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KNUTH’S COHERENT PRESENTATIONS OF
PLACTIC MONOIDS OF TYPE A

NOHRA HAGE PHILIPPE MALBOS

Abstract — We construct finite coherent presentations of plactic monoids of type A. Such coherent
presentations express a system of generators and relations for the monoid extended in a coherent way
to give a family of generators of the relations amongst the relations. Such extended presentations
are used for representations of monoids, in particular, it is a way to describe actions of monoids
on categories. Moreover, a coherent presentation provides the first step in the computation of a
categorical cofibrant replacement of a monoid. Our construction is based on a rewriting method
introduced by Squier that computes a coherent presentation from a convergent one. We compute
a finite coherent presentation of a plactic monoid from its column presentation that is known to
be finite and convergent. Finally, we show how to reduce this coherent presentation to a Tietze
equivalent one having Knuth’s generators.
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1. Introduction

1. INTRODUCTION
Coherent presentations of plactic monoids

Plactic monoids. The structure of plactic monoids appeared in the combinatorial study of Young tableaux
by Schensted [32] and Knuth [21]. The plactic monoid of rank n > 0 is the monoid, denoted by P;,,

generated by the finite set {1, ..., n} and subject to the Knuth relations:
zxy =xzy foralll <x<y<z<n,
yzx =yxz forallT<x<y<z<n
For instance, the monoid P, is generated by 1 and 2 and submitted to the relations 211 = 121 and

221 = 212. The Knuth presentation of the monoid P3; has 3 generators and 8 relations. Lascoux and
Schiitzenberger used the plactic monoid in order to prove the Littlewood-Richardson rule for the decom-
position of tensor products of irreducible modules over the Lie algebra of n by n matrices, [33} 25].
The structure of plactic monoids has several applications in algebraic combinatorics and representation
theory [24] 25 23] [8]] and several works have generalised the notion of tableaux to classical Lie alge-
bras [2},137),[19, 29 34]).

Syzygies of Knuth’s relations. The aim of this work is to give an algorithmic method for the syzygy
problem of finding all independent irreducible algebraic relations amongst the Knuth relations and some
other presentations of the plactic monoids in type A. A 2-syzygy for a presentation of a monoid is a
relation amongst relations. For instance, using the Knuth relations there are two ways to prove the equal-
ity 2211 = 2121 in the monoid P;, either by applying the first Knuth relation 211 = 121 or the second
relation 221 = 212. This two equalities are related by a syzygy. Starting with a monoid presentation, we
would like to compute all syzygies for this presentation and in particular to compute a family of gener-
ators for the syzygies. For instance, we will prove that in rank 2 the two Knuth relations form a unique
generating syzzygy for the Knuth relations. For rank greater than 3, the syzygies problem for the Knuth
presentation is difficult due to the combinatorial complexity of the relations. In commutative algebra, the
theory of Grobner bases gives algorithms to compute bases for linear syzygies. By a similar method, the
syzygy problem for presentation of monoids can be algorithmically solved using convergent rewriting
systems.

Rewriting and plactic monoids. Study presentations from a rewriting approach consists in the orien-
tation of the relations, then called reduction rules. For instance, the relations of the monoid P, can be
oriented with respect to the lexicographic order as follows

nii2: 211 =121 €122 " 221 = 212,

In amonoid presented by a rewriting system, two words are equal if they are related by a zig-zag sequence
of applications of reductions rules. A rewriting system is convergent if the reduction relation induced
by the rules is well-founded and it satisfies the confluence property. This means that any reductions
starting on a same word can be extended to end on a same reduced word. Recently plactic monoids were
investigated by rewriting methods [22} 13} 15, (14} 4].
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Coherent presentations. In this paper, we give a categorical description of 2-syzygies of presentations
of the monoid P, using coherent presentations. Such a presentation extends the notion of a presentation
of the monoid by globular homotopy generators taking into account the relations amongst the relations
of the monoid. We compute a coherent presentation of the monoid Py, using the homotopical completion
procedure introduced in [[13, 9]. Such a procedure extends the Knuth-Bendix completion procedure,
[20], by keeping track of homotopy generators created when adding rules during the completion. Its
correctness is based on the Squier theorem, [36]], which states that a convergent presentation of a monoid
extended by the homotopy generators defined by the confluence diagrams induced by critical branchings
forms a coherent convergent presentation. The notion of critical branching describes the overlapping of
two rules on a same word. For instance, the Knuth presentation of the monoid P, is convergent. It
can be extended into a coherent presentation with a unique globular homotopy generator described by
the following 3-cell corresponding to the unique critical branching of the presentation between the rules

M1,1,2 and €122:

21,2

2211 2121
v

€121

The Knuth presentation of the monoid P35 is not convergent, but it can be completed by adding 3 relations
to get a presentation with 27 3-cells corresponding to the 27 critical branchings. For the monoid P4 we
have 4 1-cells and 20 2-cells, for P5 we have 5 1-cells and 40 2-cells and for Pg we have 6 1-cells and 70
2-cells. However, in the last three cases, the completion is infinite and another approach is necessary to
compute a finite generating family for syzygies of the Knuth presentation.

The column presentation. Kubat and Okninski showed in [22]] that for rank n > 3, a finite convergent
presentation of the monoid P, cannot be obtained by completion of the Knuth presentation with the
deglex order. Then Bokut, Chen, Chen and Li in [3] and Cain, Gray and Malheiro in [3]] constructed
with independent methods a finite convergent presentation by adding column generators to the Knuth
presentation. The monoid P;, corresponds to the representations of the general Lie algebra of n by n
matrices which is of type A, and now called the plactic monoid of type A, [[6, 23]. The classification of
finite dimensional complex semisimple Lie algebras in classical types A, B, C, D and in exceptional ones
allows the existence of plactic monoids of the same types. Theses monoids can be defined by a case-by-
case analysis using the Kashiwara theory of crystal bases [[17, 119,118, (1,126, 27]] or in a general way using
Littelmann path model [29]. Using the Kashiwara theory of crystal bases, the first author constructed
in [14] a finite and convergent presentation for plactic monoids of type C. Similar presentations for
plactic monoids of type B, C, D and G, were obtained by Cain, Gray and Malheiro in [4]. Recently,
finite convergent presentations of plactic monoids for any type was also obtained by the first author
using the Littelmann path model, [15]. However, on the one hand, the proof given in [5] does not
give explicitly the critical branchings of the presentation which does not permit to use the homotopical
completion procedure. On the other hand, the construction in [3]] gave an explicit description of the
critical branchings of the presentation, but this does not allow to get explicitly the relations amongst the
relations, and in particular it is difficult to reduce such a presentation.
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The Knuth coherent presentation. We construct a coherent presentation of the monoid P;, that extends
the Knuth presentation in two steps. The first step consists in giving an explicit description of the critical
branchings of the column presentation. The column presentation of the plactic monoid has one genera-
tor ¢, for each column wu, that is, a word u = X, ... X7 such that x,, > ... > xy. Given two columns u
and v, using the Schensted algorithm, we compute the Schensted tableau P(uv) associated to the word
uv. One proves that the planar representation of the tableau P(uv) contains at most two columns. If the
planar representation is not the tableau obtained as the concatenation of the two columns u and v, one
defines arule &y, : cuCy = Cw €y Where w and w’ are respectively the left and right columns (with one
of them possibly empty). We show that the column presentation can be extended into a coherent column
presentation whose any 3-cell has at most an hexagonal form. For instance, the column presentation
for the monoid P, has generators ¢y, ¢z, ¢27, with the rules &7 : c2¢1 = €21, @121 : €1€21 = €21Cq
and o 21 : €2¢21 = ¢21¢2. This presentation has only one critical branching:

% C21C21
C21%21
€2€1C2 m \

CHx C)C21C1 =—= C21C2C
201 27 2C21 1062)21C1 21€2C1

and thus the 3-cell of the extended coherent presentation is reduced to this 3-cell defined by this conflu-
ence diagram. Note that for column presentations of the monoids P3, P4 and P5 we count respectively 7,
15 and 31 generators, 22, 115 and 531 relations, 42, 621 and 6893 3-cells.

The second step aimed at to reduce the coherent column presentation using Tietze transformations
that coherently eliminates redundant column generators and defining relations to the Knuth coherent
presentation giving syzygies of the Knuth presentation. For instance, if we apply this Tietze trans-
formation on the column coherent presentation of the monoid P;, we prove that the Knuth coherent
presentation of P, on the generators cy,c; and the relations 1y 7 2, €12 has a unique generating 3-cell
211,12 = €121 described above.

Organisation and main results of the article

Two-dimensional rewriting. In this work, we use the polygraphical description of string rewriting sys-
tems. The polygraphic notions are briefly recalled in Section 2.1l and we refer the reader to [12] for a
deeper presentation. A 2-polygraph is a data made of a directed graph (Zo,Z;) and a globular exten-
sion X, of the free monoid X7 on X;. The monoid presented by L is the quotient of the free monoid X} by
the congruence generated by the 2-cells of the free 2-category X;. A rewriting step of a 2-polygraph X
is a 2-cell in the 2-category X generated by X and with shape

u

W /_\ W,

o——— e Up e——e

v

where 3 is a 2-cell of X, and w and w' are 1-cells of Xj. A rewriting sequence is a finite or infinite
sequence of rewriting steps. The 2-polygraph X ferminates if it has no infinite rewriting sequence. A
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branching of the 2-polygraph X is a non ordered pair (f, g) of 2-cells of Z3 with a common source as in

It is local if f and g are rewriting steps, aspherical if f = g and Peiffer when it is of the form (huy, uk)
for rewriting steps h and k with s7(h) = u; and s (k) = uy. The overlapping branchings are the remain-
ing local branchings. A minimal overlapping local branching is a critical branching. A 2-polygraph XL is
confluent if for all branching (f, g) there exist 2-cells f’ and g’ in X} as in the following diagram:

% b \fls

u u’
9\ w %’

A 2-polygraph X is convergent if it terminates and it is confluent.

Plactic monoids. In Section we recall the definition and properties of plactic monoids. We refer
the reader to [31] and [8] for a full introduction. The Knuth 2-polygraph of rank n > 0 is the 2-
polygraph Knuth, (n) whose set of 1-cells is {1,...,n} and the set of 2-cells is

€
{zxyng}zxzyH <x<y<z<n} U {yzx 22X yxz|1<x<y<z<nlh

The 2-cells of Knuth,(n) correspond to the Knuth relations oriented with respect to the lexicographic
order and the monoid presented by the 2-polygraph Knuth;(n) is the monoid Py, [21, Theorem 6].

Pre-column presentation. In we introduce the pre-column presentation. Consider the set col(n)
of non-empty columns on the set {1,...,n}. One adds to the presentation Knuth,(n) one superfluous
generator ¢, for any u in col(n). We denote by Col;(n) the set of column generators c,, for any u
in col(n) and by

Yu i Cxp---Cxg = Cy

the defining relation for the column generators u = X, ...X7 in col(n) of length greater than 2. In the
free monoid Col; (n)*, the Knuth relations can be written in the following form

C C
Tx \Z Exy,z
C2CxCy 2l cxCeyforT<x<y<z<mn, and cyc,cy 2k cycxc forT<x<y<z<n.

The 2-polygraph Knuth$®(n) whose 1-cells are columns and 2-cells are the defining relations for columns
generators and the Knuth relations ng , , and €5, , is a presentation of the monoid Py. In2.3.3] we give
an other presentation of the column generators. One defines the 2-polygraph PreCol; (1) with column

generators and the set of 2-cells is

/
.
{exeay Jcmcy|1<x§y<z<n} U
/

/
{eyeanx %:’Z>X cyxCz [ T<x<y<z<n} U {exey Sy Cxu | xu € col(n) and 1< x < n},
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where the 2-cells o ,, and o ,, correspond respectively to the Knuth relations 1§, , and 5, .. We

prove in Proposition that the 2-polygraph PreCol;(n) is a presentation of the monoid Py, then
called the pre-column presentation of Py,.

Column presentation. In 2.4] we recall the column presentation introduced in [5]. Given columns
u and v, if the planar representation of the Schensted tableau P(uv) is not the tableau obtained as the
concatenation of the two columns u and v, we will denote u”™ v. In this case, the tableau P(uv) contains at
most two columns and we will denote 1 v if the tableau P(uv) has one column and we will denote 1 =y
if the tableau P(uv) has two columns. When u” v, we define a 2-cell

Xy CuCy = CwCyy/

where w = uv and ¢,y = 1, if u* ]v, and w and w’ are respectively the left and right columns of
the tableau P(uv), if WA, The 2-polygraph Col,(n) whose set of 1-cells is Col;(n) and the 2-cells
are the o, is a finite convergent presentation of the monoid Py, called the column presentation of
the monoid P,. The proof given in [5] for the convergence of Coly(n) consists in showing that the
2-polygraph Coly(n) has the unique normal form property. The construction in Section [3.2] gives an
other proof of the confluence of the 2-polygraph Coly(n) by showing the confluence of all the critical
branchings of the column presentation.

Coherent column presentation. In Section[3] we recall the notion of coherent presentation of a monoid.
A (3, 1)-polygraph is a pair (£,, X3) made of a 2-polygraph ¥, and a globular extension L3 of the free
(2, 1)-category Z;. A coherent presentation of a monoid M is a (3, 1)-polygraph whose underlying
2-polygraph is a presentation of the monoid M and such that, for every 2-sphere y of £, , there exists
a 3-cell in Z3T with boundary y. Using the homotopical completion procedure from [9]], we extend the
2-polygraph Col,(n) into a coherent presentation Colz(n) of the monoid Py,. In particular, we explicit
all the 3-cells &, 1 given by the confluence diagrams of the critical branchings and having the following
hexagonal form

Ce(xe’s
Oy vC CeCe’Ct = CeCpCh/ Xe bCh’

CuCvCt Xu,v,t

e

X
uyt Cucwcw/(xm/cacalcw
)

CaCqCp

% ’
[ Calarw

for any columns 11, v and t such that 1™ v ™ t . This shows the first main result of this article:

Theorem 3.2.2l Forn > 0, the (3,1)-polygraph Col3(n) is a coherent presentation of the
monoid P,

The extended presentation Colz(n) is called the column coherent presentation of the monoid P,.

Pre-column coherent presentation. In Section 4] using the homotopical reduction procedure given
in [9, 2.3.3], we reduce the coherent presentation Colz(n) into a smaller coherent presentation of the
monoid P;,. We proceed in three steps. Firstly, we apply a homotopical reduction on the (3, T)-polygraph
Colz(n) with a collapsible part defined by some of the generating triple confluences of the 2-polygraph
Coly(n). In this way, we reduce the coherent presentation Colz(n) of the monoid P, into the coherent
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presentation Colz(n) of P,,, whose underlying 2-polygraph is Col(n) and the 3-cells Xyt are those of
Colsz(n), but with u is of length 1. Then we reduce the coherent presentation Colz(n) into a coherent

presentation PreCols(n) obtained from PreCol,(n) by adjunction of the 3-cell R, (C,’%v}t) where
Gx,vC CxvCt
, voczl...zq_,_hw’
CxCyCt MCXW

% CxCwCw’ m CXVCZ]'...Zq+] Cw’

with W% , and the 3-cell Ry, (Dy, ) where

CeXer
Ot vCr s, CeCe’Ct ﬁ CeCoCb’ e pChr

CxCyCt MDXW

mcxcwcw’ ——— CqCq’/Cw
K wCw !

CaCdCyp

% ’
,CalXa’w

with x*4*%*t and where the homotopical reduction Rr, eliminates a collapsible part '3 of Colz(n). In

this way, we prove that

Theorem 4.3.5l For n > 0, the (3,1)-polygraph PreCol3(n) is a coherent presentation of
the monoid P,.

For instance, the coherent presentation Col3(2) has only one 3-cell

x2,1€ C21C21
/ €212 1
€12 mCzJ 21 ’

€200 377 €2€21C1 = €21€2C1
Y

In this case, the (3, 1)-polygraphs PreCol3(2) and Col3(2) coincide. We give in the values of
number of cells of the (3, 1)-polygraphs Col3(n) and PreColz(n) for plactic monoids of rank n < 10.

