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Introduction

In this note we study the following system of partial differential equations

∂ t u = -Λ α u + ∇ • (uq), for x ∈ T d , t ≥ 0, (1) 
∂ t q = ∇f (u), for x ∈ T d , t ≥ 0, ( 2 
)
where u is a non-negative scalar function, q is a vector in R d , T d denotes the domain [-π, π] d with periodic boundary conditions, d = 1, 2 is the dimension, f (u) = u 2 /2, 0 < α ≤ 2 and (-∆) α/2 = Λ α is the fractional Laplacian.

This system was proposed by Othmers & Stevens [START_REF] Stevens | Aggregation, blowup, and collapse: the ABC's of taxis in reinforced random walks[END_REF] based on biological considerations as a model of tumor angiogenesis. In particular, in the previous system, u is the density of vascular endothelial cells and q = ∇ log(v) where v is the concentration of the signal protein known as vascular endothelial growth factor (VEGF) (see Bellomo, Li, & Maini [START_REF] Bellomo | On the foundations of cancer modelling: selected topics, speculations, and perspectives[END_REF] for more details on tumor modelling). Similar hyperbolic-dissipative systems arise also in the study of compressible viscous fluids or magnetohydrodynamics (see S. Kawashima [START_REF] Kawashima | Large-time behavior of solutions for hyperbolic-parabolic systems of conservation laws[END_REF] and the references therein).

Equation (1) appears as a singular limit of the following Keller-Segel model of aggregation of the slime mold Dictyostelium discoideum [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF] (see also Patlak [START_REF] Patlak | Random walk with persistence and external bias[END_REF]) [START_REF] Fleischer | Burgers' turbulence with self-consistently evolved pressure[END_REF] ∂ t u = -Λ α u -χ∇ • (u∇G(v)),

∂ t v = ν∆v + (f (u) + λ)v,
when G(v) = log(v) and the diffusion of the chemical is negligible, i.e. ν → 0. Similar equations arising in different context are the Majda-Biello model of Rossby waves [START_REF] Majda | The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves[END_REF] or the magnetohydrodynamic-Burgers system proposed by Fleischer & Diamond [START_REF] Fleischer | Burgers' turbulence with self-consistently evolved pressure[END_REF].

Most of the results for (1) corresponds to the case where d = 1. Then, when the diffusion is local i.e. α = 2, (1) has been studied by many different research groups. In particular, Fan & Zhao [START_REF] Fan | Blow up criterion for a hyperbolic-parabolic system arising from chemotaxis[END_REF], Li & Zhao [START_REF] Li | Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis[END_REF], Mei, Peng & Wang [START_REF] Mei | Asymptotic profile of a parabolic-hyperbolic system with boundary effect arising from tumor angiogenesis[END_REF], Li, Pan & Zhao [START_REF] Li | Quantitative decay of a one-dimensional hybrid chemotaxis model with large data[END_REF], Jun, Jixiong, Huijiang & Changjiang [START_REF] Jun | Global solutions to a hyperbolic-parabolic coupled system with large initial data[END_REF] Li & Wang [START_REF] Li | Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis[END_REF] and Zhang & Zhu [START_REF] Zhang | Global existence of solutions to a hyperbolic-parabolic system[END_REF] studied the system (1) when α = 2 and f (u) = u under different boundary conditions (see also the works by Jin, Li & Wang [START_REF] Jin | Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity[END_REF], Li, Li & Wang [START_REF] Li | Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity[END_REF], Wang & Hillen [START_REF] Wang | Shock formation in a chemotaxis model[END_REF] and Wang, Xiang & Yu [START_REF] Wang | Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis[END_REF]). The case with general f (u) was studied by Zhang, Tan & Sun [START_REF] Zhang | Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system[END_REF] and Li & Wang [START_REF] Li | Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis[END_REF].

Equation [START_REF] Bellomo | On the foundations of cancer modelling: selected topics, speculations, and perspectives[END_REF] in several dimensions has been studied by Li, Li & Zhao [START_REF] Li | On a hyperbolic-parabolic system modeling chemotaxis[END_REF], Hau [START_REF] Hao | Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces[END_REF] and Li, Pan & Zhao [START_REF] Li | Global dynamics of a hyperbolic-parabolic model arising from chemotaxis[END_REF]. There, among other results, the global existence for small initial data in H s , s > 2 is proved.

