-cellw in the free monoid [n]∗

a tableau denoted by P(w), called the Schensted tableau of w and constructed as follows, [32]. Given
w a tableau written as a product of rows of maximal length w = u1 . . . uk and y in [n], it computes the
tableau P(wy) as follows:

i) if uky is a row, the result is u1 . . . uky ;

ii) if uky is not a row, then suppose uk = x1 . . . xl with xi in [n] and let j minimal such that xj > y,
then the result is P(u1 . . . uk−1xj)vk where vk = x1 . . . xj−1yxj+1 . . . xl.

Given a 1-cell w, the tableau P(w) is computed by starting with the empty tableau, corresponding
to the empty 1-cell, and iteratively applying the Schensted algorithm. In other words, P(w) is the row
reading of the planar representation of the tableau computed by the Schensted algorithm. The number
of columns in P(w) is equal to ℓnds(w), [32]. In particular, if P(w) consists of one column, then the
1-cell w is a column. Finally, note that if w is a tableau, then P(w) = w holds in [n]∗.

2.2.4. Plactic monoids. We will denote by ∼plax(n) the equivalence relation on the free monoid [n]∗

defined by u ∼plax(n) v if P(u) = P(v) in [n]∗. The plactic monoid of rank n, denoted by Pn, is the
quotient of the free monoid [n]∗ by the congruence ∼plax(n).

2.2.5. Knuth’s 2-polygraph and the plactic congruence. The Knuth 2-polygraph of rank n is the
2-polygraph, denoted by Knuth2(n), whose set of 1-cells is [n] and the set of 2-cells is

{ zxy
ηx,y,z
=⇒ xzy | 1 6 x 6 y < z 6 n } ∪ { yzx

εx,y,z
=⇒ yxz | 1 6 x < y 6 z 6 n }. (2)

These 2-cells correspond to the Knuth relations defined in [21] with an orientation compatible with the
lexicographic order<lex. The congruence on the free monoid [n]∗ generated by the 2-polygraph Knuth2(n)
is called the plactic congruence of rank n. Knuth showed in [21] that for any u and v in [n]∗, we
have u ∼plax(n) v if and only if u and v are equal modulo the plactic congruence.

2.2.6. Proposition ([21, Theorem 6]). The 2-polygraph Knuth2(n) is a presentation of the monoid Pn.

Each plactic congruence class contains exactly one tableau. Indeed, any 1-cellw in [n]∗ is equal to its
Schensted’s tableau in Pn, that is,w = P(w) holds in Pn, [31, Proposition 5.2.3]. Moreover, a 1-cellw is
equal to the column reading of the planar representation of the tableau P(w), that is,w = C(P(w)) holds
in Pn [31, Problem 5.2.4]. Finally, the Knuth relations being homogeneous, we have ℓ(P(w)) = ℓ(w),
for any 1-cell w in [n]∗.

2.3. Pre-column presentation

2.3.1. Columns as generators. One adds to the presentation Knuth2(n) one superfluous generator cu
for any u in col(n). Let us denote by

Col1(n) =
{
cu

∣∣ u ∈ col(n)
}

the set of column generators of the monoid Pn and by

C2(n) =
{
cxp . . . cx1

γu
=⇒ cu

∣∣ u = xp . . . x1 ∈ col(n) with ℓ(u) > 2
}

14



2.3. Pre-column presentation

the set of the defining relations for the column generators. In the free monoid Col1(n)∗, the Knuth
relations (2) can be written in the following form

{
czcxcy

ηcx,y,z
=⇒ cxczcy

∣∣ 1 6 x 6 y < z 6 n
}

∪
{
cyczcx

εcx,y,z
=⇒ cycxcz

∣∣ 1 6 x < y 6 z 6 n
}
. (3)

Let denote by Knuthc
2(n) the 2-polygraph whose set of 1-cells is {c1, . . . , cn} and whose set of 2-cells

is given by (3). By definition, this 2-polygraph is Tietze equivalent to the 2-polygraph Knuth2(n). Indeed,
the mapping i 7→ ci, for any i in [n], induces an isomorphism between the two presented monoids. In
the sequel, we will identify the 2-polygraphs Knuthc

2(n) and Knuth2(n) through this mapping. Let us
define the 2-polygraph Knuthcc

2 (n), whose 1-cells are columns and 2-cells are the defining relations for
columns generators and the Knuth relations:

Knuthcc
2 (n) := 〈 Col1(n) | C2(n) ∪ Knuthc

2(n) 〉.

2.3.2. Proposition. For n > 0, the 2-polygraph Knuthcc
2 (n) is a presentation of the monoid Pn.

Proof. We have Col1(n) = { c1, . . . , cn } ∪ { cu
∣∣ u ∈ col(n), ℓ(u) > 2 }, thus in order to prove that the

2-polygraphs Knuthcc
2 (n) and Knuthc

2(n) are Tietze equivalent, we add to the 2-polygraph Knuthc
2(n)

all the column generator cu, for all u = xp . . . x1 in col(n) such that ℓ(u) > 2, and the corresponding
collapsible 2-cell : γu : cxp . . . cx1 ⇒ cu. We apply successively a Tietze transformation ι1γu , defined
in 2.1.3. i), from the bigger column in col(n) to the smaller one with respect to the order 4deglex. The
composite

T1 = ι
1
γ1

◦ . . . ◦ ι1γui
◦ ι1γui+1

◦ . . . ◦ ι1γn...1
,

with ui 4deglex ui+1, defines a Tietze transformation

T1 : Knuthc
2(n)

⊤ −→ Knuthcc
2 (n)

⊤,

which proves that Knuthcc
2 (n) is Tietze equivalent to Knuthc

2(n), hence Tietze equivalent to Knuth2(n).

2.3.3. Pre-column presentation. Let us define the 2-polygraph PreCol2(n) whose set of 1-cells is Col1(n)
and the set of 2-cells is

PreCol2(n) = PC2(n) ∪
{
cxcu

α ′

x,u
=⇒ cxu | xu ∈ col(n) and 1 6 x 6 n

}
,

where

PC2(n) =
{
cxczy

α ′

x,zy
=⇒ czxcy | 1 6 x 6 y < z 6 n

}
∪
{
cyczx

α ′

y,zx
=⇒ cyxcz | 1 6 x < y 6 z 6 n

}
.

We will see in Lemma 2.3.5 that the 2-cells α ′
x,zy and α ′

y,zx correspond respectively to the Knuth
relations ηx,y,z for 1 6 x 6 y < z 6 n and εx,y,z for 1 6 x < y 6 z 6 n. They also correspond to the
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2. Column presentation of plactic monoids

following Schensted transformations as indicated in the following diagrams:

x y
z

α ′

x,zy
#7

C
(
x y
z

)

��

x y
z

C
(
x y
z

)

��

xzy
P(xz)

// x z y

P((xz)y)
;;

zxy

ηx,y,z

\p

y x
z

α ′

y,zx
#7

C
(
y x
z

)

��

x z
y

C
(
x z
y

)

��

yzx
P(yz)

//

εx,y,z

.B
y z x

P((yz)x)
<<

yxz

2.3.4. Proposition. For n > 0, the 2-polygraph PreCol2(n) is a presentation of the monoid Pn.

The 2-polygraph PreCol2(n) is called the pre-column presentation of Pn. The proof of Proposi-
tion 2.3.4 is given by the following two lemmas.

2.3.5. Lemma. The 2-polygraph

CPC2(n) := 〈 Col1(n) | C2(n) ∪ PC2(n) 〉

is Tietze equivalent to the 2-polygraph Knuthcc
2 (n).

Proof. For 1 6 x 6 y < z 6 n, consider the following critical branching

cxczcy
cxγzy%9 cxczy

czcxcy

ηcx,y,z (<

γzxcy
"6 czxcy

of the 2-polygraph Knuthcc
2 (n). Let consider the Tietze transformation

κηcx,y,z←α ′

x,zy
: Knuthcc

2 (n)
⊤ −→ Knuthcc

2 (n)
⊤/(ηcx,y,z ← α ′

x,zy),

that substitutes the 2-cell α ′
x,zy : cxczy ⇒ czxcy to the 2-cell ηcx,y,z, for every 1 6 x 6 y < z 6 n.

We denote by Tη←α ′ the successive applications of the Tietze transformation κηcx,y,z←α ′

x,zy
, for every

1 6 x 6 y < z 6 n, with respect to the lexicographic order on the triples (x, y, z) induced by the total
order on [n].

Similarly, for 1 6 x < y 6 z 6 n, consider the following critical branching

cycxcz
γyxcz%9 cyxcz

cyczcx

εcx,y,z (<

cyγzx
"6 cyczx

of the 2-polygraph Knuthcc
2 (n). Let consider the Tietze transformation

κεcx,y,z←α ′

y,zx
: Knuthcc

2 (n)
⊤ −→ Knuthcc

2 (n)
⊤/(εcx,y,z ← α ′

y,zx),
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2.3. Pre-column presentation

that substitutes the 2-cell α ′
y,zx : cyczx ⇒ cyxcz to the 2-cell εcx,y,z, for every 1 6 x < y 6 z 6 n.

We denote by Tε←α ′ the successive applications of the Tietze transformation κεcx,y,z←α ′

x,zy
, for every

1 6 x < y 6 z 6 n, with respect to the lexicographic order on the triples (x, y, z) induced by the total
order on [n].

Let define the composite Tη,ε←α ′ = Tη←α ′ ◦ Tε←α ′ , this gives us a Tietze transformation:

Tη,ε←α ′ : Knuthcc
2 (n)

⊤ −→ CPC2(n)
⊤.

In this way, the 2-polygraphs Knuthcc
2 (n) and CPC2(n) are Tietze equivalent.

The following lemma proves that the 2-polygraph PreCol2(n) is a presentation of the monoid Pn.

2.3.6. Lemma. The 2-polygraph PreCol2(n) is Tietze equivalent to the 2-polygraph CPC2(n).

Proof. Let xp . . . x1 be a column with ℓ(xp . . . x1) > 2 and define α ′
y,x := γyx : cycx ⇒ cyx, for

every x < y. Consider the following critical branching

cxpcxp−1...x1

cxpcxp−1
. . . cx1

cxpγxp−1...x1 (<

γxp...x1
$8 cxp...x1

of the 2-polygraph CPC2(n) and the following Tietze transformation

κ
′

γxp...x1
←α ′

xp,xp−1...x1
: CPC2(n)

⊤ −→ CPC2(n)
⊤/(γxp...x1 ← α ′

xp,xp−1...x1
),

that substitutes the 2-cell
α ′

xp,xp−1...x1
: cxpcxp−1...x1 =⇒ cxp...x1 ,

to the 2-cell
γxp...x1 : cxp . . . cx1 =⇒ cxp...x1 ,

for each column xp . . . x1 such that ℓ(xp . . . x1) > 2. Starting from the 2-polygraph CPC2(n), we
apply successively the Tietze transformation κ

′

γxp...x1
←α ′

xp,xp−1...x1

, for every column xp . . . x1 such

that ℓ(xp . . . x1) > 2, from the bigger to the smaller one with respect to the total order 4deglex.
Let us define the composite

Tγ←α ′ = κ
′

γx3x2x1←α
′

x3,x2x1
◦ . . . ◦ κ

′

γxn...x1
←α ′

xn,xn−1...x1
,

with x3x2x1 4deglex . . . 4deglex xn . . . x1. This gives us a Tietze transformation:

Tγ←α ′ : CPC2(n)
⊤ −→ PreCol2(n)

⊤.

In this way, we prove that PreCol2(n) is Tietze equivalent to CPC2(n).

To resume the construction of this section, we have constructed the following Tietze equivalences:

Knuth2(n)
⊤ T1−→ Knuthcc

2 (n)
⊤
Tη,ε←α ′

−→ CPC2(n)
⊤
Tγ←α ′

−→ PreCol2(n)
⊤.
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2. Column presentation of plactic monoids

2.4. Column presentation

2.4.1. Notation. Let n > 0 be a natural number. Given columns u = xp . . . x1 and v = yq . . . y1
in col(n), we consider the tableau P(uv). As observed in [5, Lemma 3.1.], the length ℓnds(uv) of the
longest non-decreasing subsequence of uv is lower or equal to 2. Indeed, if uv is a column, necessary
its non-decreasing subsequences are each of length equal to one and thus ℓnds(uv) = 1. Otherwise, if
uv is not a column, then x1 6 yq. Hence all the non-decreasing subsequences of uv are of length 2.
As a consequence, the tableau P(uv) contains at most two columns. We will use graphical notations
depending on whether the tableau P(uv) consists in two columns:

i) we will denote u v if the planar representation of P(uv) is the tableau:

x1 y1
...

...
yq

xp

that is, p > q and xi 6 yi, for any i 6 q,

ii) we will denote u v
× in all the other cases, that is, when p < q or xi > yi, for some i 6 q.

In the case ii), we will denote u v
×1 if the tableau P(uv) has one column and we will denote u v

×2 if
the tableau P(uv) has two columns.

2.4.2. Column presentation. For every columns u and v in col(n) such that u v
× , we define a 2-cell

αu,v : cucv ⇒ cwcw ′

where

i) w = uv and cw ′ = 1, if u v
×1 ,

ii) w and w ′ are respectively the left and right columns of the tableau P(uv), if u v
×2 .