Knuth’s coherent presentation. In a final step, we reduce in[4.4]the coherent presentation PreCols(n)
into a coherent presentation of the monoid P,, whose underlying 2-polygraph is Knuth,(n). We define
an extended presentation Knuth3(n) of the monoid P,, obtained from Knuth;(n) by adjunction of the
following set of 3-cells

{R(CLy0) | XV} U {R(Depy) | XA,

where R : Col3(n) " — Knuthgc(n)—r is a Tietze transformation constructed throughout Section 4l We
obtain our main result:

Theorem 4.4.7. For n > 0, the (3,1)-polygraph Knuth3(n) is a coherent presentation of
the monoid P,.
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For instance, the Knuth coherent presentation of the monoid P, has generators ¢ and c; subject to
the Knuth relations ﬂ?,u 1 c2c1¢1 = cicacq and 5?,2,2 : c2C2¢1 = cacqc; and the following 3-cell

C
My
c202C1Cq MC” c2€1C2Cq

C
51,2,21

Note that the Knuth coherent presentation of the monoid P, corresponds to the coherent presentation that
one can compute directly using the fact that the 2-polygraph Knuth;(2) is convergent.

Coherence and Lakshmibai-Seshadri’s paths. The plactic monoid admits a description in terms of the
Kashiwara theory of crystal bases, [6,[17,[19}[18]], and the Littelmann path model, [29]]. In a last part of the
paper, we compute a coherent presentation of the monoid P, using these two approaches. In Section [3]
we construct a convergent presentation of the monoid P, using the notions of tableaux and Yamanouchi
paths. In this case, the plactic congruence ~pam) is defined in terms of a crystal isomorphism, see
We recall in[5.1] the notion of paths from [29]. Consider R™ with its canonical basis (¢1,...,&n). A path
is a piecewise linear continuous map 7t : [0, 1] — X ®z R where X the lattice Ze; & ... ® Zen. Denote
by 7t¢, the path that connects the origin with ¢; by a straight line.

2-polygraph of crystals. In [5.2] we recall the notion of tableaux, Lakshmibai-Seshadri’s paths and
Yamanouchi’s paths from [28], 29} 31}, 33]. Using these notions, we define in [5.3.2] the 2-polygraph of
crystals as follows. Consider the 2-polygraph Crys(n) whose 1-cells are 7, , ..., and whose 2-
cells are of the form ¥, : m, = Y(m, ), where 7, is a non-Yamanouchi path tableau and Y(m,,) is
its corresponding Yamanouchi path tableau such that 7, (1) = Y(7,,)(1). For k > 0, we define the 2-
polygraph Crys(n) whose 1-cells are 7., , . .. 7t,, and whose 2-cells are of the form 1‘)2&‘ oy, (Tw) =
fog, (Y(my,)), where 7, and Y(7t,,) are respectively non-Yamanouchi and Yamanouchi paths tableaux
such that 7t,,(1) = Y(7,,)(1) and where f"‘ik is a composite of roots operators f,,, defined in We

define the 2-polygraph of crystals Crys,(n) as the union 'L>Jo Crys5(n). We prove that
>

Theorem For . > 0, the 2-polygraph Crys,(n) is a convergent presentation of the
monoid Py,.

Path coherent presentation. Finally, we end Section [3l by constructing a coherent presentation of the
monoid Py, in terms of Lakshmibai-Seshadri’s paths. We consider the 1-polygraph Path;(n) with only
one O-cell and whose 1-cells are all Lakshmibai-Seshadri’s paths. For each pair (71, 7t,) in Pathy(n)
such that 7t 71, is not a tableau, we define a 2-cell oy, x, @ 70y * T4, = Th, * T/, Where 70, % T,/ is
the unique tableau such that 7t * 71, ~pathn) 70w * 7. The 2-polygraph of paths, denoted by Path;(n),
is the 1-polygraph Path;(n) extended by the set of 2-cells otr, x,, Where 7, and 7, are in Pathy (n) such
that 71, * 71, is not a tableau. Then we consider the extended presentation Pathz(n) of the monoid Py,
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obtained from Path;(n) by adjunction of the following 3-cell

ﬁecxﬂ'Ee/,T[t
ey, 7, Ty, The X Tle! K Tl == Tle % Ty * To/ O, m, Tl

Ty * T, % TTt m Tlq * TTq * Ty

Tt [0
'U-(X/T[\Mﬂt Wk Thy % Ty ﬁﬁa*ﬂa/*ﬁw, AT 74T, 7

wy 7w

where the paths 7t * 71, and 7, x 71; are not tableaux. As a consequence of Theorem [3.2.2] we deduce
that the (3, 1)-polygraph Path3(n) is a coherent presentation of the monoid Py,.

Applications and perspectives. In [9], a description of the category of actions of a monoid on categories
is given in terms of coherent presentations. Using this description, Theorem [4.4.7] allows to present ac-
tions of plactic monoids on categories as follows. The category Act(Py) of actions of the monoid P,
on categories is equivalent to the category of 2-functors from the (2, 1)-category Knuth,(n)' to the
category Cat of categories, that sends the 3-cells of Knuth3(n) to commutative diagrams in Cat. One
potential application is the actions of the plactic monoid in the category of finite dimensional representa-
tions of the general Lie algebra or in the category O of finite and infinite dimensional representations of
the general Lie algebra, [16].

Following [[11]], a convergent presentation of a monoid can be extended into a polygraphic resolution
of the monoid, that is, a cofibrant replacement of the monoid in the category of (oo, 1)-categories. The
column presentation Col, (1) of the monoid P, can then be extended into a polygraphic resolution whose
n-cells, for every n > 3, are indexed by (n—1)-fold branching of Col;(1n). We can explicit the 4-cells of
this resolution, which correspond to the confluence diagrams induced by critical triple branchings with
source €y CyCiCe for all columns u, v, t and e such that u v, v t and t*e. These 4-cells have a
permutohedral form. More generally, one may conjecture that the generating n-cells of the resolution
have the form of the permutohedron of order n corresponding to a confluence diagram of (n — 1) over-
lapping reductions. This construction should generalise the construction of the Anick resolution for the
monoid P;, starting with the column presentation, given by Lopatkin in [30].

Finally, by extending our construction to plactic monoids of other types, we expect other potential
applications in representation theory. In particular, our approach for plactic monoids of type A could
be applied for computations of finite coherent presentations for the plactic monoids of type B, C and D.
The column rules for the type A are defined by the Schensted insertion algorithm. For the other types,
the column rules are defined by Lecouvey’s insertion algorithm, [26} 27]], as was shown in [14]. We
expect that the syzygies for the classical types have an hexagonal form as shown for type A. Finally, this
question is more difficult for the exceptional types that we are not able to give a conjectural form.
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2. COLUMN PRESENTATION OF PLACTIC MONOIDS

In this work, rewriting methods are presented in the language of polygraphs, that we recall in this section.
We refer the reader to [11] and [12] for a deeper presentation.

2.1. Presentations of monoids by two-dimensional polygraphs

2.1.1. Two-dimensional polygraphs. A 1-polygraph is a directed graph
S0
! §t: 2
0

given by a set Xy of O-cells, a set X; of 1-cells together with two maps sy and ty sending a T-cell x
on its source so(x) and its target to(x). We will denote by L7 the free category generated by the
1-polygraph (Xo,Z;). Its set of O-cells is Xy and for any O-cells p and q, the 1-cells of the hom-
set X7 (p, q) are paths from p to ¢ in the 1-polygraph (X, X1). The composition is the concatenation of
paths and the identity on a O-cell p is the empty path with source and target p. A globular extension of
the free category X7 is a set £, equipped with two maps

$1
Tt:ZZ
1

such that, for every 3 in Z,, the pair (s1(f), t1(f)) is a 1-sphere in the category X7, that is,

sos1(B) = sot1(B) and tosi(B) = tots(B).

An element of the globular extension X, can be represented by a 2-cell with the following globular shape
u
/\
p_UB g
~_
v

that relates parallel 1-cells w and v of Zj. A 2-polygraph X is a triple (Zo, X1, X;), where (Xo,X1)isa 1-
polygraph and X, is a globular extension of the free category 27. The elements of X are called the 2-cells
of the 2-polygraph X, or the rewriting rules defined by X. If there is no possible confusion, X, will denote
the set of 2-cells of the 2-polygraph X or the 2-polygraph itself. A 2-category is a category enriched in
categories. When two 1-cells, or 2-cells, f and g of a 2-category are i-composable, for i = 0, 1, that
is ti(f) = si(g), we denote by f %; g their i-composite. A (2, 1)-category is a category enriched in
groupoid, that is a 2-category whose 2-cells are invertible for the 1-composition. We will denote by
L5 (resp. ZZT) the 2-category (resp. (2, 1)-category) freely generated by the 2-polygraph . We refer
the reader to [12, Section 2.4.] for expended definitions of 2-categories and constructions of the 2-
categories £} and £, .

In this article, we deal with rewriting in monoids, that is, categories with only one O-cell, so that the
set Xy is reduced to a set with exactly one element denoted e. In this case, the 1-polygraph (Xo, Z;) will
be identified to a set £ and X7 will be identified to the free monoid on ;.

10



2.1. Presentations of monoids by two-dimensional polygraphs

2.1.2. Presentations of monoids by 2-polygraphs. The monoid presented by a 2-polygraph ¥, denoted
by L, is defined as the quotient of the free monoid £¥ by the relations s1(B) = t1 (), for every 2-cell
3 of £3. A presentation of a monoid M is a 2-polygraph whose presented monoid is isomorphic to M.
Two 2-polygraphs are Tietze equivalent if they present isomorphic monoids.

2.1.3. Tietze transformations of 2-polygraphs. A 2-cell  of a 2-polygraph X is collapsible, if t1 () is
a T-cell of £; and the 1-cell s (3) does not contain t;(3). The target of a collapsible 2-cell is a redundant
T-cell. Tietze transformations were introduced in group theory in order to transform a presentation of a
group into a presentation of the same group by adding or removing generators and rules, [38]. This notion
can be defined for 2-polygraphs. Recall from [9] 2.1.1.], that an elementary Tietze transformation of a
2-polygraph X is a 2-functor with domain ZzT that belongs to one of the following four transformations:

i) adjunction LFS : Z; — ZzT [x](B) of a redundant 1-cell x with its collapsible 2-cell {3:

ii) elimination 7 : £, — (Z1 \ {x}, Z2 \ {B}) " of a redundant 1-cell x with its collapsible 2-cell f:

B u
) o— — e

x@;

which maps x to u and the 2-cell 3 to 1,, and being identity on the others cells,

iii) adjunction g : ZZT — ZZT(B) of a redundant 2-cell 3:

TN g TN
° Ly "o I~ o LY [P e
N ) ~_

iv) elimination 7ty ) : £; — £ /(y, B) of a redundant 2-cell p:

T(y,p)

/\4
> ° Ly e
N "

If £ and Y are 2-polygraphs, a Tietze transformation from L to Y is a 2-functor F : LT — YT that
decomposes into sequence of elementary Tietze transformations. Two 2-polygraphs are Tietze equivalent
if, and only if, there exists a Tietze transformation between them [9, Theorem 2.1.3.].

11



2. Column presentation of plactic monoids

2.1.4. Nielsen transformation. Recall the notion of Nielsen transformation from [9, 2.1.4.]. Given a
2-polygraph X and a 2-cell
w2 ety Xy,

in I , the Nielsen transformation Ky« p is the Tietze transformation that replaces in the (2, 1)-category bl
the 2-cell v by a 2-cell  : u; = v;. The transformation k. g can be decomposed into the following
composition of elementary Tietze transformations:

1) n(Y7*15*1Y7»Y> _ _
T DB T 5 vy kB gL Y)-
When v, is identity, we will denote by K; —p the Nielsen transformation which, given a 2-cell w4 L\/ u i\/ v
in £, replaces the 2-cell y by a 2-cell B : u; = V.

2.1.5. Rewriting sequences. A rewriting step of a 2-polygraph X is a 2-cell of L5 with shape

u

W /\ W,
o——— e Ip e———e
v

where [ is a 2-cell of X, and w and w' are 1-cells of X3. A rewriting sequence of X is a finite or infinite
sequence

W= W= = Uy =

of rewriting steps. If £ has a rewriting sequence from u to v, we say that w rewrites into v. A T-cell u
of 27 is a normal form if there is no rewriting step with source u. The 2-polygraph X terminates if it has
no infinite rewriting sequence. In that case, every 1-cell of L] has at least one normal form.

2.1.6. Branchings. A branching of the 2-polygraph X is a non ordered pair (f, g) of 2-cells of £ with
a common source, that is s1(f) = s1(g). A branching (f, g) is local if f and g are rewriting steps. A
branching is aspherical if it is of the form (f,f), for a rewriting step f and Peiffer when it is of the
form (fv,ug) for rewriting steps f and g with s;(f) = wand s1(g) = v. The overlapping branchings are
the remaining local branchings. Local branchings are ordered by the order C generated by the relations

(f,g) T (wfw',wgw’)

given for any local branching (f, g) and any possible 1-cells w and w’ of the category X;. An overlapping
local branching that is minimal for the order C is called a critical branching.

2.1.7. Confluence. A branching (f, g) is confluent if there exist 2-cells f" and g’ in X3, as in the follow-

ing diagram:
f vt
T
u u
g\> w /

g

12



2.2. Plactic monoids

We say that a 2-polygraph L is confluent (resp. locally confluent) if all of its branchings (resp. local
branchings) are confluent. If X is confluent, every 1-cell of £* has at most one normal form. The critical
branching Lemma, [12] Theorem 3.1.5.], states that a 2-polygraph is locally confluent if and only if all its
critical branchings are confluent. The Newman Lemma, [[12, Theorem 3.1.6.], states that for terminating
2-polygraphs, local confluence and confluence are equivalent properties.

2.1.8. Convergence. A 2-polygraph X is convergent if it terminates and it is confluent. Such a X is

called a convergent presentation of any monoid isomorphic to L. In that case, every 1-cell u of 2ihasa
unique normal form.

2.2. Plactic monoids

We recall the definition and properties of plactic monoids. We refer the reader to [31]] and [8]] for a full
introduction to the plactic structure and tableaux.

2.2.1. Rows, columns and tableaux. For a natural number n > 0, we denote by [n] the finite
set {1,2,...,n} totally ordered by 1 < 2 < ... < n. A row is a non-decreasing 1-cell xj...x in
the free monoid [n]*, i.e., with x; < x4 for 1 <1< k— 1. A column is a decreasing 1-cell x, ... X
in the free monoid [n]*, i.e., with x;11 > x4, for 1 < 1 < p — 1. We will denote by col(n) the set of
non-empty columns in n]*. We denote by £(w) the length of a T-cell w and we denote by (" (w) the
length of the longest non-decreasing subsequence in w.

A row X1 ...Xxy dominates a tow Y ...y, and we denote xq ...xx > Y ...y, if k < land x; > yi,
for T < i < k. Any l-cell w in [n]* has a unique decomposition as a product of rows of maximal
length w = wj...ux. Such a 1-cell w is a (semistandard) tableau if w; > uy; > ... > w. It
is usual to write tableaux in a planar form, with the rows placed in order of domination from bottom
to top and left-justified as in [8]]. For example, the T-cells 13123 and 23412 are not tableaux and the
1-cell 6745662233461112234 is a tableau whose planar representation is

1[1]1]2]2]3]4]

21213346

415|6|6

6|7 (1)

The column reading of the planar representation of a tableau w constructs a 1-cell, denoted by C(w),
obtained by reading the planar representation of w column-wise from bottom to top and from left to right.
For example, the column reading of the tableau (Il is 6421752163163242634.

2.2.2. Total orders on columns. We will denote by <{geglex the total order on col(n) defined by U <{deglex V
if
Lu) < {€(v) or ( L(u) =L(v) and u <gey v ),

for all u and v in col(n), where <j¢x denotes the lexicographic order on [n]* induced by the total order
on [n]. We will denote by =<y the total order on col(n) defined by U <y v if

0(w) >Le(v) or (Lu)=~€(v)andu <, V),

for all w and v in col(n).