To the best of our knowledge, the only result when the diffusion is nonlocal, i.e. 0 < α < 2, is [START_REF] Granero-Belinchón | On the fractional fisher information with applications to a hyperbolic-parabolic system of chemotaxis[END_REF]. In that paper we obtained appropriate lower bounds for the fractional Fisher information and, among other results, we proved the global existence of weak solution for f (u) = u r /r and 1 ≤ r ≤ 2.

In this note, we address the existence of classical solutions in the case 0 < α ≤ 2. This is a challenging issue due to the hyperbolic character of the equation for q. In particular, u verifies a transport equation where the velocity q is one derivative more singular than u (so ∇•(uq) is two derivatives less regular than u).

Statement of the results

For the sake of clarity, let us state some notation: we define the mean as

g = 1 (2π) d T d g(x)dx.
Also, from this point onwards, we write H s for the L 2 -based Sobolev space of order s endowed with the norm

u 2 H s = u 2 L 2 + u 2 Ḣs , u Ḣs = Λ s u L 2 .
For β ≥ 0, we consider the following energies E β and dissipations D β , (4)

E β (t) = u 2 Ḣβ + q 2 Ḣβ , D β (t) = u 2 Ḣβ+α/2 .
Recall that the lower order norms verify the following energy balance [START_REF] Granero-Belinchón | On the fractional fisher information with applications to a hyperbolic-parabolic system of chemotaxis[END_REF] (5)

1 2 u(t) 2 L 2 + q(t) 2 L 2 + t 0 u(s) 2 Ḣα/2 ds = 1 2 u 0 2 L 2 + q 0 2 L 2 .
2.1. On the scaling invariance. Notice that the equations ( 1)-( 2) verify the following scaling symmetry: for every λ > 0

u λ (x, t) = λ α-1 u (λx, λ α t) , q λ (x, t) = λ α-1 q (λx, λ α t) .
This scaling serves as a zoom in towards the small scales. We also know that

u(t) 2 L 2 + q(t) 2 L 2
is the strongest (known) quantity verifying a global-in-time bound. Then, in the one dimensional case, the L 2 norms of u and q are invariant under the scaling of the equations when α = 1.5. That makes α = 1.5 the critical exponent for the global estimates known. Equivalently, if we define the rescaled (according to the scaling of the strongest conserved quantity

u(t) 2 L 2 + q(t) 2 L 2 ) functions u γ (x, t) = γ 0.5 u (γx, γ α t) , q γ (x, t) = γ 0.5 q (γx, γ α t) .
we have that u γ and q γ solve

∂ t u γ = -Λ α u γ + γ α-1.5 ∂ x (u γ q γ ), ∂ t q γ = γ α-1.5 u γ ∂ x u γ .
Larger values of α form the subcritical regime where the diffusion dominates the drift in small scales. Smaller values of α form the supercritical regime where the drift might be dominant at small scales.

Similarly, the two dimensional case has critical exponent α = 2.

Remark 1. Notice that the equations (1)-( 2) where f (u) = u have a different scaling symmetry but the same critical exponent α = 1.5. In this case, the scaling symmetry is given by

u λ (x, t) = λ 2α-2 u (λx, λ α t) , q λ (x, t) = λ α-1 q (λx, λ α t) ,
while the conserved quantity is u(t) L 1 + q(t) 2 L 2 /2. Thus, if we define the rescaled (according to the scaling of the conserved quantity) functions

u γ (x, t) = γu (γx, γ α t) , q γ (x, t) = γ 0.5 q (γx, γ α t) .
we have that u γ and q γ solve

∂ t u γ = -Λ α u γ + γ α-1.5 ∂ x (u γ q γ ), ∂ t q γ = γ α-1.5 ∂ x u γ .
A global existence result when α is the range 1.5 ≤ α < 2 for the problem where f (u) = u is left for future research.