Let us denote by Col2(n) the 2-polygraph whose set of 1-cells is Col1(n) and the set of 2-cells is

Col2(n) =
{
cucv

αu,v
=⇒ cwcw ′

∣∣ u, v ∈ col(n) and u v
×
}
. (4)

Note that the 2-cells of PreCol2(n) correspond to the 2-cells αu,v of Col2(n), where ℓ(u) = 1

and ℓ(v) = 2. Moreover, we notice that, for any 2-cells αu,v : cucv ⇒ cwcw ′ of Col2(n), there exists a
2-cell in PreCol2(n)∗ with source cucv and target cwcw ′ .
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2.4. Column presentation

2.4.3. Column presentation and Schensted’s algorithm. Let us remark that Schensted’s Algorithm 2.2.3
that computes a tableau P(w) from a 1-cell w in [n]∗, corresponds to the leftmost reduction path
in Col∗2(n) from the 1-cell w to its normal form P(w), that is, the reduction paths obtained by apply-
ing the rules of Col2(n) starting from the left. For example, consider the 1-cell w = 421532435452

in [5]∗. To compute the tableau P(w), one applies the following successive rules of Col2(5) starting in
each step from the left:

w = 4 2 1 5 3 2 4 3 5 4 5 2
α4,2
=⇒ 2

4
1 5 3 2 4 3 5 4 5 2

α42,1
=⇒ 1

2
4

5 3 2 4 3 5 4 5 2

1
2
4

5 3 2 4 3 5 4 5 2
α5,3
=⇒ ( . . . )

α5,4
=⇒ 1

2
4

2
3
5

3
4
4
5
5 2

α5,2
=⇒ 1

2
4

2
3
5

3
4
4
5
2
5

α54,52
=⇒ 1

2
4

2
3
5

3
4
2
4
5

5

1
2
4

2
3
5

3
4
2
4
5

5
α43,542
=⇒ 1

2
4

2
3
5

2
3
4

4
5
5
α532,432
=⇒ 1

2
4

2
3
4
5

2
3
4
5
5
α421,5432
=⇒ 1 2 2 4 5

2 3 3 5
4 4
5

= P(w)

In particular, for any columns u and v in col(n) such that u v
× , applying successive rules of Col2(n)

on uv starting in each step from the left leads to a unique normal form, which is the tableau P(uv).

2.4.4. Proposition. The 2-polygraph Col2(n) has the unique normal form property.

Proof. Consider a 1-cell w in Col1(n)∗ and let w ′ and w ′′ be normal forms of w. Proving the unique
normal form property consists in showing that the normal forms w ′ and w ′′ are equal. Let T ′ (resp. T ′′)
be the planar representation ofw ′ (resp. w ′′). Sincew ′ andw ′′ are normal forms, they don’t contain any
subsequences that form sources of 2-cells in Col2(n). As a consequence, T ′ (resp. T ′′) is a juxtaposition
of columns that form a tableau. Hence, the normal forms w ′ and w ′′ are tableaux such that the equal-
ity w = w ′ = w ′′ holds in the monoid Pn. Since each congruence contains exactly one tableau [31,
Theorem 5.2.5], we have that w ′ = w ′′.

2.4.5. Proposition. For n > 0, the 2-polygraph Col2(n) is a presentation of the monoid Pn.

The 2-polygraph Col2(n) is called the column presentation of the monoid Pn. Note that, the set of
columns being finite, this 2-polygraph is finite.

Proof. Let us prove that the 2-polygraph Col2(n) is Tietze equivalent to the 2-polygraph Knuthcc
2 (n).

Any 2-cell in Knuthcc
2 (n) can be deduced from a 2-cell in Col2(n) as follows. For any 1 6 x 6 y <

z 6 n (resp. 1 6 x < y 6 z 6 n), the 2-cells ηcx,y,z (resp. εcx,y,z) can be deduced by the following
composition

czcxcy
ηcx,y,z %9

αz,xcy
��

cxczcy

cxαz,y
��

czxcy cxczyαx,zy
ey

(resp.

cyczcx
εcx,y,z %9

cyαz,x
��

cycxcz

αy,xcz
��

cyczx αy,zx
%9 cyxcz

).
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2. Column presentation of plactic monoids

For any column xp . . . x1, the 2-cell γxp...x1 can be deduced by the following composition

cxp . . . cx1
γxp...x1 %9

αxp,xp−1
cxp−2

. . . cx1
��

cxp...x1

cxpxp−1
cxp−2

. . . cx1
%9 (. . . ) %9 cxp...x2cx1

αxp...x2,x1

EY

As a consequence, if the 1-cells w and w ′ in Col1(n)∗ are equal modulo relations in Knuthcc
2 (n),

then they are equal modulo relations in Col2(n). Conversely, if the 1-cells w and w ′ in Col1(n)∗ are
equal modulo relations in Col2(n), by Proposition 2.4.4, they have the same normal form with respect
to Col2(n). Moreover, this normal form is the common tableau of the 1-cells w and w ′. It follows that
w and w ′ are in the plactic congruence and hence they are equal modulo Knuthcc

2 (n).

2.4.6. Termination of the column presentation. The termination of the 2-polygraph Col2(n) can be
proved using the terminating order ≪ defined on Col1(n)∗ as follows. For cui and cvj in Col1(n), we
have cu1 . . . cuk ≪ cv1 . . . cvl , if

{
k < l or

k = l and ∃ i ∈ {1, . . . , k} such that ui 4rev vi and cuj = cvj for any j < i.

The relation ≪ is a well-ordering on Col1(n)∗, which is compatible with rules in Col2(n) proving the
termination [5, Lemma 3.2]. An other method to prove termination of the 2-polygraph Col2(n) will be
given in 3.2.7.

2.4.7. Confluence of the column presentation. The column presentation is confluent, [5, Lemma 3.3].
The proof given in [5] consists in showing that the 2-polygraph Col2(n) has the unique normal form
property. Note that our construction in Section 3.2 gives an other proof of the confluence of the 2-
polygraph Col2(n) by showing the confluence of all the critical branchings of the column presentation.

2.4.8. Cardinality of the column presentation. For m = 1 and m = 2, let us denote by κ(n,m) the
number of m-cells of the presentation Col2(n) of the monoid Pn. We refer the reader to 4.4.9 for the
values of number of cells of the 2-polygraph Col2(n) for plactic monoids of low-dimensional rank n.

2.4.9. Proposition. For n > 0, we have κ(n, 1) = 2n − 1 and

κ(n, 2) = κ(n, 1)2 −


 ∏

16i6j6n

i+ j + 1

i+ j − 1
−
∏

16i6j6n

i+ j

i+ j − 1


 .

Proof. The number κ(n, 1) is the sum of the number of columns of length k for any 1 6 k 6 n.

Moreover, the number of columns of length k is equal to

(
n

k

)
. Hence we have κ(n, 1) =

n∑

k=1

(
n

k

)
=

2n − 1.
Denote by Sn,q the set of all tableaux with at most q columns and with entries in [n]. By Gordon [10],

we have

|Sn,q| =
∏

16i6j6n

q+ i+ j − 1

i+ j − 1
.
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3. Coherent column presentation

Then, for two columns u and v in col(n) the number of possibilities of u v
× is |Sn,2| − |Sn,1|. In addi-

tion, the number of possibilities of u v
× and u v is κ(n, 1)2. Since κ(n, 2) is equal to the number of

possibilities of u v
× , we have κ(n, 2) = κ(n, 1)2 − (|Sn,2| − |Sn,1|).

3. COHERENT COLUMN PRESENTATION

3.1. Coherent presentations of monoids

3.1.1. (3, 1)-polygraph. A (3, 1)-polygraph is a pair (Σ2, Σ3) made of a 2-polygraph Σ2 and a globular
extension Σ3 of the (2, 1)-category Σ⊤

2 :

Σ⊤

2 Σ3
t2

oo

s2
oo .

An element of the globular extension Σ3 can be represented by a 3-cell with the following globular shape

•

u

!!

v

==f
��

g
��

A_ %9 • or u

f
�(

g

5I vA���

that relates parallel 2-cells f and g in the (2, 1)-category Σ⊤

2 . We will denote by Σ⊤

3 the free (3, 1)-
category generated by the (3, 1)-polygraph (Σ2, Σ3). A pair (f, g) of 2-cells of Σ⊤

2 such that s1(f) =

s1(g) and t1(f) = t1(g) is called a 2-sphere of Σ⊤

2 .

3.1.2. Coherent presentations of monoids. An extended presentation of a monoid M is a (3, 1)-polygraph
whose underlying 2-polygraph is a presentation of the monoid M. A coherent presentation of M is an ex-
tended presentation Σ of M such that the cellular extension Σ3 is a homotopy basis of the (2, 1)-category
Σ⊤

2 , that is, for every 2-sphere γ of Σ⊤

2 , there exists a 3-cell in Σ⊤

3 with boundary γ.

3.1.3. Tietze transformations of (3, 1)-polygraphs. We recall the notion of Tietze transformation from [9,
Section 2.1]. Let Σ be a (3, 1)-polygraph. A 3-cellA of Σ is called collapsible if t2(A) is in Σ2 and s2(A)
is a 2-cell of the free (2, 1)-category over (Σ2 \ {t2(A)})⊤. If A is a collapsible 3-cell, then its target is
called a redundant cell. An elementary Tietze transformation of a (3, 1)-polygraph Σ is a 3-functor with
domain Σ⊤

3 that belongs to one of the following operations:

i) adjunction ι1α and elimination πα of a 2-cell α as described in 2.1.3,

ii) coherent adjunction ι2A : Σ⊤

3 → Σ⊤

3 (α)(A) of a redundant 2-cell α with its collapsible 3-cell A:

•
  

>>
β�� • � ι2A

///o/o/o/o/o •
&&
88β �� α��

A_%9 •
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3. Coherent column presentation

iii) coherent elimination πA : Σ⊤

3 → Σ⊤

3 /A of a redundant 2-cell α with its collapsible 3-cell A:

•
&&
88β �� α��

A_%9 • � πA
///o/o/o/o/o •

  

>>
β�� •

iv) coherent adjunction ιA : Σ⊤

3 → Σ⊤

3 (A) of a redundant 3-cell A:

•
##

;;�� ��
B_%9 • � ιA

///o/o/o/o/o •
##

;;�� ��
A
_ %9
B_ %9

•

v) coherent elimination π(B,A) : Σ
⊤

3 → Σ⊤

3 /(B,A) of a redundant 3-cell A, that maps A to B:

•
##

;;�� ��
A
_%9
B_%9

• �
π(B,A)

///o/o/o/o/o •
##

;;�� ��
B_%9 •

For (3, 1)-polygraphs Σ and Υ, a Tietze transformation from Σ to Υ is a 3-functor F : Σ⊤

3 → Υ⊤

3 that
decomposes into a sequence of elementary Tietze transformations. Two (3, 1)-polygraphs Σ and Υ are
Tietze-equivalent if there exists an equivalence of 2-categories F : Σ⊤

2 /Σ3 → Υ⊤

2 /Υ3 and the presented
monoids Σ2 and Υ2 are isomorphic. Two (3, 1)-polygraphs are Tietze equivalent if, and only if, there
exists a Tietze transformation between them, [9, Theorem 2.1.3.].

3.1.4. Homotopical completion procedure. Following [9, Section 2.2], we recall the homotopical
completion procedure that produces a coherent convergent presentation from a terminating presenta-
tion. Given a terminating 2-polygraph Σ, equipped with a total termination order 6, the homotopical
completion of Σ is the (3, 1)-polygraph obtained from Σ by successive application of the Knuth-Bendix
completion procedure, [20], and the Squier construction, [36]. Explicitly, for any critical branching (f, g)

of Σ, if (f, g) is confluent one adds a dotted 3-cell A:

v f ′

�+
A���

u

f %9

g $8

û

w
g ′

3G

where û is a common normal form of v and w, and if the critical branching (f, g) is not confluent one
add a 2-cell β and a 3-cell A:

v
f ′ %9

A���

v̂EY

β
��

u

f %9

g $8 w
g ′

%9 ŵ
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3.2. Column coherent presentation

where the 2-cell β is directed from a normal form v̂ of v to a normal form ŵ of w if v̂ > ŵ and from ŵ

to v̂ otherwise. The adjunction of 2-cells can create new critical branchings, possibly generating the
adjunction of additional 2-cells and 3-cells in the same way. This defines an increasing sequence of
(3, 1)-polygraphs, whose union is called a homotopical completion of Σ. Following [36, Theorem 5.2],
such a homotopical completion of Σ is a coherent convergent presentation of the monoid Σ. We refer the
reader to [9, Section 2.2].

3.2. Column coherent presentation

Using the homotopical completion procedure, we extend the 2-polygraph Col2(n) into a coherent pre-
sentation of the monoid Pn.

3.2.1. Column coherent presentation. By definition of the rules αu,v defined in (4), the presenta-
tion Col2(n) has exactly one critical branching of the form

cece ′ct

cucvct

αu,vct ';

cuαv,t
#7 cucwcw ′

(5)

for any u, v, t in col(n) such that u v t
× × , where e and e ′ (resp. w and w ′) denote the two columns

of the tableau P(uv) (resp. P(vt)). We prove in this section that all of these critical branchings are
confluent. This gives an alternative proof of the confluence of the 2-polygraph Col2(n) given in 2.4.7.
Moreover, we prove that all the confluence diagrams of these branchings are of the following form:

cece ′ct
ceαe ′,t %9

Xu,v,t���

cecbcb ′ αe,bcb ′

!5VVV
VVVV

VVVV
VVV

cucvct

αu,vct )=hhhhhhh
hhhhhhh

cuαv,t !5VVV
VVVV

VVVV
VVV

cacdcb ′

cucwcw ′

αu,wcw ′

%9 caca ′cw ′
caαa ′,w ′

)=hhhhhhh hhhhhhh

(6)

where a and a ′ (resp. b and b ′) denote the two columns of the tableau P(uw) (resp. P(e ′t)) and a,
d, b ′ are the three columns of the tableau P(uvt), which is a normal form for the 2-polygraph Col2(n).
Note that in some cases described below, one or further columns e ′,w ′, a ′ and b ′ can be empty. In those
cases some indicated 2-cells α in the confluence diagram correspond to identities.

Let us denote by Col3(n) the extended presentation of the monoid Pn obtained from Col2(n) by
adjunction of one 3-cell Xu,v,t of the form (6), for every columns u, v and t such that u v t

× ×
.