13



2. Column presentation of plactic monoids

2.2.3. Schensted’s algorithm. The Schensted algorithm computes for each 1-cell w in the free monoid [n]*
a tableau denoted by P(w), called the Schensted tableau of w and constructed as follows, [32]. Given
w a tableau written as a product of rows of maximal length w = u; ... uy and y in [n], it computes the
tableau P(wy) as follows:

i) if uxy is a row, the resultis uy ... uyy ;

ii) if uyy is not a row, then suppose w, = X7 ...%; with x; in [n] and let j minimal such that x; > vy,
then the result is P(uy ... we_1%j)vic where vie = X1 ... Xj—_1YXj11 ... X1.

Given a 1-cell w, the tableau P(w) is computed by starting with the empty tableau, corresponding
to the empty 1-cell, and iteratively applying the Schensted algorithm. In other words, P(w) is the row
reading of the planar representation of the tableau computed by the Schensted algorithm. The number
of columns in P(w) is equal to £"%(w), [32]. In particular, if P(w) consists of one column, then the
1-cell w is a column. Finally, note that if w is a tableau, then P(w) = w holds in [n]*.

2.2.4. Plactic monoids. We will denote by ~,j.x(n) the equivalence relation on the free monoid [n]*
defined by u ~pax(n) Vv if P(u) = P(v) in [n]*. The plactic monoid of rank n, denoted by Py, is the
quotient of the free monoid [n]* by the congruence ~pju(n)-

2.2.5. Knuth’s 2-polygraph and the plactic congruence. The Knuth 2-polygraph of rank n is the
2-polygraph, denoted by Knuth, (1), whose set of 1-cells is [n] and the set of 2-cells is
€
{zxyngzxzy lT<x<y<z<n}uU{yzx X yxz|l1<x<y<z<nlh )

These 2-cells correspond to the Knuth relations defined in [21] with an orientation compatible with the
lexicographic order <jex. The congruence on the free monoid [n]* generated by the 2-polygraph Knuth, (n)
is called the plactic congruence of rank n. Knuth showed in [21] that for any u and v in [n]*, we
have W ~pja(n) v if and only if u and v are equal modulo the plactic congruence.

2.2.6. Proposition ([21, Theorem 6]). The 2-polygraph Knuth,(n) is a presentation of the monoid P.,.

Each plactic congruence class contains exactly one tableau. Indeed, any 1-cell w in [n]* is equal to its
Schensted’s tableau in Py, that is, w = P(w) holds in Py, [31} Proposition 5.2.3]. Moreover, a 1-cell w is
equal to the column reading of the planar representation of the tableau P(w), that is, w = C(P(w)) holds
in P, [31] Problem 5.2.4]. Finally, the Knuth relations being homogeneous, we have {(P(w)) = {(w),
for any 1-cell w in [n]*.

2.3. Pre-column presentation

2.3.1. Columns as generators. One adds to the presentation Knuth;(n) one superfluous generator c,,
for any u in col(n). Let us denote by

Colj(n) = {cy | u € col(n)}

the set of column generators of the monoid P;, and by

C(n) = {cx,---Cx Yu cu |u=xp...x1 € col(n) with {(u) >2}

14



2.3. Pre-column presentation

the set of the defining relations for the column generators. In the free monoid Col;(n)*, the Knuth
relations (2)) can be written in the following form

T]C EC
{caexey el oxCoy [ T<x<y<z<n} U {cycaex = cyexez | T<x<y<z<n}. (3)

Let denote by Knuth§(n) the 2-polygraph whose set of 1-cells is {cy, . .., cn} and whose set of 2-cells
is given by (3). By definition, this 2-polygraph is Tietze equivalent to the 2-polygraph Knuth; (n). Indeed,
the mapping i — ¢y, for any 1 in [n], induces an isomorphism between the two presented monoids. In
the sequel, we will identify the 2-polygraphs Knuth$(n) and Knuth;(n) through this mapping. Let us
define the 2-polygraph Knuth$°(n), whose 1-cells are columns and 2-cells are the defining relations for
columns generators and the Knuth relations:

Knuth5°(n) := ( Coly(n) | Cz(n) U Knuth§(n) ).
2.3.2. Proposition. For n > 0, the 2-polygraph Knuth$®(n) is a presentation of the monoid Pr,.
Proof. We have Col;(n) ={cy,...,cntU{cy | u € col(n), £(u) > 21}, thus in order to prove that the
2-polygraphs Knuth$°(n) and Knuth§(n) are Tietze equivalent, we add to the 2-polygraph Knuth$(n)
all the column generator c,, for all u = X, ...x; in col(n) such that £(u) > 2, and the corresponding
collapsible 2-cell : yy : ¢, -..Cx; = cu. We apply successively a Tietze transformation i ..» defined

in2.1.3] i), from the bigger column in col(n) to the smaller one with respect to the order <gegiex. The

composite
1 1 1

1
Ti=y,0...0 by © Yy @0 O by
with Ui <geglex Wit 1, defines a Tietze transformation
Ty : Knuth§(n) " — Knuth$¢(n) "
1 2 uth; )

which proves that Knuth$°(n) is Tietze equivalent to Knuth$(n), hence Tietze equivalent to Knuth,(n).

2.3.3. Pre-column presentation. Let us define the 2-polygraph PreCol;(n) whose set of 1-cells is Coly (n)
and the set of 2-cells is

/
PreCol;(n) = PCy(n) U {cxcu “% Cxu | xu€col(n) and 1< x < n},

where

/ /
Xy, )
PCy(n) = { cxCay == ey |1 <x<y<z<n} U {cyczxocézgcychI]<x<y<z<n}.

We will see in Lemma [2.3.5] that the 2-cells oc,’gzy and og;‘ZX correspond respectively to the Knuth
relations Ty, for IT<x<y<z<nand Ex,y,z for 1 < x <y < z < n. They also correspond to the
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2. Column presentation of plactic monoids

following Schensted transformations as indicated in the following diagrams:

/

. ﬁ x|y | @ ﬁ x|z ‘
ALz Y]
P((XZ)Y) =5 e P((YZ)X) -

. C(lx C X 5 . Cllxlz
@) cER) o)

z

v P L iop ’ <
oy ox2) [x]z]y 2y yx o9 Llylzlx yxz

Nx,y,z €x,y,z
2.3.4. Proposition. For n > 0, the 2-polygraph PreCol, (n) is a presentation of the monoid P,.

The 2-polygraph PreColy(n) is called the pre-column presentation of P,. The proof of Proposi-
tion[2.3.4lis given by the following two lemmas.

2.3.5. Lemma. The 2-polygraph
CPCy(n) := < Coli(n) | C2(n) UPCy(n) >
is Tietze equivalent to the 2-polygraph Knuth5®(n).

Proof. For 1 < x <y < z < n, consider the following critical branching

c CxYzy
Thyz_> CxC2Cy = CxCzy

C2CxCy

v» CaxCy

of the 2-polygraph Knuth$°(n). Let consider the Tietze transformation

-
Kng,, el * Knuthy(n )T — Knuth$t(n) /(Mey,z & oc;‘zy),

that substitutes the 2-cell o, 1 CxCzy = CaxCy to the 2-cell Mg, forevery 1 < x <y <z < n.

We denote by T, the successive applications of the Tietze transformation Kng o , for every

x,zy’

1 < x <y < z < n, with respect to the lexicographic order on the triples (x,y, z) 1nduced by the total
order on [n].
Similarly, for 1 < x <y < z < n, consider the following critical branching

XCZ

Cc
S% CyCXCZ # nyCZ

CyCzCx
c% CyCax
of the 2-polygraph Knuth5°(n). Let consider the Tietze transformation

Keg oo o Knuth%c(n)T — Knuthﬁc(n)T/(e:C — océ

XY,z X )’
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2.3. Pre-column presentation

that substitutes the 2-cell o%)zx D CyCax = CyxC to the 2-cell eg  , forevery 1 < x <y <z < n.
We denote by T, o+ the successive applications of the Tietze transformation Keg | Lo Ly for every
1 < x <y < z < n, with respect to the lexicographic order on the triples (x,y,z) induced by the total
order on [n].

Let define the composite Ty, ¢ o/ = Ty’ © Teo, this gives us a Tietze transformation:
Tyee o : Knuth§(m)" — CPCy(n) .
In this way, the 2-polygraphs Knuth5°(n) and CPC;(n) are Tietze equivalent. 0
The following lemma proves that the 2-polygraph PreCol,(n) is a presentation of the monoid P;,.
2.3.6. Lemma. The 2-polygraph PreCol,(n) is Tietze equivalent to the 2-polygraph CPC;(n).

Proof. Let xp...x1 be a column with £(x,...x;) > 2 and define og;‘X = Yyx @ CyCx = Cyx, for
every x < Y. Consider the following critical branching

CXPYXF’*/“X Cxp Cxpt ety

CxpCxpg ++ - Cxy

m\x] CXp...X]

of the 2-polygraph CPC;(n) and the following Tietze transformation

/

K’YXp‘.‘Xl X

, 1 CPCo(n) T — CPCoM) T/ (Vxpy = O oy )s

XpyXp—1---X]

that substitutes the 2-cell

/ . :
O(Xpyxp—l X7t CXp CXp,] ...X1 CXp...X] Y

to the 2-cell
Yxp...m : Cxp < Cxy = Cxp...Xn

for each column X, ...x; such that £(x,...x;) > 2. Starting from the 2-polygraph CPC;(n), we

. . . !
apply successively the Tietze transformation Ky, o , for every column x;...x; such
Xp...Xq XpyXp_1---X]
that £(xp ...x1) > 2, from the bigger to the smaller one with respect to the total order <deglex-

Let us define the composite

/ /

T =K / 0...0K /
Yo Yxzxpxq %3 ,x5%; Vmeoxp %% gy

with X3X2X71 <deglex - - - <deglex Xn - - - X1. This gives us a Tietze transformation:
Ty o : CPC;(n)" — PreColy(n) .
In this way, we prove that PreCol,(n) is Tietze equivalent to CPC,(n). O
To resume the construction of this section, we have constructed the following Tietze equivalences:

T Tneca

T /
Knuth, (n) " L) Knuth$®(n) CPC,(n)" res PreColy(n) .
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2. Column presentation of plactic monoids

2.4. Column presentation

2.4.1. Notation. Let n > 0 be a natural number. Given columns u = X, ...x; and v = yq...Y;
in col(n), we consider the tableau P(uv). As observed in [S, Lemma 3.1.], the length £"%(uv) of the
longest non-decreasing subsequence of uv is lower or equal to 2. Indeed, if uv is a column, necessary
its non-decreasing subsequences are each of length equal to one and thus {"%(uv) = 1. Otherwise, if
uv is not a column, then x; < yq. Hence all the non-decreasing subsequences of uv are of length 2.
As a consequence, the tableau P(uv) contains at most two columns. We will use graphical notations
depending on whether the tableau P(uv) consists in two columns:

i) we will denote 1V if the planar representation of P(uv) is the tableau:

X1 [ U3

U.q

thatis, p > q and x; < yj, forany i < q,
ii) we will denote u” v in all the other cases, that is, when p < q or x; > yj, for some i < q.

In the case ii), we will denote u* 1V if the tableau P(uv) has one column and we will denote WA if
the tableau P(uv) has two columns.

2.4.2. Column presentation. For every columns u and v in col(n) such that u”™ v, we define a 2-cell
Oyt CuCy = CpCy
where
i) w=uvand c,,s = 1, if v,
ii) w and w’ are respectively the left and right columns of the tableau P(uv), if uA.

Let us denote by Col,(n) the 2-polygraph whose set of 1-cells is Col; (n) and the set of 2-cells is
Coly(n) = { cucy 2 ¢,cr | 1,V € col(n) and w*v }. &)

Note that the 2-cells of PreCol;(n) correspond to the 2-cells o, of Coly(n), where {(u) = 1
and {(v) = 2. Moreover, we notice that, for any 2-cells &, : ¢y,Cy, = CwCy of Coly(1), there exists a
2-cell in PreCol, (n)* with source ¢y, ¢, and target c,,Cyy /.
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2.4. Column presentation

2.4.3. Column presentation and Schensted’s algorithm. Let us remark that Schensted’s Algorithm[2.2.3]
that computes a tableau P(w) from a 1-cell w in [n]*, corresponds to the leftmost reduction path
in Col;(n) from the 1-cell w to its normal form P(w), that is, the reduction paths obtained by apply-
ing the rules of Col,(n) starting from the left. For example, consider the 1-cell w = 421532435452
in [5]*. To compute the tableau P(w), one applies the following successive rules of Col,(5) starting in
each step from the left:

X, X,
w = [2ITEIEI2EEE] 5] =28 =2

ﬂl OCS4 2 Ii
i4 4[5 0653 2,432 Iiﬂ. X421,5432

[0 X
IIIIIIIIII =23 Fog IIIIII =54 II
X
IIII. - II

In particular, for any columns 1 and v in col(n) such that uw”*v, applying successive rules of Coly(n)
on uv starting in each step from the left leads to a unique normal form, which is the tableau P(uv).

ai”

2121475] = P(w)
3[3[5]
4]

[a] &)=

2.4.4. Proposition. The 2-polygraph Coly(n) has the unique normal form property.

Proof. Consider a 1-cell w in Col;(n)* and let w’ and w” be normal forms of w. Proving the unique
normal form property consists in showing that the normal forms w’ and w” are equal. Let T’ (resp. T")
be the planar representation of w’ (resp. w”). Since w’ and w” are normal forms, they don’t contain any
subsequences that form sources of 2-cells in Col,(n). As a consequence, T’ (resp. T”) is a juxtaposition
of columns that form a tableau. Hence, the normal forms w’ and w” are tableaux such that the equal-
ity w = w’ = w” holds in the monoid P,. Since each congruence contains exactly one tableau [31]
Theorem 5.2.5], we have that w’/ =w”. O

2.4.5. Proposition. For n > 0, the 2-polygraph Coly(n) is a presentation of the monoid P;,.

The 2-polygraph Coly(n) is called the column presentation of the monoid P;,. Note that, the set of
columns being finite, this 2-polygraph is finite.

Proof. Let us prove that the 2-polygraph Col;(n) is Tietze equivalent to the 2-polygraph Knuth$®(n).
Any 2-cell in Knuth$¢(n) can be deduced from a 2-cell in Coly(n) as follows. Forany T < x <y <
z<n(esp. 1 <x <y <z<mn,the 2-cells ng,, , (resp. e, ) can be deduced by the following

XY,z
composition
C C
)Z’ S
CZCXCy ::::::::::::> CXCZCU CyCZCX :::::::::::> CyCXCZ
oczyxcyﬂ ﬂcx oy (resp. ¢y ocz,xﬂ ﬂocwcZ ).
294" aX,Zy x+-zy yrzx ay 2x yxv-z
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2. Column presentation of plactic monoids

For any column x,, ... X1, the 2-cell Yxp..x; can be deduced by the following composition

YXp X1
CX'p PR CX] ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ> Cxp X]

Oxpxp—1 Cxp g + - .cx,ﬂ W"‘Xwnmm

CXpo,] CXp,Z e CX1 # (' . ) # CXp...X2CX1

As a consequence, if the T-cells w and w’ in Col;(n)* are equal modulo relations in Knuth§®(n),
then they are equal modulo relations in Coly(n). Conversely, if the 1-cells w and w’ in Col; (n)* are
equal modulo relations in Col, (1), by Proposition 2.4.4] they have the same normal form with respect
to Coly(n). Moreover, this normal form is the common tableau of the 1-cells w and w’. It follows that
w and w’ are in the plactic congruence and hence they are equal modulo Knuth$°(n). O

2.4.6. Termination of the column presentation. The termination of the 2-polygraph Col;(n) can be
proved using the terminating order < defined on Coly(n)* as follows. For ¢, and c,, in Coly(n), we
have ¢y, ...cy, K €y onu Gy, if

k<l or
k=1 and 31i€e{l,...,k} suchthat u; <,y vi and Cy; = Cy; forany j <i.

The relation < is a well-ordering on Col;j (n)*, which is compatible with rules in Col,(n) proving the
termination [S, Lemma 3.2]. An other method to prove termination of the 2-polygraph Col,(n) will be

given in[3.2.7]

2.4.7. Confluence of the column presentation. The column presentation is confluent, [5, Lemma 3.3].
The proof given in [5] consists in showing that the 2-polygraph Col,(n) has the unique normal form
property. Note that our construction in Section gives an other proof of the confluence of the 2-
polygraph Col,(n) by showing the confluence of all the critical branchings of the column presentation.

2.4.8. Cardinality of the column presentation. For m = 1 and m = 2, let us denote by s¢(n, m) the
number of m-cells of the presentation Col,(n) of the monoid P,,. We refer the reader to for the
values of number of cells of the 2-polygraph Col;(n) for plactic monoids of low-dimensional rank n.

2.4.9. Proposition. For n > 0, we have »x(n,1) =2™ — 1 and
i+j+1 i+
2) = 1?2 — RELEP LI 7
Am2) =m 1P - | TT 5555~ 11 5555
<igjsn 1<igji<n

Proof. The number »(n,1) is the sum of the number of columns of length k for any 1 g k < n
n

Moreover, the number of columns of length k is equal to <2> Hence we have s(n, 1) < K
k=1

2" —1.
Denote by Sy, 4 the set of all tableaux with at most q columns and with entries in [n]. By Gordon [10],

we have i
‘L —_

1<iggsn +J _1

20



3. Coherent column presentation

Then, for two columns 1 and v in col(n) the number of possibilities of u*v is ISn2l = [Sn,1]. In addi-
tion, the number of possibilities of 1™ v and 1 v is »(n, 1)2. Since »(n, 2) is equal to the number of
possibilities of u”v, we have »(n,2) = »(n,1)? — (ISn2l = 1Sn,11)- O

3. COHERENT COLUMN PRESENTATION

3.1. Coherent presentations of monoids

3.1.1. (3,1)-polygraph. A (3,1)-polygraph is a pair (X, £3) made of a 2-polygraph £, and a globular
extension X3 of the (2, 1)-category Z;:

T 52
2 §t:}:3 .
2

An element of the globular extension X3 can be represented by a 3-cell with the following globular shape

u f
o(\“/é\“/\g’lo or u//lll}l\)
S~ ~

that relates parallel 2-cells f and g in the (2, 1)-category £;. We will denote by ] the free (3,1)-
category generated by the (3,1)-polygraph (£,,%3). A pair (f,g) of 2-cells of £, such that s;(f) =
s1(g) and t;(f) = t1(g) is called a 2-sphere of ZZT.

3.1.2. Coherent presentations of monoids. An extended presentation of a monoid M is a (3, 1)-polygraph
whose underlying 2-polygraph is a presentation of the monoid M. A coherent presentation of M is an ex-
tended presentation £ of M such that the cellular extension X3 is a homotopy basis of the (2, 1)-category
ZZT, that is, for every 2-sphere y of ZZT, there exists a 3-cell in Z;r with boundary vy.

3.1.3. Tietze transformations of (3, 1)-polygraphs. We recall the notion of Tietze transformation from [9}
Section 2.1]. Let Zbe a (3, 1)-polygraph. A 3-cell A of X is called collapsible if t,(A) isin £, and s, (A)

is a 2-cell of the free (2, 1)-category over (I, \ {t2(A)}) . If A is a collapsible 3-cell, then its target is
called a redundant cell. An elementary Tietze transformation of a (3, 1)-polygraph I is a 3-functor with
domain Z3T that belongs to one of the following operations:

i) adjunction (), and elimination 7t, of a 2-cell & as described in

ii) coherent adjunction fo : Z3T — Z;r (a)(A) of a redundant 2-cell & with its collapsible 3-cell A:

LZ

[ ] L] I % (]

\_/
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3. Coherent column presentation

iii) coherent elimination 7ta : Z3T — Z3T /A of a redundant 2-cell x with its collapsible 3-cell A:

o@o ! US >

~_ ot

iv) coherent adjunction 4 : Z3T — Z3T(A) of a redundant 3-cell A:

G ST T

\_/ \M

V) coherent elimination 7tg A) : Z;r — Z3T /(B, A) of a redundant 3-cell A, that maps A to B:

SNIAT S

=

For (3, 1)-polygraphs X and Y, a Tietze transformation from £ to Y is a 3-functor F : Z;r — Y3T that
decomposes into a sequence of elementary Tietze transformations. Two (3, 1)-polygraphs £ and Y are
Tietze-equivalent if there exists an equivalence of 2-categories F : ZzT /X3 — T; /Y3 and the presented
monoids £, and Y, are isomorphic. Two (3, 1)-polygraphs are Tietze equivalent if, and only if, there
exists a Tietze transformation between them, [9, Theorem 2.1.3.].

3.1.4. Homotopical completion procedure. Following [9, Section 2.2], we recall the homotopical
completion procedure that produces a coherent convergent presentation from a terminating presenta-
tion. Given a terminating 2-polygraph X, equipped with a total termination order <, the homotopical
completion of X is the (3, 1)-polygraph obtained from X by successive application of the Knuth-Bendix
completion procedure, [20], and the Squier construction, [36]]. Explicitly, for any critical branching (f, g)
of X, if (f, g) is confluent one adds a dotted 3-cell A:

where U is a common normal form of v and w, and if the critical branching (f, g) is not confluent one
add a 2-cell 3 and a 3-cell A:

v
L

<

syt
o
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3.2. Column coherent presentation

where the 2-cell 3 is directed from a normal form V of v to a normal form w of w if V > w and from w
to v otherwise. The adjunction of 2-cells can create new critical branchings, possibly generating the
adjunction of additional 2-cells and 3-cells in the same way. This defines an increasing sequence of
(3, 1)-polygraphs, whose union is called a homotopical completion of X. Following [36, Theorem 5.2],
such a homotopical completion of I is a coherent convergent presentation of the monoid £. We refer the
reader to [9), Section 2.2].

3.2. Column coherent presentation

Using the homotopical completion procedure, we extend the 2-polygraph Col,(n) into a coherent pre-
sentation of the monoid Py,.

3.2.1. Column coherent presentation. By definition of the rules o, defined in (), the presenta-
tion Coly(n) has exactly one critical branching of the form
XuyCL—> CeCerCy &)
CuCVCt
Culyt=7 Culwlw’
for any u, v, t in col(n) such that u v ™t , where e and e’ (resp. w and w’) denote the two columns
of the tableau P(uv) (resp. P(vt)). We prove in this section that all of these critical branchings are

confluent. This gives an alternative proof of the confluence of the 2-polygraph Col,(n) given in 2.4.7
Moreover, we prove that all the confluence diagrams of these branchings are of the following form:

Ceae/
Ot vCy s, CeCeCt =% CceCuChr Oe b Ch ©6)
CuCyCt HLYuNﬂ CaCdCy’

ey

uyt Cucwcw’(xm,cﬂca’cm” aXa’w’
)

where a and a’ (resp. b and b’) denote the two columns of the tableau P(uw) (resp. P(e’t)) and aq,
d, b’ are the three columns of the tableau P(uvt), which is a normal form for the 2-polygraph Col,(n).
Note that in some cases described below, one or further columns e’, w’, a’ and b’ can be empty. In those
cases some indicated 2-cells « in the confluence diagram correspond to identities.

Let us denote by Col3(n) the extended presentation of the monoid P,, obtained from Col,(n) by
adjunction of one 3-cell X, of the form (6D, for every columns wu, v and t such that vt

3.2.2. Theorem. Forn > 0, the (3, 1)-polygraph Col3(n) is a coherent presentation of the monoid P,.

The extended presentation Colz(n) is called the column coherent presentation of the monoid Py,.
In we give the values of number of cells of the coherent presentation Colz(n) for plactic monoids
of low-dimensional rank n. The rest of this section consists in the proof of Theorem It is based
on the following arguments. The presentation Col,(n) is convergent, thus using the homotopical com-
pletion procedure described in it suffices to prove that the 3-cells Ay, with uw v t form a
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3. Coherent column presentation

family of generating confluences for the presentation Col,(1). There are four possibilities for the critical
branching (5)) depending on the following four cases:

u¢>< 1vX]t, LLXZ\)XLC,
Each of these cases is examined in the following four lemmas. In the rest of this section, we will suppose
that

U=Xp...X1, V=yq...-Yi and t=2...27

denote columns of length p, g and 1 respectively.

3.2.3. Lemma. If u* ]vX1t, we have the following confluent critical branching:

CuCyCt MALL% Cuvt
coc\

v, t Cu Cvt (X"U.,Vt

Proof. By hypothesis uv and vt are columns, then uvt is a column. Thus wi''t and Wbt and there
exist 2-cells oyt and oyt in Coly(n) making the critical branching (@) confluent, where e = uv,
w = vt and e/, w’ are the empty column. O

3.2.4. Lemma. If uXZVX1t, we have the following confluent critical branching:

Cele/ t

o‘u,v/}’b, CeCe/Ct =———— CeCe/t Xee't

CuCyCt MBuW/\i CsCs
% Kuvt

Culvt
where e and e’ (resp. s and s’) denote the two columns of the tableau P(uv) (resp. P(uvt)).

Proof. By hypothesis, vt is a column and y; > z;. The tableau P(uv) consists of two columns, that
we will denote e and e’, then £"¥(uv) = 2 and x; < Yq. We have ' , so that we distinguish the
following possible three cases.

Case 1: p > q and x;, > y;, forsome 1 <1ip < q.

Suppose that ip = 1, that is, x; > yj. We consider y; the biggest element of the column v such
that X1 > yj, then the smallest element of the column e’ is y;;1. By hypothesis, the word vt is a column,
in particular yj 1 > z;. It follows that e’t is a column. Suppose that iy > 1, then x; < yj and the
smallest element of e’ is yj. Since y; > z; by hypothesis, the word e’t is a column. Hence, in all cases,
e’t is a column and there is a 2-cell X/t : CerCt = Celt.

Case2: p < qand x; < yjforany 1 <1< p.
We have e = yq ... Yp+1Xp ... X and e’ =y, ...ys. By hypothesis, y; > z;, hence e’t is a column
and there is a 2-cell X¢ ¢ @ CerCt = Cery.

Case 3: p < q and x;, > Yy, for some 1 < 1ip < p.
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3.2. Column coherent presentation

With the same arguments of Case 1, the smallest element of e’ is y; or yj1, where yj is the biggest
element of the column v such that y; < x;. Hence, e’t is a column and there is a 2-cell Kert @ CerCt =
Ce’t.

In case 1, 2 and 3, we have (" (uv) = 2, hence "% (uvt) = 2. Thus the tableau P(uvt) consists
of two columns, that we denote s and s’ and there is a 2-cell Quvt @ CuCyt = CsCgr. Moreover, to
compute the tableau P(uvt), one begins by computing P(uv) and after by introducing the elements of
the column t on the tableau P(uv). As C(P(uv)) = ee’, we have P(uvt) = P(P(uv)t) = P(ee’t).
Hence C(P(ee’t)) = ss’ and there is a 2-cell . ¢+ which yields the following confluence diagram

3
3
: CeXe/
, eWe’t 1 (7)
C 5 e
(S 4TRY 2
X1 Y1 z L
’
. e
z 1
v
Kee't
Xp Yq
Culyt x1
z
: . SN
Y1 (Xu,vt
xp
Yq

3.2.5. Lemma. If u* ]vxzt, we have the following confluent critical branching:

% Cuvct & v
le

CuCvCt u,v,t CaCa’w’

Cullvyt CuCwCyw/ CaCa’Cw’ ala’,w’
Ky,wCw!

where w and w’ (resp. a and a’) denote the two columns of the tableau P(vt) (resp. P(uw)).

Proof. By hypothesis, uv is a column hence x; > yq. Moreover, the tableau P(vt) consists of two
columns w and w’, then ("ds (vt) = 2, hence y; < z;. We have V<2t , so that we distinguish the three
possible following cases.

Case 1: g > land y;, > z;, forsome 1 <ip < L.
Let us denote w = w,...w; and w' = wy,...wj. Since q > 1, we have w, = yq. By hypothe-
sis, X1 > yYq. Then the word uw is a column. As a consequence, there is a 2-cell ot @ CuCw = Cuw.
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3. Coherent column presentation

In addition, the column w appears to the left of w’ in the planar representation of the tableau P(vt), that
is, (w) > €(w’) and w; < wy for any i < £(w’). Then £(uw) > £(w’). We set uw = &y(y) - - - &1 and
we have & < w{ for any i < £(w’). Then uWW’ and CyyyCyy is @ normal form.

On the other hand, the tableau P(vt) consists of two columns, hence ("S(vt) = 2. As a con-
sequence, {"S(uvt) = 2 and the tableau P(uvt) consists of two columns. Since q > 1, we have
C(P(uvt)) = uww’, hence the two columns of P(uvt) are uw and w’. Then there is a 2-cell Xyt :
CuwvCt = CuwCw Which yields the confluence of the critical branching on c,,cyc¢, as follows

Z7

z1

Yq
©)
xq
Xq,vC
“uv,t
w W,
xq Y1
z1
. X’P
. . . X1
X1
u,wCw’
Xp Yq Cu“v,t :
: w W/
X
Xp P

Case2: q < land y; < z{ forany i < q.
We have w = z1...24q41Yq ... Y1 and w' = zq .. .21. There are two cases along

UW = Xp...X1Z1 ... Zq41Yq--- Y1

is a column or not.

Case 2. A. If x; > z;, then uw is a column. Hence, there is a 2-cell &,y : CuCyw = Cuw. Moreover,
using Schensted’s algorithm we prove that C(P(uvt)) = uww’, it follows that the columns of P(uvt)
are uw and w’. Thus there is a 2-cell Oyt CuvCt = CuwCy Which yields the confluence diagram (9).

Case 2. B. If x; < zi, then £"% (uw) = 2 and P(uw) consists of two columns, that we denote by a
and a’. Then there is a 2-cell Xuw : CuCw = CaCq’. In addition, by Schensted’s algorithm, we deduce
that a’ =z, ...z, withq+1 <1 <...<i <1 Wehave aw’ =z;, ...zj,zq...2. Since all the
elements of a’ are elements of t and bigger than z, we have z;, > z4. It follows that a’w’ is a column
and there is a 2-cell otq/w/ @ Ca/Cpr = Carnr.

In the other hand, we have two cases whether uv't or uv t. Suppose uv‘t . By Schensted’s
algorithm, we have C(P(uvt)) = aa’w’, showing that the two columns of P(uvt) are a and a’w’.
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3.2. Column coherent presentation

Hence there is a 2-cell Xyt @ CuvCt = CqCqrw, Which yields the confluence of Diagram (8). Sup-
pose uv t. Then we obtain C(P(uw)) = uvz.. .zq+1, and C(P(zy...zq1w’)) = t. Hence there is a
2-cell Xzpzg 1,0 yielding the confluence diagram

Xu,yC CuvCt

m , Cuv(le...zqﬂ,w’

CuCyCt it

Culyt 7 CuCwCw/ oﬁ/ CuvCzi..zgy1 Cw/

Case 3: g < land y;, > z;, for some 1 < 1ip < q.

We compute the columns w and w’ of the tableau P(vt). If the biggest element of the column w
is Y4, then we obtain the same confluent branching as in Case 1. If the first element of w is z;, then one
obtains the same confluent critical branchings as in Case 2. O

3.2.6. Lemma. If uxzvxzt, we have the following confluent critical branching:

CelXe!
O yCp s, CeCerCt =225 CeChCh’ oty pCp (10)
) )
CaCqCp

CuCvCt MDu,v,t /
C\ Bl

u,t CuCwCw’ == CaCa’Cyw
Ky wCw/
where e, €’ (resp. w, w’) denote the two columns of the tableau P(uv) (resp. P(vt)) and a, a’ (resp. b,
b’) denote the two columns of the tableau P(uw) (resp. P(e’t)).

Proof. By hypothesis, £"%(uv) = 2 and £"¥(vt) = 2, hence x; < Yq and y7 < z;. In addition,
since W% , the tableau P(uw) consists of two columns, that we denote by a and a’. Thus there is a
2-cell oy : CuCyw = CqCqr. Moreover, as WA and vt , we have

((p < g)or (xi, >Yyj, forsomeip < q)) and ((q <D or(yj, > zj, for some jo < 1)),

thus we consider the following cases.

Case1: p < q < landy; < zi, foralli < g, and x4 < yi, forall i < p.
We have

/ /
W= Z{...Zq41Yq---Y1, W = Zq...Z1, €= Yq...-Ypr1Xp...X] and e = Yp...y1.