3.2.2. Theorem. For n > 0, the (3, 1)-polygraph Col3(n) is a coherent presentation of the monoid Pn.

The extended presentation Col3(n) is called the column coherent presentation of the monoid Pn.
In 4.4.9, we give the values of number of cells of the coherent presentation Col3(n) for plactic monoids
of low-dimensional rank n. The rest of this section consists in the proof of Theorem 3.2.2. It is based
on the following arguments. The presentation Col2(n) is convergent, thus using the homotopical com-
pletion procedure described in 3.1.4, it suffices to prove that the 3-cells Xu,v,t with u v t

× × form a
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3. Coherent column presentation

family of generating confluences for the presentation Col2(n). There are four possibilities for the critical
branching (5) depending on the following four cases:

u v t
×1 ×1

, u v t
×2 ×1

, u v t
×1 ×2

, u v t
×2 ×2

.

Each of these cases is examined in the following four lemmas. In the rest of this section, we will suppose
that

u = xp . . . x1, v = yq . . . y1 and t = zl . . . z1

denote columns of length p, q and l respectively.

3.2.3. Lemma. If u v t
×1 ×1

, we have the following confluent critical branching:

cuvct αuv,t
 4UU

UUU
UU

UUU
UUU

U

Au,v,t���
cucvct

αu,vct *>iiiiii iiiiii

cuαv,t
 4UU

UUU
U

UUU
UUU

cuvt

cucvt
αu,vt

*>iiiiiii
iiiiiii

Proof. By hypothesis uv and vt are columns, then uvt is a column. Thus uv t×1 and u vt
×1 and there

exist 2-cells αuv,t and αu,vt in Col2(n) making the critical branching (5) confluent, where e = uv,
w = vt and e ′, w ′ are the empty column.

3.2.4. Lemma. If u v t
×2 ×1

, we have the following confluent critical branching:

cece ′ct
ceαe ′,t %9

Bu,v,t���

cece ′t αe,e ′t
�3SS

SSS
SSS

SS

cucvct

αu,vct +?kkkk kkkk

cuαv,t "6YYYY
YYYYY

YYYYY
Y

YYYYY
YYYYY

YYYYY
cscs ′

cucvt
αu,vt

(<eeeeeeeeeeeeeeee
eeeeeeeeeeeeeeee

where e and e ′ (resp. s and s ′) denote the two columns of the tableau P(uv) (resp. P(uvt)).

Proof. By hypothesis, vt is a column and y1 > zl. The tableau P(uv) consists of two columns, that
we will denote e and e ′, then ℓnds(uv) = 2 and x1 6 yq. We have u v

×2 , so that we distinguish the
following possible three cases.

Case 1: p > q and xi0 > yi0 for some 1 6 i0 6 q.
Suppose that i0 = 1, that is, x1 > y1. We consider yj the biggest element of the column v such

that x1 > yj, then the smallest element of the column e ′ is yj+1. By hypothesis, the word vt is a column,
in particular yj+1 > zl. It follows that e ′t is a column. Suppose that i0 > 1, then x1 6 y1 and the
smallest element of e ′ is y1. Since y1 > zl by hypothesis, the word e ′t is a column. Hence, in all cases,
e ′t is a column and there is a 2-cell αe ′,t : ce ′ct ⇒ ce ′t.

Case 2: p < q and xi 6 yi for any 1 6 i 6 p.
We have e = yq . . . yp+1xp . . . x1 and e ′ = yp . . . y1. By hypothesis, y1 > zl, hence e ′t is a column

and there is a 2-cell αe ′,t : ce ′ct ⇒ ce ′t.

Case 3: p < q and xi0 > yi0 for some 1 6 i0 6 p.
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3.2. Column coherent presentation

With the same arguments of Case 1, the smallest element of e ′ is y1 or yj+1, where yj is the biggest
element of the column v such that yj < x1. Hence, e ′t is a column and there is a 2-cell αe ′,t : ce ′ct ⇒
ce ′t.

In case 1, 2 and 3, we have ℓnds(uv) = 2, hence ℓnds(uvt) = 2. Thus the tableau P(uvt) consists
of two columns, that we denote s and s ′ and there is a 2-cell αu,vt : cucvt ⇒ cscs ′ . Moreover, to
compute the tableau P(uvt), one begins by computing P(uv) and after by introducing the elements of
the column t on the tableau P(uv). As C(P(uv)) = ee ′, we have P(uvt) = P(P(uv)t) = P(ee ′t).
Hence C(P(ee ′t)) = ss ′ and there is a 2-cell αe,e ′t which yields the following confluence diagram

e e ′

z1

...
zl

ceαe ′,t %9
e

z1

...
zl

e ′

αe,e ′t

q�

x1

...

xp

y1

...

yq

z1

...
zl

αu,vct (<

cuαv,t �3 x1

...
xp

z1

...

zl

y1

...

yq

αu,vt
%9

s s ′

(7)

3.2.5. Lemma. If u v t
×1 ×2

, we have the following confluent critical branching:

cuvct

Cu,v,t���

αuv,t
#7ZZZZZ

ZZZZZZ
ZZZZZZ

Z

ZZZZZZ
ZZZZZZ

ZZZZZZ

cucvct

αu,vct ';ddddddddddddddddddd
ddddddddddddddddddd

cuαv,t
 4UU

UUUU
UUUU

UU
caca ′w ′

cucwcw ′

αu,wcw ′

%9 caca ′cw ′
caαa ′,w ′

*>iiiii iiiii

(8)

where w and w ′ (resp. a and a ′) denote the two columns of the tableau P(vt) (resp. P(uw)).

Proof. By hypothesis, uv is a column hence x1 > yq. Moreover, the tableau P(vt) consists of two
columns w and w ′, then ℓnds(vt) = 2, hence y1 6 zl. We have v t

×2 , so that we distinguish the three
possible following cases.

Case 1: q > l and yi0 > zi0 for some 1 6 i0 6 l.
Let us denote w = wr . . . w1 and w ′ = w ′

r ′ . . . w
′

1. Since q > l, we have wr = yq. By hypothe-
sis, x1 > yq. Then the word uw is a column. As a consequence, there is a 2-cell αu,w : cucw ⇒ cuw.
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3. Coherent column presentation

In addition, the column w appears to the left of w ′ in the planar representation of the tableau P(vt), that
is, ℓ(w) > ℓ(w ′) andwi 6 w ′

i for any i 6 ℓ(w ′). Then ℓ(uw) > ℓ(w ′). We set uw = ξℓ(uw) . . . ξ1 and

we have ξi 6 w ′

i for any i 6 ℓ(w ′). Then uww ′ and cuwcw ′ is a normal form.
On the other hand, the tableau P(vt) consists of two columns, hence ℓnds(vt) = 2. As a con-

sequence, ℓnds(uvt) = 2 and the tableau P(uvt) consists of two columns. Since q > l, we have
C(P(uvt)) = uww ′, hence the two columns of P(uvt) are uw and w ′. Then there is a 2-cell αuv,t :
cuvct ⇒ cuwcw ′ which yields the confluence of the critical branching on cucvct, as follows

y1

...

yq

x1

...

xp

z1

...
zl

αuv,t

�/J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

J

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
JJ

x1

...

xp

y1

...

yq

z1

...
zl

αu,vct

-A

cuαv,t !5

w w ′

x1

...

xp

x1

...

xp

w w ′

αu,wcw ′

*>iiiiiiiiiiiiiii

iiiiiiiiiiiiiii

(9)

Case 2: q < l and yi 6 zi for any i 6 q.
We have w = zl . . . zq+1yq . . . y1 and w ′ = zq . . . z1. There are two cases along

uw = xp . . . x1zl . . . zq+1yq . . . y1

is a column or not.

Case 2. A. If x1 > zl, then uw is a column. Hence, there is a 2-cell αu,w : cucw ⇒ cuw. Moreover,
using Schensted’s algorithm we prove that C(P(uvt)) = uww ′, it follows that the columns of P(uvt)
are uw and w ′. Thus there is a 2-cell αuv,t : cuvct ⇒ cuwcw ′ which yields the confluence diagram (9).

Case 2. B. If x1 6 zl, then ℓnds(uw) = 2 and P(uw) consists of two columns, that we denote by a
and a ′. Then there is a 2-cell αu,w : cucw ⇒ caca ′ . In addition, by Schensted’s algorithm, we deduce
that a ′ = zik . . . zi1 , with q+ 1 6 i1 < . . . < ik 6 l. We have a ′w ′ = zik . . . zi1zq . . . z1. Since all the
elements of a ′ are elements of t and bigger than zq, we have zi1 > zq. It follows that a ′w ′ is a column
and there is a 2-cell αa ′,w ′ : ca ′cw ′ ⇒ ca ′w ′ .

In the other hand, we have two cases whether uv t
× or uv t. Suppose uv t

× . By Schensted’s
algorithm, we have C(P(uvt)) = aa ′w ′, showing that the two columns of P(uvt) are a and a ′w ′.
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3.2. Column coherent presentation

Hence there is a 2-cell αuv,t : cuvct ⇒ caca ′w ′ , which yields the confluence of Diagram (8). Sup-
pose uv t. Then we obtain C(P(uw)) = uvzl . . . zq+1, and C(P(zl . . . zq+1w ′)) = t. Hence there is a
2-cell αzl...zq+1,w ′ yielding the confluence diagram

cuvct

C ′

u,v,t���
cucvct

αu,vct &:

cuαv,t
#7 cucwcw ′

αu,wcw ′

%9 cuvczl...zq+1
cw ′

cuvαzl...zq+1,w ′

^rQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQ

Case 3: q < l and yi0 > zi0 for some 1 6 i0 6 q.
We compute the columns w and w ′ of the tableau P(vt). If the biggest element of the column w

is yq, then we obtain the same confluent branching as in Case 1. If the first element of w is zl, then one
obtains the same confluent critical branchings as in Case 2.

3.2.6. Lemma. If u v t
×2 ×2

, we have the following confluent critical branching:

cece ′ct
ceαe ′,t %9

Du,v,t���

cecbcb ′ αe,bcb ′

!5VVV
VVVV

VVVV
VVV

cucvct

αu,vct )=hhhhhhh
hhhhhhh

cuαv,t
!5VVV

VVVV
VVVV

VVV
cacdcb ′

cucwcw ′

αu,wcw ′

%9 caca ′cw ′
caαa ′,w ′

)=hhhhhhh hhhhhhh

(10)

where e, e ′ (resp. w, w ′) denote the two columns of the tableau P(uv) (resp. P(vt)) and a, a ′ (resp. b,

b ′) denote the two columns of the tableau P(uw) (resp. P(e ′t)).

Proof. By hypothesis, ℓnds(uv) = 2 and ℓnds(vt) = 2, hence x1 6 yq and y1 6 zl. In addition,
since u v

×2 , the tableau P(uw) consists of two columns, that we denote by a and a ′. Thus there is a
2-cell αu,w : cucw ⇒ caca ′ . Moreover, as u v

×2 and v t
×2 , we have

((p < q) or (xi0 > yi0 for some i0 6 q)) and ((q < l) or (yj0 > zj0 for some j0 6 l)),

thus we consider the following cases.

Case 1: p < q < l and yi 6 zi, for all i 6 q, and xi 6 yi, for all i 6 p.
We have

w = zl . . . zq+1yq . . . y1, w ′ = zq . . . z1, e = yq . . . yp+1xp . . . x1 and e ′ = yp . . . y1.

Since zl > y1, the tableau P(e ′t) consists of two columns, that we denote by b and b ′. Thus there is a
2-cell αe ′,t : ce ′ct ⇒ cbcb ′ . In addition, we have

b = zl . . . zp+1yp . . . y1, b ′ = zp . . . z1, a = zl . . . zq+1yq . . . yp+1xp . . . x1 and a ′ = yp . . . y1.

Since zq > y1, the tableau P(a ′w ′) consists of two columns, that we denote by d and d ′. Thus there
is a 2-cell αa ′,w ′ : ca ′cw ′ ⇒ cdcd ′ . Since zl > x1, the tableau P(eb) consists of two columns, that we
denote by s and s ′. Then there is a 2-cell αe,b : cecb ⇒ cscs ′ . In the other hand, we have

d = zq . . . zp+1yp . . . y1, d
′ = zp . . . z1, s = zl . . . zq+1yq . . . yp+1xp . . . x1 and s ′ = zq . . . zp+1yp . . . y1.
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3. Coherent column presentation

Hence a = s, d = s ′ and d ′ = b ′ which yields the confluence diagram (10).

Case 2:

{
q < l and yi 6 zi for all i 6 q
p > q and xi0 > yi0 for some i0 6 q

or

{
q < l and yi 6 zi for all i 6 q
p < q and xi0 > yi0 for some i0 6 p

We have w = zl . . . zq+1yq . . . y1 and w ′ = zq . . . z1. Using Schensted’s algorithm the smallest
element of the column a ′ is an element of v. Since zq is greater or equal than each element of v, the
tableau P(a ′w ′) consists of two columns, that we denote by d and d ′.

On the other hand, all the elements of e ′ are elements of v. Since zl is bigger than each element of
v, the tableau P(e ′t) consists of two columns, that we denote by b and b ′. Thus there is a 2-cell αe ′,t :
ce ′ct ⇒ cbcb ′ . Hence, we consider two cases depending on whether or not cecbcb ′ is a tableau. Suppose
cecbcb ′ is a tableau. The column e does not contain elements from the column t, then during inserting the
column w into the column u, we can only insert some elements of yq . . . y1 into u and we obtain a = e.
Since cecbcb ′ is the unique tableau obtained from cucvct and a = e, we obtain C(P(a ′w ′)) = bb ′. As
a consequence, there is a 2-cell αa ′,w ′ : ca ′cw ′ ⇒ cbcb ′ yielding the following confluence diagram:

cece ′ct
ceαe ′,t %9

D
(1)
u,v,t���

cecbcb ′

cucvct

αu,vct )=hhhhhhh
hhhhhhh

cuαv,t
!5VVV

VVVV
VVVV

VVV

cucwcw ′

αu,wcw ′

%9 caca ′cw ′

caαa ′,w ′

EY (11)

Suppose cecbcb ′ is not a tableau. The first element of the column b is zl. The smallest element of the
column e is either x1 or yj, where yj is the biggest element of the column v such that yj < x1. By
hypothesis the tableau P(uw) consists of two columns, then x1 6 zl. In addition, zl is greater than each
element of v then yj 6 zl. Hence, in all cases, the tableau P(eb) consists of two columns. On the other
hand, using Schensted’s algorithm, we have a ′ = zik . . . zi1yjk ′

. . . yj1 with q+ 1 6 i1 < . . . < ik 6 l,
1 6 j1 < . . . < jk ′ 6 q and we have e ′ = yjk ′

. . . yj1 . In addition, we have b ′ = d ′ = zik ′′
. . . zi1 with

1 6 i1 < . . . < ik ′′ 6 q and C(P(eb)) = ad. Hence there is a 2-cell αe,b : cecb ⇒ cacd which yields
the confluence diagram (10).