Since z; > yj, the tableau P(e’t) consists of two columns, that we denote by b and b’. Thus there is a
2-cell xert @ CerCt = CpCpr. In addition, we have

b=2z...2p41Yp...Y1, b =2zp...21, a=zi...2q41Yq---Yp+1Xp...X1 and a’ = yp...y;.

Since zq > yi, the tableau P(a’w’) consists of two columns, that we denote by d and d’. Thus there
is a 2-cell aq/ 4y : Cq/Cyr = CqCqr. Since zy > X1, the tableau P(eb) consists of two columns, that we
denote by s and s’. Then there is a 2-cell Qeb : CeCp = CsCgr. In the other hand, we have

/ /
d=zq...2p11Yp...Y1, d" =2p...21, S =2Z1...Zq41Yq -+ - Ypr1Xp... X1 and 8" =zq...Zp11Yp ... Y1.
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3. Coherent column presentation

Hence a = s, d = s’ and d’ = b’ which yields the confluence diagram (1Q).

Case 2: {q<l and y; < zi foralli < g o {q<l and y; < zi foralli < g

P = ¢ and x;, > Yy, for some iy < ¢ P < q and xq, > yj, for some iy < p

We have w = z;...2q41Yq... Y1 and w' = z4...z;. Using Schensted’s algorithm the smallest
element of the column a’ is an element of v. Since z4 is greater or equal than each element of v, the
tableau P(a’w’) consists of two columns, that we denote by d and d’.

On the other hand, all the elements of e’ are elements of v. Since z; is bigger than each element of
v, the tableau P(e’t) consists of two columns, that we denote by b and b’. Thus there is a 2-cell Kt
Ce’Ct = CpCpr. Hence, we consider two cases depending on whether or not c.cpCy- is a tableau. Suppose
CeCpCyp- is a tableau. The column e does not contain elements from the column t, then during inserting the
column w into the column u, we can only insert some elements of yq . ..y; into u and we obtain a = e.
Since cecpcyp is the unique tableau obtained from ¢, cyct and a = e, we obtain C(P(a’w’)) = bb’. As
a consequence, there is a 2-cell &/, 1 CqCy/ = CpCy- yielding the following confluence diagram:

CeXe/
%Cece/ct =k ¢ CcpChr (11)

CuCvCt MDSlt /H\Ca‘xa/,w’
tAS)

Culkvt CuCwCw/ == CaqCq/Cwn/
KuwCw’

Suppose ceCpCp- is not a tableau. The first element of the column b is z;. The smallest element of the
column e is either x; or y;, where y; is the biggest element of the column v such that y; < x;. By
hypothesis the tableau P(uw) consists of two columns, then x; < z;. In addition, z; is greater than each
element of v then y; < zi. Hence, in all cases, the tableau P(eb) consists of two columns. On the other
hand, using Schensted’s algorithm, we have a’ = z;, ...z, yj,, ... yj, withq +1 <1 <... < <1,
1 <j1 <...<jr < qand we have e’ =y , ...y;,. In addition, we have b’ = d" = z; ,, ...z, with
1 <1 <...<ikr < qand C(P(eb)) = ad. Hence there is a 2-cell Xy, : CeCp = €qCq Which yields
the confluence diagram (10).

Case 3: {q >1 and yi, > z, for some ip < 1 {q <1 and y;, > z;, for some iy < g

p<qandx; Lyjforall i<p p<qandx; <yjforal i<p

We have e = yq...Yp41Xp... X1 and e’ =y, ... y;. Since y; < z, the tableau P(e’t) consists of
two columns, that we denote by b and b’. The first element of the column b is either z; or y, which are
bigger or equal to x1, then the tableau P(eb) consists of two columns, that we denote by s and s’. Suppose
1 < p. Then by Schensted’s insertion algorithm, we have C(P(e’t)) = bw’and w = yq...yp41b. On
the other hand, since x, < yp41, we have P(uw) = P(u(yq...yp4+1b)) = P(eb). Hence, there is a
2-cell xep : CeCh = CaCqr Which yields the confluence diagram:

Cele’ ¢
Oy vCrs, CeCe/Ct =7 CeChCyyr (12)

CuCyCt MDEil)t ﬂae,bcw’

Culv,t CuCwCw/ == CqCq’Cp’
Ky wCipw/

Suppose 1 > p, then we consider two cases depending on whether or not the first element of the column b
is yp. If this element is y;,, then when computing the tableau P(vt) no element of the column t is inserted
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3.2. Column coherent presentation

in Yq...Yps1. Hence we have w = yq...yp11b and b’ = w’. On the other hand, by Schensted’s
insertion procedure we have P(uw) = P(eb). Hence, there is a 2-cell &y, : CeCh, = CqCq/ Which yields
the confluence diagram (12)). Suppose that the first element of the column b is z;. Then when computing
the tableau P(vt) some elements of the column t are inserted in yq...Yp41. In this case, we have that
the column w’ contains more elements than b’ and that cscg/cy,- is a tableau. Moreover, by Schensted’s
insertion procedure, we have a = s. Since cscscy- is the unique tableau obtained from c,c,ct and a = s,
we obtain that C(P(a’w’)) = s’b’. As a consequence, there is a 2-cell &g/ : Cq/Cys = Cs/Cps Which
yields the confluence diagram (I10).

Case 4: {q?landyio>z~lo for some iy <1 or {q}l and y;, > zi, for some iy < q

P = ( and x;, > y;, for some jo < ¢ p < g and x5, > yj, for some jo < p
q < land y;, > z;, for some iy < g, or 49° l and yi, > z;, for some ip < ¢
P = q and x;, > yj, for some jo < (. P <q and x5, >yj, for some jo < p

By Lemma[3.2.4] the last term of e’ is y; or y;;.1, where yj is the biggest element of v such that y; <
X1. Suppose that the last term of e’ is yj. Since z; > yj, the tableau P(e’t) consists of two columns.
Furthermore, if the last term of e’ is yj, 1, then we consider two cases: z; > Yj11 or z; < Yj41. Suppose
21 < Yj41, then the tableau P(e’t) consists of one column e’t. We consider two cases depending on
whether or not c.c. is a tableau. With the same arguments of Case 2, we obtain a confluence diagram
of the following forms:

Cele t CelXe/ t
Oy vC CeCe/Ct = CeCe’t CeCe/Ct === CeCe't

CuCyC D(3) CeXa’w’ CyCyC D(4) CaCarw’
ubvit uw,t eva’,w utvit ww,t abta’w
C\ /h%a’,w’

Culv,t CuCwCw/ === CeCq/Cyp’ utv CuCWCW/(XﬁwCaCa/CW
)

Ku,wCw/’
Suppose the tableau P(e’t) consists of two columns. Using the same arguments of Case 2 and Case 3,

we obtain a confluence diagram of the form Dy, y ¢, DS‘l)t or Dl(i l‘t. O

3.2.7. Remark. In the proof of Theorem we don’t use the fact that the 2-polygraph Coly(n) is
convergent. Using the notion of quadratic normalisation of monoids introduced in [[7]], our construction
allows us to give a new proof of the termination of the 2-polygraph Coly(n) without considering the
combinatorial properties of tableaux. Indeed, consider the map @ : Col;(n)* — Colj(n)* sending a
1-cell in Col;(n)* to its unique corresponding tableau. Then (Col; (n), @) is a quadratic normalisation
of the monoid Py, in the sense of [7]. That is, the map @ satisfies

i) L(O(w)) = Lt(w),
ii) £(w) = 1 implies ®(w) = w,
iii) @ (ud(w)v) = ®(uwv), for all T-cells u, v and w in Col; (n)*,

and a quadraticity property, see [7, Definition 3.1.2.] for details. Using the fact that the 2-polygraph Col,(n)
has the unique normal form property as proved in Proposition [2.4.4] we show by Theorem [3.2.2] that the
quadratic normalisation (Col; (1), @) is of class (3, 3), that is, one obtains the normal form after at most 3
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4. Reduction of the coherent presentation

steps when starting from the left and 3 steps from the right. Hence, we obtain by [7, Proposition 5.1.1],
that the corresponding 2-polygraph Col,(n) is finite and convergent. As a consequence, we obtain a new
proof of the termination of the 2-polygraph Coly(n) .

4. REDUCTION OF THE COHERENT PRESENTATION

In this section, using the homotopical reduction procedure, we reduce the coherent presentation Colz(n)
into a smaller coherent presentation of the monoid P,,. Let us begin by recalling the homotopical
completion-reduction procedure introduced in [9, 2.3.3].

4.1. Homotopical completion-reduction procedure

4.1.1. Homotopical reduction procedure. Let X be a (3,1)-polygraph. A 3-sphere of the
(3, 1)-category Z3T is a pair (f,g) of 3-cells of Z3T such that s;(f) = sz(g) and ty(f) = ta2(g). A
collapsible part of X is a triple I = (I3, I3, ;) made of a family I'; of 2-cells of Z, a family I3 of 3-cells
of £ and a family Iy of 3-spheres of Z3T, such that the following conditions are satisfied:

i) every y of every [y is collapsible, that is, t,_1(y) is in Xy and sy_1(y) does not contain ty_1(y),
ii) no cell of I; (resp. I3) is the target of a collapsible 3-cell of T3 (resp. 3-sphere of Iy),

iii) there exists a well-founded order on the cells of X such that, for every 7y in every Iy, tx_1(y) is
strictly greater than every generating (k — 1)-cell that occurs in the source of y.

The homotopical reduction of the (3, 1)-polygraph £ with respect to a collapsible part I" is the Tietze
transformation, denoted by Rr, from the (3, 1)-category Z3T to the (3, 1)-category freely generated by the
(3, 1)-polygraph obtained from ¥~ by removing the cells of I" and all the corresponding redundant cells.
We refer the reader to [9, 2.3.1] for details on the definition of the Tietze transformation Rr defined by
well-founded induction as follows. For any y in I’

Rr(t(y)) = Rr(s(v)) and  Rr(v) = Tr.(s(y)-

In any other cases, the transformation Ry acts as an identity.

4.1.2. Generating triple confluences. A local triple branching of a 2-polygraph X is a triple (f, g, h)
of rewriting steps of X with a common source. An aspherical triple branchings have two of their 2-cells
equal. A Peiffer triple branchings have at least one of their 2-cells that form a Peiffer branching with
the other two. The overlap triple branchings are the remaining local triple branchings. Local triple
branchings are ordered by inclusion of their sources and a minimal overlap triple branching is called
critical. Tf £ is a coherent and convergent (3, 1)-polygraph, a triple generating confluence of * is a
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3-sphere
f] f]
f v X < v, XD
S 491/27 \A Wr,g,h / \f£§& ~
U =——=9 w u = u ! —q" u

where (f, g,h) is a triple critical branching of the 2-polygraph X, and the other cells are obtained by
confluence, see [9, 2.3.2] for details.

4.1.3. Homotopical reduction of the polygraph Col;(n). In the rest of this section, we apply three
steps of homotopical reduction on the (3, 1)-polygraph Colz(n). As a first step, we apply in 4.2l a ho-
motopical reduction on the (3, 1)-polygraph Colz(n) with a collapsible part defined by some of the
generating triple confluences of the 2-polygraph Coly(n). In this way, we reduce the coherent pre-
sentation Col3(n) of the monoid P,, into the coherent presentation Colz(n) of P,,, whose underlying
2-polygraph is Coly(1) and the 3-cells Xy, are those of Colz(n), but with £(u) = 1. We reduce in[4.3]
the coherent presentation Colz(n) into a coherent presentation PreCol3(n) of P,,, whose underlying 2-
polygraph is PreColy(n). This reduction is given by a collapsible part defined by a set of 3-cells of
Colz(n). In a final step, we reduce in [£.4] the coherent presentation PreCols(1) into a coherent presen-
tation Knuthz(n) of P, whose underlying 2-polygraph is Knuth;(n). By [9, Theorem 2.3.4], all these
homotopical reductions preserve coherence. That is, the (3, 1)-polygraph Colz(n) being a coherent pre-
sentation of the monoid Py, the (3, 1)-polygraphs Colz(n) and Knuths(n) are coherent presentations of
P..

4.2. A reduced column presentation

We apply the homotopical reduction procedure in order to reduce the (3, T)-polygraph Colz(n) using the
generating triple confluences.

4.2.1. Generating triple confluences of Col;(1n). Consider the homotopical reduction procedure on the
(3, T)-polygraph Colz(n) defined using the collapsible part made of generating triple confluences. By
Theorem the family of 3-cells &}, ,+ given in () and indexed by columns u, v and t in col(n) such
that u*v ™t forms a homotopy basis of the (2, 1)-category Coly(n)T. Let us consider such a triple
(u,v,t) with £(u) > 2. Let x;, be in [n] such that u = x,u; with uy in col(n). There is a critical
triple branching with source ¢y, ¢y, cvct. Let us show that the confluence diagram induced by this triple

31



4. Reduction of the coherent presentation

branching is represented by the 3-sphere Qy ., vt Whose source is the following 3-cell

“uv
CuCyCt . cece/ct
K}
Ky Xy, 1y vC CeXy s/t
pytt1,vEt CeCst’Ct Ys o CeCpCp/
fxx s (X ' %
Py s/t
Ky, B y d \
Cxp Cuy cvct cxpcscsfct = cecycch ca == CeCbCs,Cay CaCdCp’
& (XX%
(th \ )

Cxp Cup CCoy/ Cxp Xy it »CsCa; Car Xy s,y Cay CaCdCs,Car %s2.d

Xs,d, /
Xgw (Xﬂ w’ Xxp,ya

Cxpca] Ca’ Cw/ : Cxp Ca, CS3Cd’ — CaCZCSSCd,

ocxpval

and whose target is the following 3-cell

Ke’ it
CeCe/Ct =——— CcCpCp/

CuCyCt CaCdCp’

,t
Cxp Cu; CvCt uCwCw/ CaCa’Cw c CaCdCs, Cd]'
\ y abei
%/
OCV t (XZ S3
m Xp ity ,wCw/ Xz aj ’

Cxp Cuy CwCw/ CaCzCsy Cd{

tl
m Xxp,as /a]’;v’

CxpCa; Ca/ Cw - CaCzCq/ Cw!

In the generating triple confluence, some columns may be empty and thus the indicated 2-cells « may be
identities. To facilitate the reading of the diagram, we have omitted the context of the 2-cells «.

X1
The 3-sphere Q_Xp vt 18 constructed as follows. We have Xp U1 and W “w , thus Xxp w18 either
of the form Ay, w or Cx, v, w- Let us denote by a; and aj the two columns of the tableau P(ujw).
The 3-cell X, ., w being conﬂuent we have C(P(xpai)) = az with z in [n] and C(P(za{ )) =a’. In

addition, from 2 h and ‘11 w' , we deduce that X, ;18 either of the form A » or C .
,aq W z,a1,W z,a],w

From *p 1u1 and W v ,» we deduce that Xy, v is either of the form Ay, .,y or Cy, ;v Let us
denote by s and s’ the two columns of the tableau P(uyv). The 3-cell Xxp .u;,v being confluent, we obtain
that C(P(xps)) = ey with y in [n] and C(P(ys’)) = e’. From y”s’ and s’ t, we deduce that Xy st
is either of the form A, s/ or Cy s/ 1. Denote by d; and d{ the two columns of the tableau P(s’t). The 3-
cell X ¢+ being confluent and C(P(e’t)) = bb’, we have C(P(yd;)) = bs; and C(P(sd;)) =b’. On
the other hand, the 3-cell X, , is confluent, then we have C(P(sd;)) = ajs3 and C(P(ajw’)) = s3d].
Finally, since the 3-cell Xy, s q, is confluent, we obtain C(P(zs3)) = ds;.
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4.3. Pre-column coherent presentation

4.2.2. Reduced coherent column presentation. Let us define by Col3(n) the extended presentation of
the monoid P;, obtained from Col, (1) by adjunction of one family of 3-cells Xy, ; of the form (@6), for
every 1-cell x in [n] and columns v and t in col(n) such that x v ™t . The following result shows that
this reduced presentation is also coherent.

4.2.3. Proposition. Forn > 0, the (3, 1)-polygraph Col3(n) is a coherent presentation of the monoid P,,.

Proof. Let Ty be the collapsible part made of the family of 3-sphere Qy, v, v,t, indexed by x;, in [n]

and uy,v,t in col(n) such that u“v™t and u = xpwi. On the 3-cells of Colz(n), we define a well-
founded order < by

i) Auvit < Cuvt < Buvt < Dyt
ooyt /
i) if Xu,v,t € {Au,v,b Bu,v,b Cu,v,b Du,v,t} and u <deglex W, then Xu/,v/,t’ < Xu,v,ty

for any u,v,t in col(n) such that wvit . By construction of the 3-sphere prm w,t> its source
contains the 3-cell Xy, . and its target contains the 3-cell Ay, with £(u;) < €(u). Up to a Nielsen
transformation, the homotopical reduction Rr, applied on the (3, 1)-polygraph Cols(n) with respect to I

and the order <1 give us the (3, 1)-polygraph Colz(n). In this way, the presentation Cols (1) is a coherent
presentation of the monoid P,,. O

4.3. Pre-column coherent presentation

We reduce the coherent presentation Colz(n) into a coherent presentation whose underlying 2-polygraph
is PreCol (n). This reduction is obtained using the homotopical reduction Rr, on the (3, 1)-polygraph Colz(n)
whose collapsible part I3 is defined by

I3 ={Axyt | x €], vt €col(n) such that Akt }

U{ Byt | x € n], v,t € col(n) such that XA }

X1 x2

U{ Cxvt I x € [n], v,t € col(n) such that x™ v""t },

and the well-founded order defined as follows.

4.3.1. A well-founded order on 2-cells. Consider two columns u and v in col(n) such that 1™ v . Let
denote by C.(P(uv)) the reading of the right column of the tableau P(uv). We define a well-founded
order <1 on the 2-cells of Coly(n) as follows

L(uv) > L(uv') or
C(u) > L(Cr(P(u'v))) or
t(u) < C(P(u'v')) and 1/ ey 1

Oy < Oy if

f(uwv) = L(u'v') and {

. X X
for any columns u, v, u’ and v’ in col(n) such that w”v and u”v’.
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4. Reduction of the coherent presentation

4.3.2. The homotopical reduction Rr,. Consider the well-founded order < on the 2-cells of Col,(n)
defined in and the well-founded order <1 on 3-cells defined in the proof of Proposition The

reduction Ry, induced by these orders can be decomposed as follows. For any x in [n] and columns v, t

x1 x1 .
such that x™ V" t, we have o, <O oty t, Kt < Oyt @nd oyt <I Xyt The reduction Rr, removes the

2-cell &y, ¢ together with the following 3-cell:

oc% CxvCt %
CxCyvCt MAx,v,t Cxvt
Cm ‘Xx,vt

CxCvt

By iterating this reduction on the length of the column v, we reduce all the 2-cells x,,,, of Col,(n) to the
following set of 2-cells

(o [w) =1, 6v) = 2and W} U { oty | u) =1, 2(v) = 1 and w*'v ). (13)

For any x in [n] and columns v, t such that X W , consider the following 3-cell:

% CxvCt &
CxCvCt mcx,v,t

Cx

CaCarw’

vt CouCop CaCq/Cypa&a/w’
KxwCw/

where w, w’, a and a’ are defined in Lemma[3.2.3] The 2-cells &y, Xy, Xxw and &g/, are smaller
than o, ¢ for the order <1. The reduction R, removes the 2-cell «,, ; together with the 3-cell Cy , . By
iterating this reduction on the length of v, we reduce the set of 2-cells given in to the following set:

{ oy [ €(w) =1, £(v) > 2 and WU oy | €(u) =1, £(v) > 1 and v (14)
For any x in [n] and columns v, t such that XXZ\)X]’C , consider the following 3-cell:

CelXe/ t -
(X% CeCe’Ct _ CeCerlt ‘Xe,e/t

CxCvCt MBX% CsCs’
Com— ot

CxCvt

where e, e’, s and s’ are defined in Lemma[3.2.4] Note that X, ¢+ is the 2-cell in (I4)) obtained from the
2-cell &1 by the previous step of the homotopical reduction by the 3-cell C,, . Having x in [n], by
definition of & we have e’ in [n]. The 2-cells Ox,vs Oer ity Oyt and &e,e/t being smaller than o, for the
order <1, we can remove the 2-cells &, together with the 3-cell By, ;. By iterating this reduction on
the length of the column t, we reduce the set (I4)) to the following set

(o [ 8w =1, L(v) =2and WS} U { oy [ €(w) =1, £(v) > T and W'V ). (15)
Let us recall from Section 2.3]that PC;(n) is the cellular extension of Colj(n) whose set of 2-cells is

/ /
Xz X
{ exezy :>yczxcy|1<x<y<z<n}u{cyczx(xé cxez [ T<x<y<z<n}.
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4.3. Pre-column coherent presentation

4.3.3. Lemma. We have
PCa(n) ={ oy i cucy = ey | L(u) =1, £(v) =2 and WL

Proof. Consider the 2-cells o, in Coly(n) such that {(u) = 1, £(v) = 2 and A Suppose
that v = xx’ with x > x’ in [n]. Since ' , we obtain that u < x. Hence, we have two cases to
consider. If u < x’, then C(P(uv)) = (xu)x’. Hence, the 2-cell o, is equal to the 2-cell &/ .., :
CuCxx’ = CxuCx/. In the other case, if x’ < u, then C(P(uv)) = (ux’)x. Hence the 2-cell &, is équal

/
t0 0t s T Culxx = Cux/Cx. [l

Recall from 2.3.3] that the set of 2-cells PreCol,(n) is given by

/
PreColy(n) = PCy(n) U {cxcy oc% Cxu | XU € col(n) and 1< x < nj.
Thus, by Lemma4.3.3] the set of 2-cells defined in (I3) is equal to PreCol,(n).

4.3.4. Pre-column coherent presentation. The homotopical reduction Rr,, defined in reduces
the coherent presentation Col3(1) into a coherent presentation of the monoid P,. The set of 2-cells
of this coherent presentation is given by (13), which is PreCol;(n) by Lemma [4.3.3] Let us denote
by PreCol3(n) the extended presentation of the monoid P, obtained from PreCol,(n) by adjunction of
the 3-cell R, (C; ) where

X,V,t

(XX»V ¢ CX\) Ct

06 ’
vAzi..zq41,W
/ q
CxCvCt MCXM’C

Cx Xyt CxCwCw/ m vaczl...qu Cw’

with W% , and the 3-cell Ry, (Dy, 1) where

CeXe’
Ot v C CeCerCt =—=225 CCpCh/ e bCh’

CxCyCt me,v,t
P %

x&vt CxCwCyw/ == CqCq/Cypyr ¢ a’;w’
AxwCw’

CaCqCp

with x*A*% . The homotopical reduction R, eliminates the 3-cells of Col;(n) of the form Axvit> Byt

and Cy,y,t, which are not of the form Cy , ;. We have then proved the following result.

4.3.5. Theorem. Form > 0, the (3, 1)-polygraph PreColz(n) is a coherent presentation of the monoid Py,.

4.3.6. Example: coherent presentation of monoid P,. The Knuth presentation Knuth;(2) has genera-
tors 1 and 2 subject to the Knuth relations 177, : 211 = 121 and €1, : 221 = 212. This presentation
is convergent with only one critical branching with source the 1-cell 2211. This critical branching is
confluent:

11,2

Z
2211 ¢ 2121
v

€121
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4. Reduction of the coherent presentation

Following the homotopical completion procedure given in[3.1.4l the 2-polygraph extended by the pre-
vious 3-cell is a coherent presentation of the monoid P,. Consider the column presentation Col,(2) of
the monoid P, with 1-cells ¢y, ¢ and ¢y and 2-cells 1, o121 and &;77. The coherent presentation
Cols(2) has only one 3-cell

x2,1€ C21C21

, C21021
e mCzJ 21 ’

c200 €2C21C1 ==—=> C21C2C
200,277 C2621€1 F=rey 21626

It follows that the (3, 1)-polygraphs Colz(2) and Col3(2) coincide. Moreover, in this case the set I3 is
empty and the homotopical reduction Rr, is the identity and thus PreCol3(2) is also equal to Col3(2).
In next section, we will show how to relate the coherent presentations Col(2) and ( Knuth,(2) | C”).

4.3.7. Example: coherent presentation of monoid P;. For the monoid P3, the Knuth presentation
has 3 generators and 8 relations. It is not convergent, but it can be completed by adding 3 relations.
The obtained presentation has 27 3-cells corresponding to the 27 critical branchings. The column co-
herent presentation Colz(3) of P3 has 7 generators, 22 relations and 42 3-cells. The coherent presenta-
tion Colz(3) has 7 generators, 22 relations and 34 3-cells. After applying the homotopical reduction Rr,,
the coherent presentation PreCols(3) admits 7 generators, 22 relations and 24 3-cells. We give in
the values of number of cells of the (3, 1)-polygraphs Colz(n) and PreCol3(n) for plactic monoids of
rank n < 10.

4.4. Knuth’s coherent presentation

We reduce the coherent presentation PreColz(n) into a coherent presentation of the monoid P, whose
underlying 2-polygraph is Knuth, (). We proceed in three steps developed in the next sections.

Step 1. We apply the inverse of the Tietze transformation T, ., that coherently replaces the 2-cells Yxp..xq
by the 2-cells “;p,xp_, .x;» for each column x;, ... x7 such that {(x...x1) > 2.

Step 2. We apply the inverse of the Tietze transformation T, ¢4, that coherently replaces the 2-cells oc,’gzy
by N3y, for T < x <y <z < nand the 2-cells océ)zX by exy forT<x<y<z<mn.

Step 3. Finally for each column ¥, ... x;, we coherently eliminate the generator cy, .. x, together with

the 2-cell Yxpoxy with respect to the order <{geglex-

4.4.1. Step 1. The Tietze transformation T, : CPC;(n)" — PreColy(n) " defined in Lemma2.3.6]
substitutes a  2-cell ‘Xf(p,xp, . : Cop Cxp 11 = Cxpory  to the  2-cell
Yxp.x1 : Cxp++-Cx; = Cx,..x;» fOT €ach column x;,...x; such that £(x;,...x;) > 2, from the big-
ger column to the smaller one with respect to the total order <{geglex-

We consider the inverse of this Tietze transformation TY_L o - PreCol;(n)T — CPC,(n) ' that
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4.4. Knuth’s coherent presentation

substitutes the 2-cell yx,,..x; : Cx, «+ - Cx; = Cx,..x; {0 the 2-cell oc,’mxp_l___xI F Cxp Cxp1.xy = Cxpuxy

!/

o‘xp,xp,l ..X1
CXp Cprl...Xl CXp...X]
/l_
Cprxkc c /{p...xl
Xp =+ Exg

for each column x;, ... x; such that E(xp ...X1) > 2 with respect to the order <deglex-
Let us denote by CPC3(n) the (3, 1)-polygraph whose underlying 2-polygraph is CPC, (1), and the
set of 3-cells is defined by
[T

Yo/

(Rry (CLyi)) for XV 3 U {T) (R (Dyy)) for x4 % 0.

In this way, we extend the Tietze transformation T*L o into a Tietze transformation between the (3, 1)-
polygraphs PreCol;(n) and CPC;(n). The (3, 1)-polygraph PreColz(n) being a coherent presentation
of the monoid P;, and the Tietze transformation T; L « Preserves the coherence property, hence we have
the following result.

4.4.2. Lemma. For n > 0, the monoid P, admits CPC3(n) as a coherent presentation.

4.4.3. Step 2. The Tietze transformation T, ¢’ from Knuth$® n) T into CPCy(n) " defined in the proof

of Lemma[2.3.Jlreplaces the 2-cells ng ,, , and €5, , in Knuth®(n) by composite of 2-cells in CPC;(n).
Tnngx, : CPC2(n)T — Knuth$*(n) .
Y

-1
<z<n, Tn)E

Let us consider the inverse of this Tietze transformation

making the following transformations. For every 1 < x <
cell gy, , 1 C2CxCy = CxC,Cy to the 2-cell «;

o Substitutes the 2-

CxYzy
CxCzCy == CxCzy

C2CxCy /
/

Xy z

v% CaxCy =

Forevery 1 <x <y <z<n, 1! substitutes the 2-cell sfc)yyz 1 CyCzCx = CyCxC; to the 2-cell 0(1;‘“:

Mo’

YyxCz
CyCxCz == CyxCz

CyCzCx

/
JZX
C% CyCazx *

Y

Let us denote by Knuth§(n) the (3, 1)-polygraph whose underlying 2-polygraph is Knuth$°(n) and
whose set of 3-cells is

[Tt (T (R (CLu))) for XV ) U

n,e—o’

_ _ 2 %2
ngw,(Tv;“,(Rg(Dw))) for XVt ).

We extend the Tietze transformation Tn_ !

e into a Tietze transformation between (3, 1)-polygraphs

T-1

R CPC3(n)" — Knuth§(n) ",
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4. Reduction of the coherent presentation

where the (3, 1)-polygraph CPC;(n) is a coherent presentation of the monoid P, and the Tietze trans-
formation Tn_ l o Dreserves the coherence property, hence we have the following result.

4.4.4. Lemma. Forn > 0, the monoid Py, admits Knuth$®(n) as a coherent presentation.

4.4.5. Step 3. Finally, in order to obtain the Knuth coherent presentation, we perform an homotopical
reduction, obtained using the homotopical reduction Rr, on the (3, 1)-polygraph Knuth$®(n) whose col-
lapsible part I'; is defined by the 2-cells vy, of C2(n) and the well-founded order <gegiex- Thus, for every
2-cell Yxp.x1 * Cxp -+ Cxg = Cxp.xy in C;(n), we eliminate the generator Cxp..x1 together with the
2-cell Yxp...x1» from the bigger column to the smaller one with respect to the order <geglex-

4.4.6. Knuth coherent presentation. Using the Tietze transformations constructed in the previous sec-
tions, we consider the following composite of Tietze transformations

R = RpoT ) oT!

66— vi—a! © RF3

defined from Colz(n)" to Knuthgc(n)—r as follows. Firstly, the transformation R eliminates the 3-cells
of Col3(n) of the form Axyts Bxyt and Cy, ¢ which are not of the form C,’CMt and reduced its set
of 2-cells to PreColy(n). Secondly, this transformation coherently replaces the 2-cells Vipooxy by the
2-cells ‘Xfcp,xp_l...xp for each column x;, ... %; such that €(x...x1) > 2, the 2-cells «; ,,, by n§, ,
for 1 < x <y < z < n and the 2-cells og;‘ZX by Sfi,y,z for 1 < x <y < z < n. Finally, for each
column x;, ... x1, the transformation R eliminates the generator Cxp..x1 together with the 2-cell Vipooxy
with respect to the order <{geglex-

Let us denote by Knuths(n) the extended presentation of the monoid P;, obtained from Knuth;(n)
by adjunction of the following set of 3-cells

{R(CL,y) for XV } U {R(Dyyy) for X&)
The transformation R being a composite of Tietze transformations, it follows the following result.