Case 3:

{
q > l and yi0 > zi0 for some i0 6 l
p < q and xi 6 yi for all i 6 p

or

{
q < l and yi0 > zi0 for some i0 6 q
p < q and xi 6 yi for all i 6 p

We have e = yq . . . yp+1xp . . . x1 and e ′ = yp . . . y1. Since y1 6 zl, the tableau P(e ′t) consists of
two columns, that we denote by b and b ′. The first element of the column b is either zl or yp which are
bigger or equal to x1, then the tableau P(eb) consists of two columns, that we denote by s and s ′. Suppose
l 6 p. Then by Schensted’s insertion algorithm, we have C(P(e ′t)) = bw ′ and w = yq . . . yp+1b. On
the other hand, since xp < yp+1, we have P(uw) = P(u(yq . . . yp+1b)) = P(eb). Hence, there is a
2-cell αe,b : cecb ⇒ caca ′ which yields the confluence diagram:

cece ′ct
ceαe ′,t %9

D
(2)
u,v,t���

cecbcw ′

αe,bcw ′

��
cucvct

αu,vct )=hhhhhhh
hhhhhhh

cuαv,t
!5VVV

VVVV
VVVV

VVV

cucwcw ′

αu,wcw ′

%9 caca ′cw ′

(12)

Suppose l > p, then we consider two cases depending on whether or not the first element of the column b
is yp. If this element is yp, then when computing the tableau P(vt) no element of the column t is inserted
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3.2. Column coherent presentation

in yq . . . yp+1. Hence we have w = yq . . . yp+1b and b ′ = w ′. On the other hand, by Schensted’s
insertion procedure we have P(uw) = P(eb). Hence, there is a 2-cell αe,b : cecb ⇒ caca ′ which yields
the confluence diagram (12). Suppose that the first element of the column b is zl. Then when computing
the tableau P(vt) some elements of the column t are inserted in yq . . . yp+1. In this case, we have that
the column w ′ contains more elements than b ′ and that cscs ′cb ′ is a tableau. Moreover, by Schensted’s
insertion procedure, we have a = s. Since cscs ′cb ′ is the unique tableau obtained from cucvct and a = s,
we obtain that C(P(a ′w ′)) = s ′b ′. As a consequence, there is a 2-cell αa ′,w ′ : ca ′cw ′ ⇒ cs ′cb ′ which
yields the confluence diagram (10).

Case 4:

{
q > l and yi0 > zi0 for some i0 6 l

p > q and xj0 > yj0 for some j0 6 q
or

{
q > l and yi0 > zi0 for some i0 6 q
p < q and xj0 > yj0 for some j0 6 p

or

{
q < l and yi0 > zi0 for some i0 6 q,
p > q and xj0 > yj0 for some j0 6 q.

or

{
q < l and yi0 > zi0 for some i0 6 q
p < q and xj0 > yj0 for some j0 6 p

By Lemma 3.2.4, the last term of e ′ is y1 or yj+1, where yj is the biggest element of v such that yj <
x1. Suppose that the last term of e ′ is y1. Since zl > y1, the tableau P(e ′t) consists of two columns.
Furthermore, if the last term of e ′ is yj+1, then we consider two cases: zl > yj+1 or zl < yj+1. Suppose
zl < yj+1, then the tableau P(e ′t) consists of one column e ′t. We consider two cases depending on
whether or not cece ′t is a tableau. With the same arguments of Case 2, we obtain a confluence diagram
of the following forms:

cece ′ct
ceαe ′,t %9

D
(3)
u,v,t���

cece ′t

cucvct

αu,vct )=hhhhhhh
hhhhhhh

cuαv,t
!5VVV

VVVV
VVVV

VVV

cucwcw ′

αu,wcw ′

%9 ceca ′cw ′

ceαa ′,w ′

EY cece ′ct
ceαe ′,t %9

D
(4)
u,v,t���

cece ′t αe,e ′t
!5VVV

VVVV
V

VVVV
VVVV

cucvct

αu,vct )=hhhhhhh
hhhhhhh

cuαv,t
!5VVV

VVVV
VVVV

VVV
caca ′w ′

cucwcw ′

αu,wcw ′

%9 caca ′cw ′
caαa ′,w ′

)=hhhhhhh hhhhhhh

Suppose the tableau P(e ′t) consists of two columns. Using the same arguments of Case 2 and Case 3,

we obtain a confluence diagram of the form Du,v,t,D
(1)
u,v,t or D(2)

u,v,t.

3.2.7. Remark. In the proof of Theorem 3.2.2, we don’t use the fact that the 2-polygraph Col2(n) is
convergent. Using the notion of quadratic normalisation of monoids introduced in [7], our construction
allows us to give a new proof of the termination of the 2-polygraph Col2(n) without considering the
combinatorial properties of tableaux. Indeed, consider the map Φ : Col1(n)∗ → Col1(n)∗ sending a
1-cell in Col1(n)∗ to its unique corresponding tableau. Then (Col1(n),Φ) is a quadratic normalisation
of the monoid Pn in the sense of [7]. That is, the mapΦ satisfies

i) ℓ(Φ(w)) = ℓ(w),

ii) ℓ(w) = 1 implies Φ(w) = w,

iii) Φ(uΦ(w)v) = Φ(uwv), for all 1-cells u, v and w in Col1(n)∗,

and a quadraticity property, see [7, Definition 3.1.2.] for details. Using the fact that the 2-polygraph Col2(n)
has the unique normal form property as proved in Proposition 2.4.4, we show by Theorem 3.2.2 that the
quadratic normalisation (Col1(n),Φ) is of class (3, 3), that is, one obtains the normal form after at most 3
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4. Reduction of the coherent presentation

steps when starting from the left and 3 steps from the right. Hence, we obtain by [7, Proposition 5.1.1],
that the corresponding 2-polygraph Col2(n) is finite and convergent. As a consequence, we obtain a new
proof of the termination of the 2-polygraph Col2(n) .

4. REDUCTION OF THE COHERENT PRESENTATION

In this section, using the homotopical reduction procedure, we reduce the coherent presentation Col3(n)
into a smaller coherent presentation of the monoid Pn. Let us begin by recalling the homotopical
completion-reduction procedure introduced in [9, 2.3.3].

4.1. Homotopical completion-reduction procedure

4.1.1. Homotopical reduction procedure. Let Σ be a (3, 1)-polygraph. A 3-sphere of the
(3, 1)-category Σ⊤

3 is a pair (f, g) of 3-cells of Σ⊤

3 such that s2(f) = s2(g) and t2(f) = t2(g). A
collapsible part of Σ is a triple Γ = (Γ2, Γ3, Γ4) made of a family Γ2 of 2-cells of Σ, a family Γ3 of 3-cells
of Σ and a family Γ4 of 3-spheres of Σ⊤

3 , such that the following conditions are satisfied:

i) every γ of every Γk is collapsible, that is, tk−1(γ) is in Σk−1 and sk−1(γ) does not contain tk−1(γ),

ii) no cell of Γ2 (resp. Γ3) is the target of a collapsible 3-cell of Γ3 (resp. 3-sphere of Γ4),

iii) there exists a well-founded order on the cells of Σ such that, for every γ in every Γk, tk−1(γ) is
strictly greater than every generating (k− 1)-cell that occurs in the source of γ.

The homotopical reduction of the (3, 1)-polygraph Σ with respect to a collapsible part Γ is the Tietze
transformation, denoted by RΓ , from the (3, 1)-category Σ⊤

3 to the (3, 1)-category freely generated by the
(3, 1)-polygraph obtained from Σ by removing the cells of Γ and all the corresponding redundant cells.
We refer the reader to [9, 2.3.1] for details on the definition of the Tietze transformation RΓ defined by
well-founded induction as follows. For any γ in Γ

RΓ (t(γ)) = RΓ (s(γ)) and RΓ (γ) = 1RΓ (s(γ)).

In any other cases, the transformation RΓ acts as an identity.

4.1.2. Generating triple confluences. A local triple branching of a 2-polygraph Σ is a triple (f, g, h)

of rewriting steps of Σ with a common source. An aspherical triple branchings have two of their 2-cells
equal. A Peiffer triple branchings have at least one of their 2-cells that form a Peiffer branching with
the other two. The overlap triple branchings are the remaining local triple branchings. Local triple
branchings are ordered by inclusion of their sources and a minimal overlap triple branching is called
critical. If Σ is a coherent and convergent (3, 1)-polygraph, a triple generating confluence of Σ is a
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where (f, g, h) is a triple critical branching of the 2-polygraph Σ2 and the other cells are obtained by
confluence, see [9, 2.3.2] for details.

4.1.3. Homotopical reduction of the polygraph Col3(n). In the rest of this section, we apply three
steps of homotopical reduction on the (3, 1)-polygraph Col3(n). As a first step, we apply in 4.2 a ho-
motopical reduction on the (3, 1)-polygraph Col3(n) with a collapsible part defined by some of the
generating triple confluences of the 2-polygraph Col2(n). In this way, we reduce the coherent pre-
sentation Col3(n) of the monoid Pn into the coherent presentation Col3(n) of Pn, whose underlying
2-polygraph is Col2(n) and the 3-cells Xu,v,t are those of Col3(n), but with ℓ(u) = 1. We reduce in 4.3
the coherent presentation Col3(n) into a coherent presentation PreCol3(n) of Pn, whose underlying 2-
polygraph is PreCol2(n). This reduction is given by a collapsible part defined by a set of 3-cells of
Col3(n). In a final step, we reduce in 4.4 the coherent presentation PreCol3(n) into a coherent presen-
tation Knuth3(n) of Pn whose underlying 2-polygraph is Knuth2(n). By [9, Theorem 2.3.4], all these
homotopical reductions preserve coherence. That is, the (3, 1)-polygraph Col3(n) being a coherent pre-
sentation of the monoid Pn, the (3, 1)-polygraphs Col3(n) and Knuth3(n) are coherent presentations of
Pn.

4.2. A reduced column presentation

We apply the homotopical reduction procedure in order to reduce the (3, 1)-polygraph Col3(n) using the
generating triple confluences.

4.2.1. Generating triple confluences of Col2(n). Consider the homotopical reduction procedure on the
(3, 1)-polygraph Col3(n) defined using the collapsible part made of generating triple confluences. By
Theorem 3.2.2, the family of 3-cells Xu,v,t given in (6) and indexed by columns u, v and t in col(n) such
that u v t

× × forms a homotopy basis of the (2, 1)-category Col2(n)⊤. Let us consider such a triple
(u, v, t) with ℓ(u) > 2. Let xp be in [n] such that u = xpu1 with u1 in col(n). There is a critical
triple branching with source cxpcu1cvct. Let us show that the confluence diagram induced by this triple
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4. Reduction of the coherent presentation

branching is represented by the 3-sphere Ωxp,u1,v,t whose source is the following 3-cell
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and whose target is the following 3-cell

cece ′ct
αe ′,t %9

Xu,v,t
���

cecbcb ′

αe,b
�2P

PPP
PPP

P

PPP
PPP

PP

cucvct

αu,v
+?lllllllll

lllllllll

αv,t �2QQ
QQQ

QQQ
QQ

QQQ
QQQ

QQQ
Q

cacdcb ′

cxpcu1cvct

αxp,u1
,@nnnnnnnnn

nnnnnnnnn

αv,t �1O
OO

OO
OO

O

OO
OO

OO
OO

≡ cucwcw ′

αu,w %9

Xxp,u1,wcw ′

���

caca ′cw ′

αa ′,w ′
-Aoooooooo

oooooooo

caXz,a ′

1
,w ′

$̂8^^^^^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^^^^^

cacdcs2cd ′

1

αs2,d ′

1
]qOOOOOOOO

OOOOOOOO

cxpcu1cwcw ′

αxp,u1
,@mmmmmmmmmm

mmmmmmmmmm

αu1,w �2QQ
QQQ

QQQ
Q

QQQ
QQQ

QQQ
caczcs3cd ′

1

αz,s3

-Appppppp
ppppppp

cxpca1ca ′

1
cw ′

αxp,a1%9 caczca ′

1
cw ′

αa ′

1,w
′

-Appppppp
ppppppp

αz,a ′

1

EY

In the generating triple confluence, some columns may be empty and thus the indicated 2-cells αmay be
identities. To facilitate the reading of the diagram, we have omitted the context of the 2-cells α.

The 3-sphereΩxp,u1,v,t is constructed as follows. We have xp u1
×1

and u1 w
×

, thus Xxp,u1,w is either
of the form Axp,u1,w or Cxp,u1,w. Let us denote by a1 and a ′

1 the two columns of the tableau P(u1w).
The 3-cell Xxp,u1,w being confluent, we have C(P(xpa1)) = az with z in [n] and C(P(za

′

1)) = a ′. In

addition, from z a
′

1
×1

and a ′

1 w
′

×

, we deduce that Xz,a ′

1 ,w
′ is either of the form Az,a ′

1,w
′ or Cz,a ′

1 ,w
′ .

From xp u1
×1

and u1 v
×

, we deduce that Xxp,u1,v is either of the form Axp,u1,v or Cxp,u1,v. Let us
denote by s and s ′ the two columns of the tableau P(u1v). The 3-cell Xxp,u1,v being confluent, we obtain

that C(P(xps)) = ey with y in [n] and C(P(ys ′)) = e ′. From y s ′
×1

and s ′ t
× , we deduce that Xy,s ′,t

is either of the form Ay,s ′ ,t or Cy,s ′,t. Denote by d1 and d ′

1 the two columns of the tableau P(s ′t). The 3-
cell Xy,s ′,t being confluent and C(P(e ′t)) = bb ′, we have C(P(yd1)) = bs2 and C(P(s2d ′

1)) = b
′. On

the other hand, the 3-cell Xu1,v,t is confluent, then we have C(P(sd1)) = a1s3 and C(P(a ′

1w
′)) = s3d

′

1.
Finally, since the 3-cell Xxp,s,d1 is confluent, we obtain C(P(zs3)) = ds2.
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4.3. Pre-column coherent presentation

4.2.2. Reduced coherent column presentation. Let us define by Col3(n) the extended presentation of
the monoid Pn obtained from Col2(n) by adjunction of one family of 3-cells Xx,v,t of the form (6), for
every 1-cell x in [n] and columns v and t in col(n) such that x v t

× × . The following result shows that
this reduced presentation is also coherent.

4.2.3. Proposition. Forn > 0, the (3, 1)-polygraph Col3(n) is a coherent presentation of the monoid Pn.

Proof. Let Γ4 be the collapsible part made of the family of 3-sphere Ωxp,u1,v,t, indexed by xp in [n]

and u1, v, t in col(n) such that u v t
× × and u = xpu1. On the 3-cells of Col3(n), we define a well-

founded order ⊳ by

i) Au,v,t ⊳ Cu,v,t ⊳ Bu,v,t ⊳ Du,v,t,

ii) if Xu,v,t ∈ {Au,v,t, Bu,v,t, Cu,v,t,Du,v,t} and u ′ 4deglex u, then Xu ′,v ′,t ′ ⊳ Xu,v,t,

for any u, v, t in col(n) such that u v t
× × . By construction of the 3-sphere Ωxp,u1,v,t, its source

contains the 3-cell Xu1,v,t and its target contains the 3-cell Xu,v,t with ℓ(u1) < ℓ(u). Up to a Nielsen
transformation, the homotopical reduction RΓ4 applied on the (3, 1)-polygraph Col3(n) with respect to Γ4
and the order ⊳ give us the (3, 1)-polygraph Col3(n). In this way, the presentation Col3(n) is a coherent
presentation of the monoid Pn.

4.3. Pre-column coherent presentation

We reduce the coherent presentation Col3(n) into a coherent presentation whose underlying 2-polygraph
is PreCol2(n). This reduction is obtained using the homotopical reduction RΓ3 on the (3, 1)-polygraph Col3(n)
whose collapsible part Γ3 is defined by

Γ3 = { Ax,v,t | x ∈ [n], v, t ∈ col(n) such that x v t
×1 ×1

}

∪ { Bx,v,t | x ∈ [n], v, t ∈ col(n) such that x v t
×2 ×1

}

∪ { Cx,v,t | x ∈ [n], v, t ∈ col(n) such that x v t
×1 ×2

},

and the well-founded order defined as follows.

4.3.1. A well-founded order on 2-cells. Consider two columns u and v in col(n) such that u v
× . Let

denote by Cr(P(uv)) the reading of the right column of the tableau P(uv). We define a well-founded
order ⊳ on the 2-cells of Col2(n) as follows

αu ′,v ′ ⊳ αu,v if






ℓ(uv) > ℓ(u ′v ′) or

ℓ(uv) = ℓ(u ′v ′) and

{
ℓ(u) > ℓ(Cr(P(u

′v ′))) or

ℓ(u) 6 ℓ(Cr(P(u
′v ′))) and u ′ 4rev u

for any columns u, v, u ′ and v ′ in col(n) such that u v
× and u ′ v ′

× .
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4. Reduction of the coherent presentation

4.3.2. The homotopical reduction RΓ3 . Consider the well-founded order ⊳ on the 2-cells of Col2(n)
defined in 4.3.1 and the well-founded order ⊳ on 3-cells defined in the proof of Proposition 4.2.3. The
reduction RΓ3 induced by these orders can be decomposed as follows. For any x in [n] and columns v, t

such that x v t
×1 ×1 , we have αx,v ⊳ αxv,t, αv,t ⊳ αxv,t and αx,vt ⊳ αxv,t. The reduction RΓ3 removes the

2-cell αxv,t together with the following 3-cell:

cxvct αxv,t
 4UU

UUU
UU

UUU
UUU

U

Ax,v,t���
cxcvct

αx,vct *>iiiiii iiiiii

cxαv,t  4UU
UUU

U
UUU

UUU
cxvt

cxcvt
αx,vt

*>iiiiiii
iiiiiii

By iterating this reduction on the length of the column v, we reduce all the 2-cells αu,v of Col2(n) to the
following set of 2-cells

{ αu,v | ℓ(u) > 1, ℓ(v) > 2 and u v
×2

} ∪ { αu,v | ℓ(u) = 1, ℓ(v) > 1 and u v
×1

}. (13)

For any x in [n] and columns v, t such that x v t
×1 ×2 , consider the following 3-cell:

cxvct

Cx,v,t���

αxv,t
#7ZZZZZ

ZZZZZZ
ZZZZZZ

Z

ZZZZZZ
ZZZZZZ

ZZZZZZ

cxcvct

αx,vct ';ddddddddddddddddddd
ddddddddddddddddddd

cxαv,t
 4UU

UUU
U

UUU
UUU

caca ′w ′

cxcwcw ′

αx,wcw ′

%9 caca ′cw ′
caαa ′,w ′

*>iiiii iiiii

where w, w ′, a and a ′ are defined in Lemma 3.2.5. The 2-cells αx,v, αv,t, αx,w and αa ′,w ′ are smaller
than αxv,t for the order ⊳. The reduction RΓ3 removes the 2-cell αxv,t together with the 3-cell Cx,v,t. By
iterating this reduction on the length of v, we reduce the set of 2-cells given in (13) to the following set:

{ αu,v | ℓ(u) = 1, ℓ(v) > 2 and u v
×2

} ∪ { αu,v | ℓ(u) = 1, ℓ(v) > 1 and u v
×1

}. (14)

For any x in [n] and columns v, t such that x v t
×2 ×1 , consider the following 3-cell:

cece ′ct
ceαe ′,t %9

Bx,v,t���

cece ′t α̃e,e ′t
�3SS

SSS
SSS

SS

cxcvct

αx,vct +?kkkk kkkk

cxαv,t "6YYYYY
YYYYY

YYYYY
Y

YYYYY
YYYYY

YYYYY
Y cscs ′

cxcvt
αx,vt

(<eeeeeeeeeeeeeeee
eeeeeeeeeeeeeeee

where e, e ′, s and s ′ are defined in Lemma 3.2.4. Note that α̃e,e ′t is the 2-cell in (14) obtained from the
2-cell αe,e ′t by the previous step of the homotopical reduction by the 3-cell Cx,v,t. Having x in [n], by
definition of α we have e ′ in [n]. The 2-cells αx,v, αe ′,t, αv,t and α̃e,e ′t being smaller than αx,vt for the
order ⊳, we can remove the 2-cells αx,vt together with the 3-cell Bx,v,t. By iterating this reduction on
the length of the column t, we reduce the set (14) to the following set

{ αu,v | ℓ(u) = 1, ℓ(v) = 2 and u v
×2

} ∪ { αu,v | ℓ(u) = 1, ℓ(v) > 1 and u v
×1

}. (15)

Let us recall from Section 2.3 that PC2(n) is the cellular extension of Col∗1(n) whose set of 2-cells is

{
cxczy

α ′

x,zy
=⇒ czxcy | 1 6 x 6 y < z 6 n

}
∪
{
cyczx

α ′

y,zx
=⇒ cyxcz | 1 6 x < y 6 z 6 n

}
.
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4.3. Pre-column coherent presentation

4.3.3. Lemma. We have

PC2(n) = { αu,v : cucv ⇒ cwcw ′ | ℓ(u) = 1, ℓ(v) = 2 and u v×2
}.

Proof. Consider the 2-cells αu,v in Col2(n) such that ℓ(u) = 1, ℓ(v) = 2 and u v
×2 . Suppose

that v = xx ′ with x > x ′ in [n]. Since u v
×2 , we obtain that u 6 x. Hence, we have two cases to

consider. If u 6 x ′, then C(P(uv)) = (xu)x ′. Hence, the 2-cell αu,v is equal to the 2-cell α ′

u,xx ′ :

cucxx ′ ⇒ cxucx ′ . In the other case, if x ′ < u, then C(P(uv)) = (ux ′)x. Hence the 2-cell αu,v is equal
to α ′

u,xx ′ : cucxx ′ ⇒ cux ′cx.

Recall from 2.3.3 that the set of 2-cells PreCol2(n) is given by

PreCol2(n) = PC2(n) ∪
{
cxcu

α ′

x,u
=⇒ cxu | xu ∈ col(n) and 1 6 x 6 n

}
.

Thus, by Lemma 4.3.3, the set of 2-cells defined in (15) is equal to PreCol2(n).

4.3.4. Pre-column coherent presentation. The homotopical reduction RΓ3 , defined in 4.3.2, reduces
the coherent presentation Col3(n) into a coherent presentation of the monoid Pn. The set of 2-cells
of this coherent presentation is given by (15), which is PreCol2(n) by Lemma 4.3.3. Let us denote
by PreCol3(n) the extended presentation of the monoid Pn obtained from PreCol2(n) by adjunction of
the 3-cell RΓ3(C

′
x,v,t) where

cxvct

C ′

x,v,t���
cxcvct

αx,vct &:

cxαv,t
#7 cxcwcw ′

αx,wcw ′

%9 cxvczl...zq+1
cw ′

cxvαzl...zq+1,w ′

^rQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQ

with x v t
×1 ×2 , and the 3-cell RΓ3(Dx,v,t) where

cece ′ct
ceαe ′,t %9

Dx,v,t���

cecbcb ′ αe,bcb ′

!5VVV
VVVV

VVVV
VVV

cxcvct

αx,vct )=hhhhhhhh
hhhhhhhh

cxαv,t
!5VVV

VVVV
VVVV

VVV
cacdcb ′

cxcwcw ′

αx,wcw ′

%9 caca ′cw ′
caαa ′,w ′

)=hhhhhhh hhhhhhh

with x v t
×2 ×2 . The homotopical reduction RΓ3 eliminates the 3-cells of Col3(n) of the form Ax,v,t, Bx,v,t

and Cx,v,t, which are not of the form C ′
x,v,t. We have then proved the following result.

4.3.5. Theorem. Forn > 0, the (3, 1)-polygraph PreCol3(n) is a coherent presentation of the monoid Pn.

4.3.6. Example: coherent presentation of monoid P2. The Knuth presentation Knuth2(2) has genera-
tors 1 and 2 subject to the Knuth relations η1,1,2 : 211 ⇒ 121 and ε1,2,2 : 221 ⇒ 212. This presentation
is convergent with only one critical branching with source the 1-cell 2211. This critical branching is
confluent:

2211

2η1,1,2
�.

ε1,2,21

1E2121C ′′���
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4. Reduction of the coherent presentation

Following the homotopical completion procedure given in 3.1.4, the 2-polygraph extended by the pre-
vious 3-cell is a coherent presentation of the monoid P2. Consider the column presentation Col2(2) of
the monoid P2 with 1-cells c1, c2 and c21 and 2-cells α2,1, α1,21 and α2,21. The coherent presentation
Col3(2) has only one 3-cell

c21c21

C ′

2,1,21���
c2c1c21

α2,1c21 &:

c2α1,21
#7 c2c21c1 α2,21c1

%9 c21c2c1

c21α2,1
\pNNNNNNNNNNN

NNNNNNNNNNN

It follows that the (3, 1)-polygraphs Col3(2) and Col3(2) coincide. Moreover, in this case the set Γ3 is
empty and the homotopical reduction RΓ3 is the identity and thus PreCol3(2) is also equal to Col3(2).

In next section, we will show how to relate the coherent presentations Col3(2) and 〈Knuth2(2) | C ′′ 〉.

4.3.7. Example: coherent presentation of monoid P3. For the monoid P3, the Knuth presentation
has 3 generators and 8 relations. It is not convergent, but it can be completed by adding 3 relations.
The obtained presentation has 27 3-cells corresponding to the 27 critical branchings. The column co-
herent presentation Col3(3) of P3 has 7 generators, 22 relations and 42 3-cells. The coherent presenta-
tion Col3(3) has 7 generators, 22 relations and 34 3-cells. After applying the homotopical reduction RΓ3 ,
the coherent presentation PreCol3(3) admits 7 generators, 22 relations and 24 3-cells. We give in 4.4.9
the values of number of cells of the (3, 1)-polygraphs Col3(n) and PreCol3(n) for plactic monoids of
rank n 6 10.

4.4. Knuth’s coherent presentation

We reduce the coherent presentation PreCol3(n) into a coherent presentation of the monoid Pn whose
underlying 2-polygraph is Knuth2(n). We proceed in three steps developed in the next sections.

Step 1. We apply the inverse of the Tietze transformation Tγ←α ′ , that coherently replaces the 2-cells γxp...x1
by the 2-cells α ′

xp,xp−1...x1
, for each column xp . . . x1 such that ℓ(xp . . . x1) > 2.

Step 2. We apply the inverse of the Tietze transformation Tη,ε←α ′ , that coherently replaces the 2-cells α ′
x,zy

by ηcx,y,z for 1 6 x 6 y < z 6 n and the 2-cells α ′
y,zx by εcx,y,z for 1 6 x < y 6 z 6 n.

Step 3. Finally for each column xp . . . x1, we coherently eliminate the generator cxp...x1 together with
the 2-cell γxp...x1 with respect to the order 4deglex.

4.4.1. Step 1. The Tietze transformation Tγ←α ′ : CPC2(n)⊤ → PreCol2(n)⊤ defined in Lemma 2.3.6
substitutes a 2-cell α ′

xp,xp−1...x1
: cxpcxp−1...x1 =⇒ cxp...x1 to the 2-cell

γxp...x1 : cxp . . . cx1 =⇒ cxp...x1 , for each column xp . . . x1 such that ℓ(xp . . . x1) > 2, from the big-
ger column to the smaller one with respect to the total order 4deglex.