4.4.7. Theorem. Form > 0, the (3, 1)-polygraph Knuthz(n) is a coherent presentation of the monoid Pr,.

4.4.8. Example: Knuth’s coherent presentation of the monoid P,. We have seen in Example
that the (3, 1)-polygraphs Colz(2), Cols(2) and PreCols(2) are equal. The coherent presentation PreCols(2)
is given by

PreCol; (2) = {c1, c2, c21}, PreColy(2) = {21, 121, X221}, PreCol3(2) ={C3 121},

where Cihﬂ is the following 3-cell:

2,161 cy1¢1
/ 2101
c2c1C2] mCzJ 21 ’
C200 T €2€21C1 ====> C21C2C]

0 21Cf

By definition of the 2-cells of C;(2), we have ;1 := ot,1. Thus we obtain that T;l (C21.21) = Caq

—a’
up to replace all the 2-cells o in Ciu] by v21. Hence, the coherent presentation CPC3(2) is equal
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4.4. Knuth’s coherent presentation

to PreCol3(2). In order to compute the 3-cell TTIJHa,(T;L“,(CéJ)N)), the 2-cells o7 and & )1

in Ciu] are respectively replaced by the 2-cells n%,hl and 5?,2,2 as in the following diagram

Y2191 ca1c01 (16)
C
C2C1Y2 C2C1C21 MCE] 21 2721
C2C1 0201 Cmi)g s > Cz(:z] C] 1> Cz] 0201
2)2
H\CZ'YN €1 /H\'YN C2C1
C
C2Mi1,2 C2€2€1C1 === €2€1C2Cy
€12201

where the cancel symbol means that the corresponding 2-cell is removed. Hence the coherent presen-
tation Knuth$®(2) of P, has for 1-cells c1, ¢ and cy1, for 2-cells o1, o721 and 77 and the only 3-
cell (16). Let us compute the Knuth coherent presentation Knuthz(2). The 3-cell R, (T, 2 o (T (1_ o (Ci1 21)))

is obtained from (I6]) by removing the 2-cell 'y, together with the T-cell cz7. Thus we obtain the follow-
ing 3-cell, where the cancel symbol means that the corresponding element is removed,

C2C1¥20. 3 cocrma( g
C2C1C2C7 CIBC1 T2C2C1
1Y) Za (8 20
C il il
CMi12 C2C2C1CT ﬁ c2C1CoC
1,2,2€1

Hence, the Knuth coherent presentation Knuth3(2) of the monoid P, has generators c; and c; subject to
the Knuth relations 1§ ; , : c2c1¢1 = cicz¢1 and € 5, , 1 €2¢2¢1 = c2¢1¢2 and the following 3-cell

C
My
c202C1Cq MC” c2C1C2C
C
€721

In this way, we obtain the Knuth coherent presentation of the monoid P, that we obtain in Example
as a consequence of the fact that the 2-polygraph Knuth;(2) is convergent.

4.4.9. Coherent presentations in small ranks. Let us denote by KnuthzKB (n) the convergent 2-polygraph
obtained from Knuth;(n) by the Knuth-Bendix completion using the lexicographic order. For n = 3, the
polygraph KnuthzKB (3) is finite, but Knuth]2<B (n) is infinite for n > 4, [22]]. Let us denote by Knu‘[h]3<B (n)
the Squier completion of Knuth¥®(n). For n > 4, the polygraph Knuth5¥®(n) having an infinite set of
critical branching, the set of 3-cells of Knuth];B(n) is infinite. However, the (3, 1)-polygraph Knuth3z(n)
constructed in this section is a finite coherent convergent presentation of P;,. Table[Il presents the number
of cells of the coherent presentations Knuth3(n), Colz(n) and Colz(n) of the monoid P;,.
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4. Reduction of the coherent presentation

©C VN U WN =3

—_

Knuth; (n) | Coly(n) | Knuthy(n) | Knuth5®(n) | Colz(n) | Knuth§®(n) | Knuthz(n) | Colz(n) Col(n)
1 1 0 0 0 0 0 0 0
2 3 2 2 3 1 1 1 1
3 7 8 11 22 27 24 34 42
4 15 20 0 115 0 242 330 621
5 31 40 0 531 00 1726 2225 6893
6 63 70 00 2317 00 10273 12635 67635
7 127 112 00 9822 00 55016 65282 623010
8 255 168 oo | 40971 00 275868 | 318708 5534197
9 511 240 oo | 169255 00 1324970 | 1500465 | 48052953

10 1023 330 oo | 694837 00 6178939 | 6892325 | 410881483

Table 1: Number of cells of (3, 1)-polygraphs Knuthz(n), Colz(n) and Colz(n), for 1 < n < 10.

4.4.10. Actions of plactic monoids on categories. In [9], the authors give a description of the category
of actions of a monoid on categories in terms of coherent presentations. Using this description, Theo-
rem [4.4.7] allows to present actions of plactic monoids on categories as follows. The category Act(Py)
of actions of the monoid P;, on categories is equivalent to the category of 2-functors from the (2, 1)-
category Knuth,(n) " to the category Cat of categories, that sends the 3-cells of Knuthz(n) to commuta-
tive diagrams in Cat.

4.4.11. Higher syzygies for the plactic monoid. In [11], the authors show how to extend a conver-
gent presentation of a monoid into a polygraphic resolution of the monoid, that is, a cofibrant replace-
ment of the monoid in the category of (oo, 1)-categories. The column presentation Coly(n) of the
monoid Py, can then be extended into a polygraphic resolution whose n-cells, for every n > 3, are
indexed by (n — 1)-fold branching of Coly(n). We can explicit the 4-cells of this resolution, which cor-
respond to the confluence diagrams induced by critical triple branchings. That is, for columns u, v, t
and e in col(n) such that uw v, vt and t*e, there is a critical triple branching with source ¢, ¢, CtCe.
Using the same arguments of Section [4.2.1] we can show that the confluence diagram induced by this
triple branching is represented by the 3-sphere Q,, ,, 1 . whose the source is the 3-cell

Kg/
CuCyCmms 2 cycy, ot S i Ce! = CniCe; Cel

mcu vt,e 0(11{»61
x Xp1,fy Xupr Ce!
€ cucp] ct

1Cef CnCb; Cb; Cef
%g5,fs
cucvctce CuCp, cp/ce Cd,Cg, CF, Cef == Cd, Cmy C/ Ce Cny Cb; Cm) Cat

C
witke g, Cg:Cp;Ce €d;Cm; Cm;Cas

Xg1,p}
Xer df,aq

S
CuwCw/CiCe T CwCsCs Ce 5 ¢4y CarCorce 228 gy CarCay Caf

d
Xu Cch 917’1 1,

[44TRY

Ks/ e Kw,s

CwCsCq, Ca{
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5. Coherence and Lakshmibai-Seshadri’s paths

and the target is the 3-cell

Xu,s
CuCsy Cey Col == Cn, Cn/ Cey Cef

“s{,m’ - o"n]’,e1
Oys, spm’
Culs; Cs/ Cm/ —Cny Cn/CsiCm/ Cny Cb; Cof Ceg

Kp! el
CuCyCmCm/ Cn; Co/Cn’Cm’ v

s
Cn Xn’ s/ m/
Xu,vqncm’ 1 181
% N Oy, O/ m/

Ky’ Kp/ o
CuCyCiCe = CowCry/ CmCom/ = €1y CinCrr/ O’ = CnyCh/CerCq =5 ¢, Cpy CmyCa/
Xn/ m’ ﬂ
Xdy,m
x X, 1M
o be X tCe S Xw,s,aiCa’
CwCwp/CtCe CwCnCe’Cq/ ST g, Cm, CmjCaf

Ks,a
X/t df,a

CwCsCs/Ce ﬁ CwCsCqy Ca]’ s Cd, Cd]’ Caqy Ca]’

In the generating triple confluence, some columns may be empty and thus the indicated 2-cells & may be
identities. To facilitate the reading of the diagram, we have omitted the context of the 2-cells o«. More
generally, we expect that the generating n-cell of the resolution has the form of the permutohedron of
dimension n.

5. COHERENCE AND LAKSHMIBAI-SESHADRI’S PATHS

In this section, we construct a coherent presentation of the monoid P, in term of Lakshmibai-Seshadri’s
paths. After recalling the notions of paths and crystal graphs, we briefly recall in [5.2] the notion of
Lakshmibai-Seshadri’s paths and we refer the reader to [28] 29]] for more informations. Finally, we
construct in [5.3] a convergent presentation of the monoid P;, using Yamanouchi paths and a coherent
presentation of it in terms of Lakshmibai-Seshadri’s paths.

5.1. Paths and crystal graphs

Denote by gl,, the general linear Lie algebra of n by n matrices. Consider R™ with its canonical ba-
sis (€1y...,€n). The set of weights of gl,,, denoted by X, is the lattice Ze @ . . . B Zey. The simple roots
of gl are the weight oy = ¢; — €i41, for 1 < 1 < n. Its fundamental weights are w; = €1 + ...+ €,
for T < i < n. We will denote by F the set of the fundamental weights. The dominant weights are of
the form ajw; + ...+ apwy, where a1 > ... > a, = 0. A dominant weight can be also written on the
following form p1ey + ...+ pnén, withpy = ... 2 pn 2 0.

5.1.1. Paths. We will denote by X the real vector space X®zR. A path is a piecewise linear continuous
map 7 : [0, 1] — Xg. We will consider paths up to a reparametrization, that is, a path 7t is equal to any
path 7t o @, where ¢ : [0,1] — [0, 1] is a piecewise linear non-decreasing surjective continuous map.
The target 7t(1) of a path 7t is called the weight of 7 and denoted by wt(7t). We denote by

ﬂ:{ﬂ:[O,l]—>XR{7T(O):0and7t(1)€X}

41



5. Coherence and Lakshmibai-Seshadri’s paths

the set of all paths whose source is 0 and weight lies in X. We will denote by 0 : [0, 1] — X the trivial
path defined by 0(t) = 0, for any t € [0, 1]. Given two paths 71y and 71, in TT, the concatenation 717 x 71,
is defined by:

71 (2t) for0 <t < 12,

m * T (t) 1= {7-[1(])_|_7rz(zt—]) for% <t< L

With the concatenation * the set IT forms a monoid whose unity is the trivial path and called the monoid
of paths.

5.1.2. Words and paths. For A in Xg, consider the path 7t) : [0,1] — Xg that connects the origin
with A by a straight line, that is 7ty (t) = tA, for any t € [0, 1]. The path 7t is in T if and only if A is in X.

Any 1-cell in the free monoid X on Xg is a finite sequence of weights. We define a map X — TI
sending any T-cell w = Ay ... A, with A; in X, to a path 7r,, = 7Ty, %...x . The path 7, is in T if and
only if A7 + ...+ A, is in X. In addition, if we identify every path 7t¢, with the integer i, for T <1 < n,
then the set of paths {7, | 1 <1 < n}isidentified with the set [n]. Hence, for every 1-cell w = x7 ... %,
in the free monoid [n]*, with x; in [n], we associate a path 7t,, = Tle,, *. .. x T, . We will denote by TTw
the free monoid over {7, [ 1 <1< n}k

5.1.3. Root operators. Let 71, be a path in TTyy,. For each i in [n] and each simple root «; of gl,,, one
defines the root operators
[ PR Ty — TTw U {0}

as follows. First, one considers the path 7t}, obtained by deleting all the paths other that e, and Tt
from 71, Second, one removes the concatenation 7t; * 7, , of adjacent paths, that is
with 7, (1) = 7t¢,,, (0). After these two operations we obtain a new path. The second step of the process
is repeated until it is impossible to remove adjacent paths. Let r and s be respectively the number of
paths 7t , and 7t¢; in the final path.

— If r > 0, then e, () is obtained by replacing in 7, the rightmost path 7, ,
by 7, and the others paths of 7, stay unchanged. If r = 0, then ey, (W) = 0.

of the final path

1

— If's > 0, then f, (71,,) is obtained by replacing in 7r,, the leftmost path 7t¢; of the final path by 7,
and the others paths of 7, stay unchanged. If s = 0, we set f, (W) = 0.

These operators preserve the length of the paths. We have also that if fo(71) = 71 £ 0 then eq (1) = 7.

5.1.4. Example. Consider the path 71, = 7t¢; * 7Tl¢, * T, * Tle, * Te; * T, * T, * T, * Tle,. Let
us compute fy, (70,) and ey, (7y). We have 7}, = 7, * T, * T, * T, * T,. After removing the
concatenation 7, x 7t¢, of the adjacent paths 7t¢, and 7t¢,, we can not eliminate more paths. Then the
final path is 7t¢, % 7t¢, * 7t¢,, with T = 1 and s = 2. Hence we obtain that

foop () = ey * Tle, % Tle, * T, * Tle, * Tle, * Tley * Tle, * Tle,,

€, (Thw) = Tley * Tle, * Tle, * Tle, * Te, * Tley % Tley * T, * Tl

5.1.5. Crystal graphs. A crystal graph is a 1-polygraph G whose set of 0-cells is TTy, and whose set of
1-cells is

Gi = {5 fo(m) |tel,...,n} ).

Note that 7’ = f, (7) if and only if 7 = ey, (7'), [18]]. If there is no confusion, we will denote i, by i.
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5.2. Tableaux and Lakshmibai-Seshadri’s paths

5.1.6. Connected components of crystal graphs. For any path 7t in TTyy, we denote by B(7t) the con-
nected component of the crystal graph containing 7t. Every connected component contains a path 7t that
satisfies the following property:

€o; (7'[) =0,

for any 1 < 1 < n and called a highest weight path. We will denote by ﬂ\fv the set of highest weight
paths in TTyy. An isomorphism between two connected components B(7t) and B(7’) is a bijective
map 1\ : B(7t) — B(7t’) that satisfies the following conditions:

i) it is weight-preserving, that is wt(m,,) = wt(\ (7, )), for all 7, in B(7),

ii) for all 7, and 7v,,,/ in B(7), if there is a 1-cell 7, i T, then there is a 1-cell P (71,,) & P (707).

Recall that for two paths 717 and 7t in TTy;,, B(7t1) and B(7,) are isomorphic if and only if their highest
weight paths 71y and 7t; have the same weight, [29, Theorem 1].

5.1.7. Example. For n = 3, the connected component B (7te, 7T, 7, ) containing the path 7t , % 7, *
7t¢, has the following form

Tle, % Tle, * Tle,

/ X
Tle, * Te, * Tl Tle, * Tle, * Tle,

2

2| |

ey * Tle, * Tle, ey % Tle, * Tley
2 1
ey * Tle, * Tle, e, % Tle, * Te,

\ /
Tley % Tlg, * Tley

The highest weight path of this connected component is 7T, * TT¢, * 7T¢,.

5.2. Tableaux and Lakshmibai-Seshadri’s paths

5.2.1. Tableaux. Let A = p1e; + ... 4+ pkex be a dominant weight. A Young tableau of shape A is
a collection of boxes in left-justified rows filled by elements in [n] strictly increasing in the columns,
such that the ith row contains p; boxes, for 1 < i < k. For instance, a Young tableau of shape A =
4e1 + 3¢y + €3 is the following diagram

2[1]1]
3]3

[wlro]—=

A tableau of shape A, or tableau for short, is a Young tableau of shape A where the entries are non-
decreasing in the rows. For example, a tableau of shape A = 4¢1 + 3¢, + €3 is the following diagram

111]2]
313

'_]
I
[wlro]—=
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5. Coherence and Lakshmibai-Seshadri’s paths

The Japanese reading of a tableau T, denoted by J(T), is the 1-cell obtained by reading the tableau T
column-wise from top to bottom and from right to left. We will denote by 7ty(1) the path in TTy corre-
sponding to the 1-cell J(T), as presented in For example, the Japanese reading of the previous
tableau T is J(T) = 21313123 and its corresponding path in TTyy iS 7tj(7) = Tre, * TTe; * Tley * TTe, * Trey *
Tle, * Tle, % Tlej.

5.2.2. Lakshmibai-Seshadri’s paths. By definition, a tableau of shape wj, for 1 < i < m, consists of
one column with i elements satisfying x; < ... < x4 from top to bottom. For each tableau of shape wj,
we will associate the path t — t(ey, + ...+ €, ) that connects the origin with the weight e, + ...+ &y,
by a straight line. In this way, every column of a tableau will be represented by a path. For a fundamental
weight wj, the Lakshmibai-Seshadri paths, or L-S paths for short, of shape w; are the paths obtained
from all the columns of length 1.

5.2.3. Example. For n = 3, let us compute the L-S paths of shape wj, w; and w3. The only three
columns of length 1 contains respectively the elements 1, 2 and 3, then the L-S paths of shape w;
are T, , 7, and 7t¢,. The columns of length 2 are

s and 3.
Hence the L-S paths of w; are the paths 7t¢, ¢,, ¢, +¢; and 7t¢,¢,. Moreover, the only column of
length 3 is

Hence the only L-S path of shape w3 is 7t¢; ¢, 4e;-

5.2.4. Tableaux and L-S paths. An L-S monomial of shape (w1, ..., wy) is a concatenation 7ty * ... %
7y, where the path 7t; is an L-S path of shape wj, for every T < 1 < k. A Young tableau of shape
A= aiwi +...+ apwy is represented by the L-S monomial

KT *oeeek Tl s
1<i<n
where 7 ,, is an L-S path of shape w;. That is, the first a; paths are of shape wj, the next a, paths are
of shape w; and so on until the final a, paths are of shape wy,. In the sequel, if there is no confusion we
will identify Young tableaux with their corresponding L-S monomials.