We consider the inverse of this Tietze transformation T−1γ←α ′ : PreCol2(n)⊤ → CPC2(n)⊤ that
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4.4. Knuth’s coherent presentation

substitutes the 2-cell γxp...x1 : cxp . . . cx1 =⇒ cxp...x1 to the 2-cell α ′
xp,xp−1...x1

: cxpcxp−1...x1 =⇒ cxp...x1

cxpcxp−1...x1

α ′

xp,xp−1...x1 %9 cxp...x1

cxp . . . cx1
γxp...x1

Ui

cxpγxp−1...x1

Xl

for each column xp . . . x1 such that ℓ(xp . . . x1) > 2 with respect to the order 4deglex.
Let us denote by CPC3(n) the (3, 1)-polygraph whose underlying 2-polygraph is CPC2(n), and the

set of 3-cells is defined by

{ T−1γ←α ′(RΓ3(C
′

x,v,t)) for x v t
×1 ×2

} ∪ { T−1γ←α ′(RΓ3(Dx,v,t)) for x v t
×2 ×2

}.

In this way, we extend the Tietze transformation T−1γ←α ′ into a Tietze transformation between the (3, 1)-
polygraphs PreCol3(n) and CPC3(n). The (3, 1)-polygraph PreCol3(n) being a coherent presentation
of the monoid Pn and the Tietze transformation T−1γ←α ′ preserves the coherence property, hence we have
the following result.

4.4.2. Lemma. For n > 0, the monoid Pn admits CPC3(n) as a coherent presentation.

4.4.3. Step 2. The Tietze transformation Tη,ε←α ′ from Knuthcc
2 (n)

⊤ into CPC2(n)⊤ defined in the proof
of Lemma 2.3.5 replaces the 2-cells ηcx,y,z and εcx,y,z in Knuthcc

2 (n) by composite of 2-cells in CPC2(n).

Let us consider the inverse of this Tietze transformation T−1η,ε←α ′ : CPC2(n)⊤ −→ Knuthcc
2 (n)

⊤.

making the following transformations. For every 1 6 x 6 y < z 6 n, T−1η,ε←α ′ substitutes the 2-
cell ηcx,y,z : czcxcy ⇒ cxczcy to the 2-cell α ′

x,zy:

cxczcy
cxγzy%9 cxczy

α ′

x,zym�
czcxcy

γzxcy
"6 czxcy

For every 1 6 x < y 6 z 6 n, T−1η,ε←α ′ substitutes the 2-cell εcx,y,z : cyczcx ⇒ cycxcz to the 2-cell α ′
y,zx:

cycxcz
γyxcz%9 cyxcz

cyczcx

cyγzx
"6 cyczx

α ′

y,zx

9M

Let us denote by Knuthcc
3 (n) the (3, 1)-polygraph whose underlying 2-polygraph is Knuthcc

2 (n) and
whose set of 3-cells is

{ T−1η,ε←α ′(T
−1
γ←α ′(RΓ3(C

′

x,v,t))) for x v t
×1 ×2

} ∪ { T−1η,ε←α ′(T
−1
γ←α ′(RΓ3(Dx,v,t))) for x v t

×2 ×2
}.

We extend the Tietze transformation T−1η,ε←α ′ into a Tietze transformation between (3, 1)-polygraphs

T−1η,ε←α ′ : CPC3(n)
⊤ −→ Knuthcc

3 (n)
⊤,
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4. Reduction of the coherent presentation

where the (3, 1)-polygraph CPC3(n) is a coherent presentation of the monoid Pn and the Tietze trans-
formation T−1η,ε←α ′ preserves the coherence property, hence we have the following result.

4.4.4. Lemma. For n > 0, the monoid Pn admits Knuthcc
3 (n) as a coherent presentation.

4.4.5. Step 3. Finally, in order to obtain the Knuth coherent presentation, we perform an homotopical
reduction, obtained using the homotopical reduction RΓ2 on the (3, 1)-polygraph Knuthcc

3 (n) whose col-
lapsible part Γ2 is defined by the 2-cells γu of C2(n) and the well-founded order 4deglex. Thus, for every
2-cell γxp...x1 : cxp . . . cx1 =⇒ cxp...x1 in C2(n), we eliminate the generator cxp...x1 together with the
2-cell γxp...x1 , from the bigger column to the smaller one with respect to the order 4deglex.

4.4.6. Knuth coherent presentation. Using the Tietze transformations constructed in the previous sec-
tions, we consider the following composite of Tietze transformations

R := RΓ2 ◦ T
−1
η,ε←α ′ ◦ T

−1
γ←α ′ ◦ RΓ3

defined from Col3(n)⊤ to Knuthcc
3 (n)

⊤ as follows. Firstly, the transformation R eliminates the 3-cells
of Col3(n) of the form Ax,v,t, Bx,v,t and Cx,v,t which are not of the form C ′

x,v,t and reduced its set
of 2-cells to PreCol2(n). Secondly, this transformation coherently replaces the 2-cells γxp...x1 by the
2-cells α ′

xp,xp−1...x1
, for each column xp . . . x1 such that ℓ(xp . . . x1) > 2, the 2-cells α ′

x,zy by ηcx,y,z
for 1 6 x 6 y < z 6 n and the 2-cells α ′

y,zx by εcx,y,z for 1 6 x < y 6 z 6 n. Finally, for each
column xp . . . x1, the transformation R eliminates the generator cxp...x1 together with the 2-cell γxp...x1
with respect to the order 4deglex.

Let us denote by Knuth3(n) the extended presentation of the monoid Pn obtained from Knuth2(n)
by adjunction of the following set of 3-cells

{ R(C ′

x,v,t) for x v t
×1 ×2

} ∪ { R(Dx,v,t) for x v t
×2 ×2

}.

The transformation R being a composite of Tietze transformations, it follows the following result.

4.4.7. Theorem. Forn > 0, the (3, 1)-polygraph Knuth3(n) is a coherent presentation of the monoid Pn.

4.4.8. Example: Knuth’s coherent presentation of the monoid P2. We have seen in Example 4.3.6
that the (3, 1)-polygraphs Col3(2), Col3(2) and PreCol3(2) are equal. The coherent presentation PreCol3(2)
is given by

PreCol1(2) = {c1, c2, c21}, PreCol2(2) = {α2,1, α1,21, α2,21}, PreCol3(2) = {C ′

2,1,21},

where C ′

2,1,21 is the following 3-cell:

c21c21

C ′

2,1,21���
c2c1c21

α2,1c21 &:

c2α1,21
#7 c2c21c1 α2,21c1

%9 c21c2c1

c21α2,1
\pNNNNNNNNNNN

NNNNNNNNNNN

By definition of the 2-cells of C2(2), we have γ21 := α2,1. Thus we obtain that T−1γ←α ′(C
′

2,1,21) = C
′

2,1,21

up to replace all the 2-cells α2,1 in C ′

2,1,21 by γ21. Hence, the coherent presentation CPC3(2) is equal
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4.4. Knuth’s coherent presentation

to PreCol3(2). In order to compute the 3-cell T−1η,ε←α ′(T
−1
γ←α ′(C

′

2,1,21)), the 2-cells α1,21 and α2,21
in C ′

2,1,21 are respectively replaced by the 2-cells ηc
1,1,2 and εc

1,2,2 as in the following diagram

c21c21

C ′

2,1,21���
c2c1c21

γ21c21 &:

c2���XXXα1,21
#7c2c1c2c1

c2c1γ21 ';

c2c21c1
���XXXα2,21c1

%9 c21c2c1

c21γ21
]qOOOOOOOOOOOO

OOOOOOOOOOOO

c2c2c1c1c2η
c
1,1,2

`t

εc
1,2,2c1

%9
c2γ21c1
EY

c2c1c2c1

γ21c2c1
EY

(16)

where the cancel symbol means that the corresponding 2-cell is removed. Hence the coherent presen-
tation Knuthcc

3 (2) of P2 has for 1-cells c1, c2 and c21, for 2-cells α2,1, α1,21 and α2,21 and the only 3-
cell (16). Let us compute the Knuth coherent presentation Knuth3(2). The 3-cell RΓ2(T

−1
η,ε←α ′(T

−1
γ←α ′(C

′

2,1,21)))

is obtained from (16) by removing the 2-cell γ21 together with the 1-cell c21. Thus we obtain the follow-
ing 3-cell, where the cancel symbol means that the corresponding element is removed,

�
�H
Hc21��HHc21

c2c1��HHc21

����XXXXγ21c21 &:

c2c1c2c1

c2c1��HHγ21 ';

c2��HHc21c1 �
�H
Hc21c2c1

c21��HHγ21
]q

c2c2c1c1c2η
c
1,1,2

`t

εc
1,2,2c1

%9
c2��HHγ21c1

EY

c2c1c2c1

�
�H
H
γ21c2c1

EY

Hence, the Knuth coherent presentation Knuth3(2) of the monoid P2 has generators c1 and c2 subject to
the Knuth relations ηc

1,1,2 : c2c1c1 ⇒ c1c2c1 and εc
1,2,2 : c2c2c1 ⇒ c2c1c2 and the following 3-cell

c2c2c1c1

2ηc
1,1,2

�/

εc
1,2,21

.Bc2c1c2c1C ′′���

In this way, we obtain the Knuth coherent presentation of the monoid P2 that we obtain in Example 4.3.6
as a consequence of the fact that the 2-polygraph Knuth2(2) is convergent.

4.4.9. Coherent presentations in small ranks. Let us denote by KnuthKB
2 (n) the convergent 2-polygraph

obtained from Knuth2(n) by the Knuth-Bendix completion using the lexicographic order. For n = 3, the
polygraph KnuthKB

2 (3) is finite, but KnuthKB
2 (n) is infinite for n > 4, [22]. Let us denote by KnuthKB

3 (n)

the Squier completion of KnuthKB
2 (n). For n > 4, the polygraph KnuthKB

2 (n) having an infinite set of
critical branching, the set of 3-cells of KnuthKB

3 (n) is infinite. However, the (3, 1)-polygraph Knuth3(n)
constructed in this section is a finite coherent convergent presentation of Pn. Table 1 presents the number
of cells of the coherent presentations Knuth3(n), Col3(n) and Col3(n) of the monoid Pn.
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4. Reduction of the coherent presentation

n Knuth1(n) Col1(n) Knuth2(n) KnuthKB
2 (n) Col2(n) KnuthKB

3 (n) Knuth3(n) Col3(n) Col3(n)
1 1 1 0 0 0 0 0 0 0
2 2 3 2 2 3 1 1 1 1
3 3 7 8 11 22 27 24 34 42
4 4 15 20 ∞ 115 ∞ 242 330 621
5 5 31 40 ∞ 531 ∞ 1726 2225 6893
6 6 63 70 ∞ 2317 ∞ 10273 12635 67635
7 7 127 112 ∞ 9822 ∞ 55016 65282 623010
8 8 255 168 ∞ 40971 ∞ 275868 318708 5534197
9 9 511 240 ∞ 169255 ∞ 1324970 1500465 48052953
10 10 1023 330 ∞ 694837 ∞ 6178939 6892325 410881483

Table 1: Number of cells of (3, 1)-polygraphs Knuth3(n), Col3(n) and Col3(n), for 1 6 n 6 10.

4.4.10. Actions of plactic monoids on categories. In [9], the authors give a description of the category
of actions of a monoid on categories in terms of coherent presentations. Using this description, Theo-
rem 4.4.7 allows to present actions of plactic monoids on categories as follows. The category Act(Pn)
of actions of the monoid Pn on categories is equivalent to the category of 2-functors from the (2, 1)-
category Knuth2(n)⊤ to the category Cat of categories, that sends the 3-cells of Knuth3(n) to commuta-
tive diagrams in Cat.

4.4.11. Higher syzygies for the plactic monoid. In [11], the authors show how to extend a conver-
gent presentation of a monoid into a polygraphic resolution of the monoid, that is, a cofibrant replace-
ment of the monoid in the category of (∞, 1)-categories. The column presentation Col2(n) of the
monoid Pn can then be extended into a polygraphic resolution whose n-cells, for every n > 3, are
indexed by (n− 1)-fold branching of Col2(n). We can explicit the 4-cells of this resolution, which cor-
respond to the confluence diagrams induced by critical triple branchings. That is, for columns u, v, t
and e in col(n) such that u v

× , v t
× and t e

× , there is a critical triple branching with source cucvctce.
Using the same arguments of Section 4.2.1, we can show that the confluence diagram induced by this
triple branching is represented by the 3-sphere Ωu,v,t,e whose the source is the 3-cell
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5. Coherence and Lakshmibai-Seshadri’s paths

and the target is the 3-cell
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In the generating triple confluence, some columns may be empty and thus the indicated 2-cells αmay be
identities. To facilitate the reading of the diagram, we have omitted the context of the 2-cells α. More
generally, we expect that the generating n-cell of the resolution has the form of the permutohedron of
dimension n.

5. COHERENCE AND LAKSHMIBAI-SESHADRI’S PATHS

In this section, we construct a coherent presentation of the monoid Pn in term of Lakshmibai-Seshadri’s
paths. After recalling the notions of paths and crystal graphs, we briefly recall in 5.2 the notion of
Lakshmibai-Seshadri’s paths and we refer the reader to [28, 29] for more informations. Finally, we
construct in 5.3 a convergent presentation of the monoid Pn using Yamanouchi paths and a coherent
presentation of it in terms of Lakshmibai-Seshadri’s paths.

5.1. Paths and crystal graphs

Denote by gln the general linear Lie algebra of n by n matrices. Consider R
n with its canonical ba-

sis (ε1, . . . , εn). The set of weights of gln, denoted by X, is the lattice Zε1⊕ . . .⊕Zεn. The simple roots

of gln are the weight αi = εi − εi+1, for 1 6 i 6 n. Its fundamental weights are ωi = ε1 + . . . + εi,
for 1 6 i 6 n. We will denote by F the set of the fundamental weights. The dominant weights are of
the form a1ω1 + . . . + anωn where a1 > . . . > an > 0. A dominant weight can be also written on the
following form p1ε1 + . . . + pnεn, with p1 > . . . > pn > 0.

5.1.1. Paths. We will denote by XR the real vector space X⊗ZR. A path is a piecewise linear continuous
map π : [0, 1] −→ XR. We will consider paths up to a reparametrization, that is, a path π is equal to any
path π ◦ ϕ, where ϕ : [0, 1] −→ [0, 1] is a piecewise linear non-decreasing surjective continuous map.
The target π(1) of a path π is called the weight of π and denoted by wt(π). We denote by

Π =
{
π : [0, 1] −→ XR

∣∣ π(0) = 0 and π(1) ∈ X
}
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5. Coherence and Lakshmibai-Seshadri’s paths

the set of all paths whose source is 0 and weight lies in X. We will denote by θ : [0, 1] −→ XR the trivial
path defined by θ(t) = 0, for any t ∈ [0, 1]. Given two paths π1 and π2 in Π, the concatenation π1 ⋆ π2
is defined by:

π1 ⋆ π2(t) :=

{
π1(2t) for 0 6 t 6 1

2
,

π1(1) + π2(2t − 1) for 12 6 t 6 1.

With the concatenation ⋆ the set Π forms a monoid whose unity is the trivial path and called the monoid

of paths.

5.1.2. Words and paths. For λ in XR, consider the path πλ : [0, 1] −→ XR that connects the origin
with λ by a straight line, that is πλ(t) = tλ, for any t ∈ [0, 1]. The path πλ is in Π if and only if λ is in X.

Any 1-cell in the free monoid X∗

R
on XR is a finite sequence of weights. We define a map X∗

R
−→ Π

sending any 1-cellw = λ1 . . . λr, with λi in XR, to a path πw = πλ1 ⋆ . . .⋆πλr . The path πw is inΠ if and
only if λ1 + . . . + λr is in X. In addition, if we identify every path πεi with the integer i, for 1 6 i 6 n,
then the set of paths {πεi | 1 6 i 6 n} is identified with the set [n]. Hence, for every 1-cell w = x1 . . . xr
in the free monoid [n]∗, with xi in [n], we associate a path πw = πεx1 ⋆ . . .⋆πεxr . We will denote by ΠW
the free monoid over {πεi | 1 6 i 6 n}.

5.1.3. Root operators. Let πw be a path in ΠW . For each i in [n] and each simple root αi of gln, one
defines the root operators

eαi
, fαi

: ΠW −→ ΠW ∪ {0}

as follows. First, one considers the path πiw obtained by deleting all the paths other that πεi and πεi+1

from πw. Second, one removes the concatenation πεi ⋆ πεi+1
of adjacent paths, that is

with πεi(1) = πεi+1
(0). After these two operations we obtain a new path. The second step of the process

is repeated until it is impossible to remove adjacent paths. Let r and s be respectively the number of
paths πεi+1

and πεi in the final path.

− If r > 0, then eαi
(πw) is obtained by replacing in πw the rightmost path πεi+1

of the final path
by πεi and the others paths of πw stay unchanged. If r = 0, then eαi

(w) = 0.

− If s > 0, then fαi
(πw) is obtained by replacing in πw the leftmost path πεi of the final path by πεi+1

and the others paths of πw stay unchanged. If s = 0, we set fαi
(w) = 0.

These operators preserve the length of the paths. We have also that if fα(π) = π
′

6= 0 then eα(π
′

) = π.

5.1.4. Example. Consider the path πw = πε3 ⋆ πε1 ⋆ πε2 ⋆ πε2 ⋆ πε1 ⋆ πε3 ⋆ πε3 ⋆ πε1 ⋆ πε3 . Let
us compute fα1

(πw) and eα1
(πw). We have π1w = πε1 ⋆ πε2 ⋆ πε2 ⋆ πε1 ⋆ πε1 . After removing the

concatenation πε1 ⋆ πε2 of the adjacent paths πε1 and πε2 , we can not eliminate more paths. Then the
final path is πε2 ⋆ πε1 ⋆ πε1 , with r = 1 and s = 2. Hence we obtain that

fα1
(πw) = πε3 ⋆ πε1 ⋆ πε2 ⋆ πε2 ⋆ πε2 ⋆ πε3 ⋆ πε3 ⋆ πε1 ⋆ πε3 ,

eα1
(πw) = πε3 ⋆ πε1 ⋆ πε2 ⋆ πε1 ⋆ πε1 ⋆ πε3 ⋆ πε3 ⋆ πε1 ⋆ πε3 .

5.1.5. Crystal graphs. A crystal graph is a 1-polygraph G whose set of 0-cells is ΠW and whose set of
1-cells is

G1 :=
{
π
iπ→ fαi

(π)
∣∣ i ∈ {1, . . . , n}

}
.

Note that π ′ = fαi
(π) if and only if π = eαi

(π ′), [18]. If there is no confusion, we will denote iπ by i.
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5.2. Tableaux and Lakshmibai-Seshadri’s paths

5.1.6. Connected components of crystal graphs. For any path π in ΠW , we denote by B(π) the con-
nected component of the crystal graph containing π. Every connected component contains a path π that
satisfies the following property:

eαi
(π) = 0,

for any 1 6 i 6 n and called a highest weight path. We will denote by Π+
W the set of highest weight

paths in ΠW . An isomorphism between two connected components B(π) and B(π ′) is a bijective
map ψ : B(π)→ B(π ′) that satisfies the following conditions:

i) it is weight-preserving, that is wt(πw) = wt(ψ(πw)), for all πw in B(π),

ii) for all πw and πw ′ in B(π), if there is a 1-cell πw
i→ πw ′ , then there is a 1-cell ψ(πw)

i→ ψ(πw ′).

Recall that for two paths π1 and π2 in Π+
W , B(π1) and B(π2) are isomorphic if and only if their highest

weight paths π1 and π2 have the same weight, [29, Theorem 1].

5.1.7. Example. For n = 3, the connected component B(πε3 ⋆πε1 ⋆πε3) containing the path πε3 ⋆πε1 ⋆
πε3 has the following form

πε1 ⋆ πε1 ⋆ πε2
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πε3 ⋆ πε2 ⋆ πε3

The highest weight path of this connected component is πε1 ⋆ πε1 ⋆ πε2 .

5.2. Tableaux and Lakshmibai-Seshadri’s paths

5.2.1. Tableaux. Let λ = p1ε1 + . . . + pkεk be a dominant weight. A Young tableau of shape λ is
a collection of boxes in left-justified rows filled by elements in [n] strictly increasing in the columns,
such that the ith row contains pi boxes, for 1 6 i 6 k. For instance, a Young tableau of shape λ =

4ε1 + 3ε2 + ε3 is the following diagram
1 2 1 1
2 3 3
3

A tableau of shape λ, or tableau for short, is a Young tableau of shape λ where the entries are non-
decreasing in the rows. For example, a tableau of shape λ = 4ε1 + 3ε2 + ε3 is the following diagram

T =
1 1 1 2
2 3 3
3
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5. Coherence and Lakshmibai-Seshadri’s paths

The Japanese reading of a tableau T, denoted by J(T), is the 1-cell obtained by reading the tableau T

column-wise from top to bottom and from right to left. We will denote by πJ(T) the path in ΠW corre-
sponding to the 1-cell J(T), as presented in 5.1.2. For example, the Japanese reading of the previous
tableau T is J(T) = 21313123 and its corresponding path in ΠW is πJ(T) = πε2 ⋆ πε1 ⋆ πε3 ⋆ πε1 ⋆ πε3 ⋆

πε1 ⋆ πε2 ⋆ πε3 .

5.2.2. Lakshmibai-Seshadri’s paths. By definition, a tableau of shape ωi, for 1 6 i 6 n, consists of
one column with i elements satisfying x1 < . . . < xi from top to bottom. For each tableau of shape ωi,
we will associate the path t 7→ t(εx1 + . . .+ εxi) that connects the origin with the weight εx1 + . . .+ εxi
by a straight line. In this way, every column of a tableau will be represented by a path. For a fundamental
weight ωi, the Lakshmibai-Seshadri paths, or L-S paths for short, of shape ωi are the paths obtained
from all the columns of length i.

5.2.3. Example. For n = 3, let us compute the L-S paths of shape ω1,ω2 and ω3. The only three
columns of length 1 contains respectively the elements 1, 2 and 3, then the L-S paths of shape ω1
are πε1 , πε2 and πε3 . The columns of length 2 are

1
2 ,

1
3 and

2
3 .

Hence the L-S paths of ω2 are the paths πε1+ε2 , πε1+ε3 and πε2+ε3 . Moreover, the only column of
length 3 is

1
2
3

Hence the only L-S path of shape ω3 is πε1+ε2+ε3 .

5.2.4. Tableaux and L-S paths. An L-S monomial of shape (ω1, . . . ,ωk) is a concatenation π1 ⋆ . . . ⋆
πk, where the path πi is an L-S path of shape ωi, for every 1 6 i 6 k. A Young tableau of shape
λ = a1ω1 + . . . + anωn is represented by the L-S monomial

⋆
16i6n

π1,ωi
⋆ . . . ⋆ πai,ωi

where πi,ωi
is an L-S path of shape ωi. That is, the first a1 paths are of shape ω1, the next a2 paths are

of shape ω2 and so on until the final an paths are of shape ωn. In the sequel, if there is no confusion we
will identify Young tableaux with their corresponding L-S monomials.

5.2.5. Example. Forn = 3, the L-S monomial πε1 ⋆πε1+ε3 ⋆πε2+ε3 ⋆πε1+ε2+ε3 of shapeω1+2ω2+ω3
corresponds to the following Young tableau

1 2 1 1
2 3 3
3

The Japanese reading of this tableau is represented by the path πε1 ⋆πε1 ⋆πε3 ⋆πε2 ⋆πε3 ⋆πε1 ⋆πε2 ⋆πε3
in ΠW .
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5.2. Tableaux and Lakshmibai-Seshadri’s paths

5.2.6. Tableaux and crystal graphs. Let T be a Young tableau of shape λ. To compute the root oper-
ators on T, it is sufficient to compute them on the path πJ(T) and then to transform the resulted paths on
Young tableaux. For example, to compute the operator fα1

on the tableau

T =
1 2
3

it is sufficient to compute fα1
(πJ(T)). We have fα1

(πJ(T)) = fα1
(πε2 ⋆ πε1 ⋆ πε3) = πε2 ⋆ πε2 ⋆ πε3 and

the path πε2 ⋆ πε2 ⋆ πε3 corresponds to the following tableau

T’ =
2 2
3

Hence fα1
(T) = T’. We will denote by B(T) the connected component of the crystal graph containing

a Young tableau T. Note that a tableau of shape ω1 + . . . + ωk is a vertex of the connected compo-
nent B(πω1

⋆ . . . ⋆ πωk
). Moreover, the highest weight tableau of B(πω1

⋆ . . . ⋆ πωk
) has only i’s in

the i-th row, for 1 6 i 6 k. In particular, the L-S paths of shape ωi, for i in [n], are the vertices of the
connected component B(πωi

).

5.2.7. Example. For n = 3, the L-S monomial T = πε2 ⋆ πε1+ε3 ⋆ πε1+ε3 ⋆ πε1+ε2+ε3 of
shape ω1 + 2ω2 +ω3 corresponds to the following tableau

1 1 1 2
2 3 3
3

The path πε2 ⋆ πε1+ε3 ⋆ πε1+ε3 ⋆ πε1+ε2+ε3 is a vertex of B(πω1
⋆ πω2

⋆ πω2
⋆ πω3

), with

πε2 ⋆ πε1+ε3 ⋆ πε1+ε3 ⋆ πε1+ε2+ε3 = fα2
(fα1

(fα2
(πω1

⋆ πω2
⋆ πω2

⋆ πω3
))),

where the path πω1
⋆ πω2

⋆ πω2
⋆ πω3

corresponds to the following tableau

1 1 1 1
2 2 2
3

The tableau T is represented by the path πJ(T) = πε2 ⋆ πε1 ⋆ πε3 ⋆ πε1 ⋆ πε3 ⋆ πε1 ⋆ πε2 ⋆ πε3 in ΠW .

5.2.8. Example. Forn = 3, the tableaux of shapeω1+ω2 on the set [3] are the vertices of the following
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5. Coherence and Lakshmibai-Seshadri’s paths

connected component B(πω1
⋆ πω2

)
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The paths corresponding to the Japanese readings of the vertices of this connected component are the
vertices of the connected component of Example 5.1.7.

5.2.9. Yamanouchi path tableau. A Yamanouchi path is a path π in ΠW such that any of its left factor
path π ′ satisfies

|π ′|1 > . . . > |π ′|n

where |π ′|i denotes the number of occurrences of the path πεi in π ′. A path is a Yamanouchi path if and
only if it is a highest weight path, [35, Proposition 2.6.1]. As a consequence, all the paths of Π+

W are
Yamanouchi paths. As we have seen previously, the highest weight tableau of the connected component
containing tableaux of shape a1ω1 + . . . + akωk has only i’s in the i-th row for 1 6 i 6 k. Then this
highest weight tableau is represented by the following Yamanouchi path

(πε1 ⋆ . . . ⋆ πε1)︸ ︷︷ ︸
a1 times

⋆ (πε1 ⋆ πε2) ⋆ . . . ⋆ (πε1 ⋆ πε2)︸ ︷︷ ︸
a2 times

⋆ . . . ⋆ (πε1 ⋆ . . . ⋆ πεk) ⋆ . . . ⋆ (πε1 ⋆ . . . ⋆ πεk)︸ ︷︷ ︸
ak times

.

A Yamanouchi path that represents a tableau is called a Yamanouchi path tableau. Yamanouchi paths
form a single plactic class whose representative path is a unique Yamanouchi path tableau, [31, Lemma 5.4.7].