5.2.5. Example. Forn = 3, the L-S monomial 7t¢, *7T¢,| 4-¢; %, 4-¢5 T, ¢, +¢; Of shape wi+2w; +w3
corresponds to the following Young tableau

—_

1]

(wo]=
wro
w

The Japanese reading of this tableau is represented by the path 7t¢, % 7te, * TTe, * TTe, % TTe; * Te; X Tle, K Tle,
in ﬂw.
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5.2. Tableaux and Lakshmibai-Seshadri’s paths

5.2.6. Tableaux and crystal graphs. Let T be a Young tableau of shape A. To compute the root oper-
ators on T, it is sufficient to compute them on the path 7157y and then to transform the resulted paths on
Young tableaux. For example, to compute the operator fy, on the tableau

172]

it is sufficient to compute fy, (715(r)). We have fy, (75(1)) = fo, (T, * TTe, * Ty ) = T, * T, * 7, and
the path 71, % 7t¢, * 7, corresponds to the following tableau

. [212]
" =03

Hence fy, (T) = T’. We will denote by B(T) the connected component of the crystal graph containing
a Young tableau T. Note that a tableau of shape w; + ... + wy is a vertex of the connected compo-
nent B(7ty, * ... x 7y, ). Moreover, the highest weight tableau of B(7ty,, x ... x 7y, ) has only i’s in
the i-th row, for 1 < i < k. In particular, the L-S paths of shape wj, for i in [n], are the vertices of the
connected component B(7r,, ).

5.2.7. Example. For n = 3, the L-S monomial T = 7o, % Tl¢,4¢; * T 4e; * Teytepte; OF
shape w1 + 2w, + w3 corresponds to the following tableau

—_—
—_—

2]

[w[ro]=
w
w

The path 7t¢, * T, 465 * Tle; 4¢3 * Tleq4ey+e5 18 @ Vertex of B(7ry,, * Ty, * Ty, * Ty, ), With

7TEZ *T[E1+63 * 7TE1+E3 * 7TE1+62+63 = fcxz(foq (f(XZ (T[w1 * 7T(,U2 * 7T(,U2 * 7Tw3)))>

where the path 71, * Ttw, * Ty, * Ty, corresponds to the following tableau

—_—
—_—

1]

(wo]=
o
o

The tableau T is represented by the path 7t 1) = Tte, * Tle; * Tley * Ty * Tle; * Tleq * Tle, * Tey in Ty

5.2.8. Example. Forn = 3, the tableaux of shape w1+ w; on the set [3] are the vertices of the following
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5. Coherence and Lakshmibai-Seshadri’s paths

connected component B(7ty,, * 7Ty, )

1[1]
Ty * T, =[5

Tley X Terter =[5 Tley * Tleqte; =3
2 1
113 ‘ 1 2‘
Tley * Tleyte; = 2 Tley * Tleyte; =
2 1
113 ‘ 2|2 ‘
7-[63 *T[E1+E3 = 3 T[EZ *7[52+E3 = 3
\ .
2 3‘

7-[53 *ﬂ62+€3 = 3

The paths corresponding to the Japanese readings of the vertices of this connected component are the
vertices of the connected component of Example 5.1.7]

5.2.9. Yamanouchi path tableau. A Yamanouchi path is a path 7t in TTyy such that any of its left factor
path 7t satisfies
m'h > .. 2

where |7t’|; denotes the number of occurrences of the path 7, in 7t’. A path is a Yamanouchi path if and
only if it is a highest weight path, [35, Proposition 2.6.1]. As a consequence, all the paths of ﬂ\fv are
Yamanouchi paths. As we have seen previously, the highest weight tableau of the connected component
containing tableaux of shape ajw; + ...+ aywy has only 1’s in the i-th row for T < i < k. Then this
highest weight tableau is represented by the following Yamanouchi path

(7o, v ax 7O, ) & (The, X 7T, ) v ak (TOe, % TTey ) koo & (The, Koo o X Tl ) Kook (T, X o % T, )

aj times a, times ay times

A Yamanouchi path that represents a tableau is called a Yamanouchi path tableau. Yamanouchi paths
form a single plactic class whose representative path is a unique Yamanouchi path tableau, [31, Lemma 5.4.7].

5.2.10. Yamanouchi’s map. Let us define a map
YT, =TTy

that transforms a non-Yamanouchi path tableau to a Yamanouchi path tableau as follows. Let 7, be a
non-Yamanouchi path tableau, then Y(7,,) is equal to the path 7ryr), where T is the tableau obtained
from 71,, by putting for every 7t¢, in 71,, an element 1 in the i-th row of T.
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5.3. Coherence of paths

5.2.11. Example. For n = 3, the path 7, = ¢, % T, * T¢, * T, * Te; * Tle, * Te, * Tle, * T, 1S @
Yamanouchi path that is not a Yanamouchi path tableau. Moreover, this path can be transformed to the
following tableau

1[1]1]
202
3

1
T=[2
3

after replacing each 7t¢, in 7, by the element 1 in the first row of T, each 7t¢, in 7, by the element 2 in
its second row and each 7t¢, in 7, by the element 3 in its third row. Hence we obtain

Y(7tw) = TUy(ry = Tle, * Tle, * Te, * Tle, * The, * Tley * Tle, * The, * e,

5.3. Coherence of paths

In the free monoid TTy, over the set {7, | T < i < n}, the Knuth relations (2) can be written in the
following form
nT[
b ’Znsx*nsz*nsy |T<x<y<z<n}
m (17)

EX z
U {7te, * T, * Tre, By T, *Te, * T, | 1 <x <y <z<n}.

{me, * e, x ¢,

We denote by Knuth?*"(n) the 2-polygraph whose set of T-cells is {rr, | 1 < i < n}and whose set

of 2-cells is given by (I7). The 2-polygraphs Knuth}"" () and Knuth,(n) are Tietze equivalent, by the

mapping i — 71, that induces an isomorphism between the two presented monoids.

5.3.1. Equivalence on paths. Let 7, and 7, be two paths in TTyy. One can define a relation ~pamm)
on ITy by : Ty ~patmn) 7w if, and only if, the two following conditions are satisfied:

i) the connected components B(,,) and B(7t,,) are isomorphic, that is wt(7),) = wt(n:;,), where 7t
and TE:;/ are the highest weight paths of B(7,,) and B(7t],).

ii) 71, and 71,,» have the same position in the components B(7t,,) and B(7, ), that is, there exist i, ..., i;
such that 70, = fo, - - foq (7)) and 7 = fo - fo, (7).

5.3.2. 2-polygraph of crystals. Let Crysg(n) be the 2-polygraph whose set of T-cellsis {7t | 1 <1< n}
and whose set of 2-cells is

{ 7, 19% Y(mty) | 7w € Ty, and wi(m,) = wi(Y(7y)) .

For 7, in TT;,, the path focjk Ofocjk,1 o.. .ofocj] (71, ) will be also denoted by f"‘ik (7t ), where fori = 1,...,k,
every j; is an element of [n], oy, is a simple root and 1‘0cji is the corresponding root operator. For k > 0,
let us define the 2-polygraph Crysk(n) whose set of 1-cells is {7, | T < i < n} and whose set of 2-cells
is

9k

{ fog, (70w) = fo (Y(my)) | e € T, and wt(m,) = wt(Y(m,)) .

(Xjk

47



5. Coherence and Lakshmibai-Seshadri’s paths

The 2-polygraph of crystals is the 2-polygraph denoted by Crys,(n), whose 1-cells are 7, ..., 7,
and whose set of 2-cells is

U Cryss(n).
Y rys;(n)

By construction, the monoid presented by the 2-polygraph Crys,(n) is isomorphic to the quotient of TTyy
by the equivalence ~pan)-

5.3.3. Theorem. Forn > 0, the 2-polygraph Crys,(n) is a convergent presentation of the monoid Py,

Proof. Thanks to the mapping i — 7, for any i in [n], the free monoid Ty is identified to the
monoid [n]*. By [6, 23], the equivalence ~plax(n) defined in[2.2.4] coincides with the equivalence ~path(n)»
taking into account that the column reading of Schensted’s tableaux obtained by the row insertion
is replaced by the Japanese reading of Schensted’s tableaux which are obtained by a similar column inser-
tion, [32]. Thus, the monoid Py, is isomorphic to the quotient of TTyy by the equivalence ~panm). Hence,
the 2-polygraph Crys,(n) is a presentation of the monoid P;,.
Prove the convergence of the 2-polygraph Crys,(n). The termination is proved by showing that Crys,(n)

is compatible with a total order <{,-weight defined on the set F™ as follows. First, we fix an ordering <eight
on the set of fundamental weights [F of the Lie algebra gl,, by

w1 <Weight w? '<weight oo '<weight Wn.

Let <n-weight be the lexicographic order on the set ™ induced by the order —<yeign, that is,
(wi1 Yo win) <n-weight (wl{ ' T wl{l) if

Wi, <weight Wiy or [wi, = Wiy and (wi,,..., Wi, ) Sneweight (Wi, - -0y Wiy )],

where for every 1 < k < n, w;, and Wi/ are fundamental weights in . Then <p.weight 18 a well-
ordering on the set F™. Since the root operators preserve the lengths of paths and the shapes of tableaux,
we will suppose that all the paths are Yamanouchi paths. Note also that any path in TTyy has a unique
decomposition as an L-S monomial 7ty x. . .x 7t of shape (wj,, ..., wj, ), where the path 7t; is an L-S path
of maximal shape wj,, for every 1 <1 < kand 1 < j; < n. In this way, we will consider this unique
decomposition for all the Yamanouchi paths. By construction of the Yamanouchi map Y, every non-
Yamanouchi L-S monomial tableau is transformed to a Yamanouchi path tableau by beginning with the
concatenation of its L-S paths of shape w1, after by the concatenation of its paths of shape w; and so on
until the concatenation of its L-S paths of maximal shape with respect to the order <yeigne. Then, for every
2-cell ¥y, : M, = Y(m,) in Crys,(n), we have Y(7t,,) <pweight Thw. Hence, the 2-polygraph Crys,(n)
is compatible with the order <(n.weight. Hence, rewriting an L-S monomial that is not a Yamanouchi
path tableau always decreases it with respect to the order <(n.weight- Since every application of a 2-
cell in Crys,(n) yields a <n-weight-preceding L-S monomial, it follows that any sequence of rewriting
using Crys,(n) must terminate.

Let us show that Crys,(n) is confluent. Let 7, be a path in Ty and 7, 71,,» be two normal forms
such that m,, = m,,s and 7,, = m,. It is sufficient to prove that 7,,, = 7,». We have that 7, is a
Yamanouchi path tableau such that 7, ~path(n) 70w . Similarly, the path 71, is a Yamanouchi path tableau
such that 76, ~patn) Tow'. SINCE Ty ~path(n) Thw’ ~path(n) Thw' and each plactic congruence contains exactly
one Yamanouchi path tableau, we obtain that 7t,,» = 7,,». Since the 2-polygraph Crys,(n) is terminating,
and rewriting any non-Yamanouchi path tableau must terminate with a unique normal form, Crys,(n) is
confluent. [l
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5.3. Coherence of paths

As a consequence, we obtain that the 2-polygraphs Knuthgalth (n) and Crys,(n) are Tietze equivalent.

5.3.4. 2-polygraph of paths. Let denote by Path;(n) the 1-polygraph with only one O-cell and whose
1-cells are all L-S paths of shape wr,...,wy. For each pair (7, 7,) in Path; (n) such that 7, % 7, is
not a tableau, we define the 2-cell

Oy sy - Ty % Thy = Thyy % Thy/y

where 71, * 71,/ is the unique tableau such that 7t * 76, ~pathn) 7w * Ty The 2-polygraph of paths,
denoted by Pathy(n), is the 1-polygraph Path;(n) extended by the set of 2-cells o, r,, Where 7t,, and 7,
are in Path; (1) such that 7t * 71, is not a tableau. As shown by Littelmann, the 2-polygraph Path;(n) is
a presentation of the monoid P, [29, Theorem B]. Indeed, Littelmann showed that any L-S monomial is
equivalent modulo relations in Path;(n) to a tableau. Note that we can also prove that the 2-polygraph is
a presentation of P, as follows. For every L-S path m in Path; (n), we consider its column reading C(m)
as defined in Section[2.2] By the following composite of mappings

Path;(n) — TTyy — Knuth;(n)* — Col;(n)
m — nC(m) — C(m) — CC(m)

we transform each L-S path in Path; (n) into an element of Col; (n). Thus, the set Path; (n) is identified
to the set Colj(n). Similarly, we transform through the previous mapping the left and right hands of the
2-cells of Pathy(n) into elements in Coly(n)*. In this way, we identify the sets Col,(n) and Path;(n).
Hence the 2-polygraph Path;(n) is Tietze equivalent to Col,(n).

5.3.5. Path coherent presentation. Let us denote by Path3(n) the extended presentation of the monoid Py,
obtained from Path;(n) by adjunction of the following 3-cell

ﬁeaﬂe/,m
O(T[u.)T[vT[ ﬂe*ne/*Nt:ﬂe*T[b*TEb/ (X/Heyﬂbnb/
Oy * T, * Tt m o * Tlq * Tlp/

nm %n,
* TC *n/ﬁn * Tlq/ * Tl ahTw
4'8 W a

kanu,nw w/’ @ w

where the paths 71, 71, and 71, x 71 are not tableaux and the paths e x Ttor, T4y * Ty, T *xTTg7, Tlp * TTp/
and 71, * Tt4 * 7T, are tableaux such that

Thy * Ty ~path(n) 7Te * Tle/y Thy * T4t ~path(n) Ttw * Thy/y Ty * Thy ~path(n) 7Ta * Ta’y Tle’ * Tt ~path(n) 7Tb * TTb/,

Tle * Tl ~path(n) TTa * Ttdy Tta’ * Thy!/ ~path(n) 7td * b/, and 70, * 7T, * Tt ~path(n) TCa * TTd * TTp/.

The 2-polygraphs Coly(n) and Path;(n) have the same properties. In particular, they have the same
critical branchings and the same confluence diagrams. Hence, we obtain the following result as a direct
consequence of Theorem

5.3.6. Corollary. Forn > 0, the (3, 1)-polygraph Path3(n) is a coherent presentation of the monoid P,.
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5. Coherence and Lakshmibai-Seshadri’s paths

5.3.7. Example: 2-polygraph Path,(3). Letus compute the elements of the 2-polygraph of paths Path; (3)
of the monoid P3. The set of 1-cells is

Path, (3) = {7[61’7T£2’7T£3)7[E1+£2)7T€1+63a7T£2+£3)7TE1+£2+£3 }

The left and right sides of the 2-cells of Path;(3) are the paths corresponding to the vertices appearing at
the same place in the following crystal isomorphisms

B(T[” * T[EZ) B(TEEH‘EZ) B(ﬂ€1+€z+53 * 7T€1+€2) B(T[a]-&-az * 7T£1+€z+£3)
q] 1] 1
5 2]12] 22
zl ~ T i ~ i
2| 2| 2|
i T[] 11
1 ]
‘l 3 312] 213
1 mE 3]
2] 1 di
= 21 12
13]12] 2[3
el 3
B(T[£1+£2 * Tt&i] ) B(T[s] * 7[51+£2)
171]
. 12,
1 X) | X
2101 1] 1]2] 171]
2 ] 2 3
g o= b
2]1] 1][2] 13 1]2]
13] 13 12] 13]
| I i |
3111 2] 1]3] 2[2]
13 3] 3] 3]

gt

[
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B(T[E1+Ez *T[£1+£3) B(T[51 *ﬂ€]+£2+53) B(T[51 *T[E]-‘raz) B(ﬂ€]+£2+£3)
EalEn 1]1]
31t 2 -
R ~ 13]
R 1]

Al ]A
3]12] 7
2| 3]
2][1] 2|
1313 1 3|
12|
3]

B(7le, 4465 X Tle,) B(7re, * e 4ertes) B(7re, 4, * Tey) B(7le, 1es4e5)
11[1] 171 1
.i’ 2 | IHE ~ E

B ~ 3] 2]
1 1
2][1] 112
12 12
3] 3]
2| 2|
[3][1] 1]3]
12 12|
13] 3]

This presentation of the monoid P3 can be extending into a coherent one by adding 42 3-cells as men-

tioned in
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