5.2.10. Yamanouchi’s map. Let us define a map

Y : Π+
W → Π+

W

that transforms a non-Yamanouchi path tableau to a Yamanouchi path tableau as follows. Let πw be a
non-Yamanouchi path tableau, then Y(πw) is equal to the path πJ(T), where T is the tableau obtained
from πw by putting for every πεi in πw an element i in the i-th row of T.
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5.3. Coherence of paths

5.2.11. Example. For n = 3, the path πw = πε1 ⋆ πε1 ⋆ πε2 ⋆ πε3 ⋆ πε1 ⋆ πε2 ⋆ πε1 ⋆ πε2 ⋆ πε3 is a
Yamanouchi path that is not a Yanamouchi path tableau. Moreover, this path can be transformed to the
following tableau

T =
1 1 1 1
2 2 2
3 3

after replacing each πε1 in πw by the element 1 in the first row of T, each πε2 in πw by the element 2 in
its second row and each πε3 in πw by the element 3 in its third row. Hence we obtain

Y(πw) = πJ(T) = πε1 ⋆ πε1 ⋆ πε2 ⋆ πε1 ⋆ πε2 ⋆ πε3 ⋆ πε1 ⋆ πε2 ⋆ πε3 .

5.3. Coherence of paths

In the free monoid ΠW over the set {πεi | 1 6 i 6 n}, the Knuth relations (2) can be written in the
following form

{
πεz ⋆ πεx ⋆ πεy

ηπx,y,z
=⇒ πεx ⋆ πεz ⋆ πεy

∣∣ 1 6 x 6 y < z 6 n
}

∪
{
πεy ⋆ πεz ⋆ πεx

επx,y,z
=⇒ πεy ⋆ πεx ⋆ πεz

∣∣ 1 6 x < y 6 z 6 n
}
.

(17)

We denote by Knuthpath
2 (n) the 2-polygraph whose set of 1-cells is {πεi | 1 6 i 6 n} and whose set

of 2-cells is given by (17). The 2-polygraphs Knuthpath
2 (n) and Knuth2(n) are Tietze equivalent, by the

mapping i 7→ πεi that induces an isomorphism between the two presented monoids.

5.3.1. Equivalence on paths. Let πw and πw ′ be two paths in ΠW . One can define a relation ∼path(n)

on ΠW by : πw ∼path(n) πw ′ if, and only if, the two following conditions are satisfied:

i) the connected components B(πw) and B(πw ′) are isomorphic, that is wt(π+w) = wt(π+w ′), where π+w
and π+w ′ are the highest weight paths of B(πw) and B(π ′

w).

ii) πw and πw ′ have the same position in the components B(πw) andB(πw ′), that is, there exist i1, . . . , ir
such that πw = fαi1

· · · fαir
(π+w) and πw ′ = fαi1

· · · fαir
(π+w ′).

5.3.2. 2-polygraph of crystals. Let Crys02(n) be the 2-polygraph whose set of 1-cells is {πεi | 1 6 i 6 n}
and whose set of 2-cells is

{
πw

ϑπw
=⇒ Y(πw)

∣∣ πw ∈ Π+
W and wt(πw) = wt(Y(πw))

}
.

For πw inΠ+
w, the path fαjk

◦fαjk−1
◦. . .◦fαj1

(πw) will be also denoted by fαjk
(πw), where for i = 1, . . . , k,

every ji is an element of [n], αji is a simple root and fαji
is the corresponding root operator. For k > 0,

let us define the 2-polygraph Crysk2(n) whose set of 1-cells is {πεi | 1 6 i 6 n} and whose set of 2-cells
is

{
fαjk

(πw)
ϑ
αjk
πw
=⇒ fαjk

(Y(πw))
∣∣ πw ∈ Π+

W and wt(πw) = wt(Y(πw))
}
.
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5. Coherence and Lakshmibai-Seshadri’s paths

The 2-polygraph of crystals is the 2-polygraph denoted by Crys2(n), whose 1-cells are πε1 , . . . , πεn
and whose set of 2-cells is

∪
i>0

Crysi2(n).

By construction, the monoid presented by the 2-polygraph Crys2(n) is isomorphic to the quotient of ΠW
by the equivalence ∼path(n).

5.3.3. Theorem. For n > 0, the 2-polygraph Crys2(n) is a convergent presentation of the monoid Pn.

Proof. Thanks to the mapping i 7→ πεi , for any i in [n], the free monoid ΠW is identified to the
monoid [n]∗. By [6, 23], the equivalence ∼plax(n) defined in 2.2.4 coincides with the equivalence ∼path(n),
taking into account that the column reading of Schensted’s tableaux obtained by the row insertion (2.2.3)
is replaced by the Japanese reading of Schensted’s tableaux which are obtained by a similar column inser-
tion, [32]. Thus, the monoid Pn is isomorphic to the quotient of ΠW by the equivalence ∼path(n). Hence,
the 2-polygraph Crys2(n) is a presentation of the monoid Pn.

Prove the convergence of the 2-polygraph Crys2(n). The termination is proved by showing that Crys2(n)
is compatible with a total order 4n-weight defined on the set Fn as follows. First, we fix an ordering ≺weight

on the set of fundamental weights F of the Lie algebra gln by

ω1 ≺weight ω2 ≺weight . . . ≺weight ωn.

Let 4n-weight be the lexicographic order on the set F
n induced by the order ≺weight, that is,

(ωi1 , . . . ,ωin) 4n-weight (ωi ′
1
, · · · ,ωi ′n) if

ωi1 ≺weight ωi ′1 or [ωi1 = ωi ′1 and (ωi2 , . . . ,ωin) 4n-weight (ωi ′2 , . . . ,ωi
′

n
)],

where for every 1 6 k 6 n, ωik and ωi ′k are fundamental weights in F. Then 4n-weight is a well-
ordering on the set Fn. Since the root operators preserve the lengths of paths and the shapes of tableaux,
we will suppose that all the paths are Yamanouchi paths. Note also that any path in ΠW has a unique
decomposition as an L-S monomial π1⋆. . .⋆πk of shape (ωj1 , . . . ,ωjk), where the path πi is an L-S path
of maximal shape ωji , for every 1 6 i 6 k and 1 6 ji 6 n. In this way, we will consider this unique
decomposition for all the Yamanouchi paths. By construction of the Yamanouchi map Y, every non-
Yamanouchi L-S monomial tableau is transformed to a Yamanouchi path tableau by beginning with the
concatenation of its L-S paths of shapeω1, after by the concatenation of its paths of shape ω2 and so on
until the concatenation of its L-S paths of maximal shape with respect to the order ≺weight. Then, for every
2-cell ϑπw : πw ⇒ Y(πw) in Crys2(n), we have Y(πw) ≺n-weight πw. Hence, the 2-polygraph Crys2(n)
is compatible with the order 4n-weight. Hence, rewriting an L-S monomial that is not a Yamanouchi
path tableau always decreases it with respect to the order 4n-weight. Since every application of a 2-
cell in Crys2(n) yields a 4n-weight-preceding L-S monomial, it follows that any sequence of rewriting
using Crys2(n) must terminate.

Let us show that Crys2(n) is confluent. Let πw be a path in ΠW and πw ′ , πw" be two normal forms
such that πw ⇒ πw ′ and πw ⇒ πw". It is sufficient to prove that πw ′ = πw". We have that πw ′ is a
Yamanouchi path tableau such that πw ∼path(n) πw ′ . Similarly, the path πw" is a Yamanouchi path tableau
such that πw ∼path(n) πw". Since πw ∼path(n) πw ′ ∼path(n) πw" and each plactic congruence contains exactly
one Yamanouchi path tableau, we obtain that πw ′ = πw". Since the 2-polygraph Crys2(n) is terminating,
and rewriting any non-Yamanouchi path tableau must terminate with a unique normal form, Crys2(n) is
confluent.
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5.3. Coherence of paths

As a consequence, we obtain that the 2-polygraphs Knuthpath
2 (n) and Crys2(n) are Tietze equivalent.

5.3.4. 2-polygraph of paths. Let denote by Path1(n) the 1-polygraph with only one 0-cell and whose
1-cells are all L-S paths of shape ω1, . . . ,wn. For each pair (πu, πv) in Path1(n) such that πu ⋆ πv is
not a tableau, we define the 2-cell

απu,πv : πu ⋆ πv ⇒ πw ⋆ πw ′ ,

where πw ⋆ πw ′ is the unique tableau such that πu ⋆ πv ∼path(n) πw ⋆ πw ′ . The 2-polygraph of paths,
denoted by Path2(n), is the 1-polygraph Path1(n) extended by the set of 2-cells απu,πv , where πu and πv
are in Path1(n) such that πu ⋆ πv is not a tableau. As shown by Littelmann, the 2-polygraph Path2(n) is
a presentation of the monoid Pn, [29, Theorem B]. Indeed, Littelmann showed that any L-S monomial is
equivalent modulo relations in Path2(n) to a tableau. Note that we can also prove that the 2-polygraph is
a presentation of Pn as follows. For every L-S pathm in Path1(n), we consider its column reading C(m)

as defined in Section 2.2. By the following composite of mappings

Path1(n) −→ ΠW −→ Knuth1(n)∗ −→ Col1(n)
m 7−→ πC(m) 7−→ C(m) 7−→ cC(m)

we transform each L-S path in Path1(n) into an element of Col1(n). Thus, the set Path1(n) is identified
to the set Col1(n). Similarly, we transform through the previous mapping the left and right hands of the
2-cells of Path2(n) into elements in Col1(n)∗. In this way, we identify the sets Col2(n) and Path2(n).
Hence the 2-polygraph Path2(n) is Tietze equivalent to Col2(n).

5.3.5. Path coherent presentation. Let us denote by Path3(n) the extended presentation of the monoid Pn
obtained from Path2(n) by adjunction of the following 3-cell

πe ⋆ πe ′ ⋆ πt
πeαπe ′ ,πt%9

���

πe ⋆ πb ⋆ πb ′ απe,πbπb ′

!5WWW
WWWW

WW

WWWW
WWWW

W

πu ⋆ πv ⋆ πt

απu,πvπt )=ggggggggg
ggggggggg

πuαπv,πt !5WWW
WWWW

WWW

WWWW
WWWW

WW
πa ⋆ πd ⋆ πb ′

πu ⋆ πw ⋆ πw ′

απu,πwπw ′

%9 πa ⋆ πa ′ ⋆ πw ′

πaαπa ′ ,πw ′

)=ggggggggg
ggggggggg

where the paths πu ⋆πv and πv ⋆πt are not tableaux and the paths πe ⋆πe ′ , πw ⋆πw ′ , πa ⋆πa ′ , πb ⋆πb ′

and πa ⋆ πd ⋆ πb ′ are tableaux such that

πu ⋆ πv ∼path(n) πe ⋆ πe ′ , πv ⋆ πt ∼path(n) πw ⋆ πw ′ , πu ⋆ πw ∼path(n) πa ⋆ πa ′ , πe ′ ⋆ πt ∼path(n) πb ⋆ πb ′ ,

πe ⋆ πb ∼path(n) πa ⋆ πd, πa ′ ⋆ πw ′ ∼path(n) πd ⋆ πb ′ , and πu ⋆ πv ⋆ πt ∼path(n) πa ⋆ πd ⋆ πb ′ .

The 2-polygraphs Col2(n) and Path2(n) have the same properties. In particular, they have the same
critical branchings and the same confluence diagrams. Hence, we obtain the following result as a direct
consequence of Theorem 3.2.2.

5.3.6. Corollary. For n > 0, the (3, 1)-polygraph Path3(n) is a coherent presentation of the monoid Pn.
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5. Coherence and Lakshmibai-Seshadri’s paths

5.3.7. Example: 2-polygraph Path2(3). Let us compute the elements of the 2-polygraph of paths Path2(3)
of the monoid P3. The set of 1-cells is

Path1(3) =
{
πε1 , πε2 , πε3 , πε1+ε2 , πε1+ε3 , πε2+ε3 , πε1+ε2+ε3

}
.

The left and right sides of the 2-cells of Path2(3) are the paths corresponding to the vertices appearing at
the same place in the following crystal isomorphisms

B(πε1 ⋆ πε2)

2 1

2
��

3 1

1
��

3 2

≃

B(πε1+ε2)

1
2

2
��

1
3

1
��

2
3

B(πε1+ε2+ε3 ⋆ πε1+ε2)

1
2

1
2
3

2
��

1
3

1
2
3

1
��

2
3

1
2
3

≃

B(πε1+ε2 ⋆ πε1+ε2+ε3)

1 1
2 2
3

2
��

1 1
2 3
3

1
��

1 2
2 3
3

B(πε1+ε2 ⋆ πε1)

1 1
2

1

yyss
ss
ss
ss
ss
ss
s

2

%%K
KK

KK
KK

KK
KK

KK

2 1
2

2
��

1 1
3

1
��

2 1
3

2
��

1 2
3

1
��

3 1
3

1
%%K

KK
KK

KK
KK

KK
KK

2 2
3

2
yyss
ss
ss
ss
ss
ss
s

3 2
3

≃

B(πε1 ⋆ πε1+ε2)

1 1
2

1

yyss
ss
ss
ss
ss
ss
s

2

%%K
KK

KK
KK

KK
KK

KK

1 2
2

2
��

1 1
3

1
��

1 3
2

2
��

1 2
3

1
��

1 3
3

1
%%K

KK
KK

KK
KK

KK
KK

2 2
3

2
yyss
ss
ss
ss
ss
ss
s

2 3
3
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B(πε1+ε2 ⋆ πε1+ε3)

1
3
1
2

1
��

2
3
1
2

2
��

2
3
1
3

≃

B(πε1 ⋆ πε1+ε2+ε3)

1 1
2
3

1
��

1 2
2
3

2
��

1 3
2
3

B(πε1 ⋆ πε1+ε2)

2
3
1

≃

B(πε1+ε2+ε3)

1
2
3

B(πε1+ε2+ε3
⋆ πε1

)

1 1
2
3

1
��

2 1
2
3

2
��

3 1
2
3

≃

B(πε1
⋆ πε1+ε2+ε3

)

1 1
2
3

1
��

1 2
2
3

2
��

1 3
2
3

B(πε1+ε2
⋆ πε3

)

3 1
2

≃

B(πε1+ε2+ε3
)

1
2
3

This presentation of the monoid P3 can be extending into a coherent one by adding 42 3-cells as men-
tioned in 4.4.9.
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