Results in the one-dimensional case d = 1. One of our main results is

Theorem 1. Fix T an arbitrary parameter and let (u 0 , q 0 ) ∈ H 2 (T)×H 2 (T) be the initial data such that 0 ≤ u 0 and q 0 = 0. Assume that α ≥ 1.5. Then there exist a unique global solution (u(t), q(t)) to problem (1) verifying

u ∈ L ∞ (0, T ; H 2 (T)) ∩ L 2 (0, T ; H 2+α/2 (T)), q ∈ L ∞ (0, T ; H 2 (T)).
Furthermore, the solution is uniformly bounded in

(u, q) ∈ C([0, ∞), H 1 (T)) × C([0, ∞), H 1 (T)).
In the case where the strength of the diffusion, α, is even weaker, we have the following global existence result for small data: Theorem 2. Fix T an arbitrary parameter and let (u 0 , q 0 ) ∈ H 2 (T)×H 2 (T) be the initial data such that 0 ≤ u 0 and q 0 = 0. There exists C α such that if 1.5 > α > 1 and u 0 2 Ḣα/2 + q 0 2 Ḣα/2 ≤ C α then there exist a unique global solution (u(t), q(t)) to problem (1) verifying

u ∈ L ∞ (0, T ; H 2 (T)) ∩ L 2 (0, T ; H 2+α/2 (T)), q ∈ L ∞ (0, T ; H 2 (T)).
Furthermore, the solution verifies

u(t) 2 Ḣα/2 + q(t) 2 Ḣα/2 ≤ u 0 2 Ḣα/2 + q 0 2 Ḣα/2 .
Corollary 1. Fix T an arbitrary parameter and let (u 0 , q 0 ) ∈ H 2 (T)×H 2 (T) be the initial data such that 0 ≤ u 0 and q 0 = 0. Assume that 1 ≥ α ≥ 0.5 and

u 0 2 Ḣ1 + q 0 2 Ḣ1 < 4 9C 2 S
where C S is defined in [START_REF] Jun | Global solutions to a hyperbolic-parabolic coupled system with large initial data[END_REF]. Then there exist a unique global solution (u(t), q(t)) to problem (1) verifying

u ∈ L ∞ (0, T ; H 2 (T)) ∩ L 2 (0, T ; H 2+α/2 (T)), q ∈ L ∞ (0, T ; H 2 (T)).
Furthermore, the solution verifies

u(t) 2 H 1 + q(t) 2 H 1 ≤ u 0 2 H 1 + q 0 2 H 1 . 2.3.
Results in the two-dimensional case d = 2. In two dimensions the global existence read Theorem 3. Fix T an arbitrary parameter and let (u 0 , q 0 ) ∈ H 2 (T 2 ) × H 2 (T 2 ) be the initial data such that 0 ≤ u 0 , q 0 = 0 and curl q 0 = 0. Assume that α = 2. Then there exist a unique global solution (u(t), q(t)) to problem (1) verifying

u ∈ L ∞ (0, T ; H 2 (T 2 )) ∩ L 2 (0, T ; H 3 (T 2 )), q ∈ L ∞ (0, T ; H 2 (T 2 )).
Furthermore, the solution is uniformly bounded in

(u, q) ∈ C([0, ∞), H 1 (T 2 )) × C([0, ∞), H 1 (T 2 )).
Corollary 2. Fix T an arbitrary parameter and let (u 0 , q 0 ) ∈ H 2 (T 2 ) × H 2 (T 2 ) be the initial data such that 0 ≤ u 0 , q 0 = 0 and curl q 0 = 0. Assume that 2 > α ≥ 1 and

u 0 2 Ḣ1 + q 0 2 Ḣ1 < C
where C is a universal constant. Then there exist a unique global solution (u(t), q(t)) to problem (1) verifying

u ∈ L ∞ (0, T ; H 2 (T 2 )) ∩ L 2 (0, T ; H 2+α/2 (T 2 )), q ∈ L ∞ (0, T ; H 2 (T 2 )).
Furthermore, the solution verifies

u(t) 2 H 1 + ∇ • q(t) 2 L 2 ≤ u 0 2 H 1 + ∇ • q 0 2 L 2 .
Remark 2. In the case where the domain is the one-dimensional torus, T, local existence of solution for (1)-( 2) was proved in [START_REF] Granero-Belinchón | On the fractional fisher information with applications to a hyperbolic-parabolic system of chemotaxis[END_REF] for a more general class of kinetic function f (u). The local existence of solution for (1)-( 2) the domain is the two-dimensional torus T d with d = 2 follows from the local existence result in [START_REF] Granero-Belinchón | On the fractional fisher information with applications to a hyperbolic-parabolic system of chemotaxis[END_REF] with minor modifications. Consequently, we will focus on obtaining global-in-time a priori estimates.

2.4. Discussion. Due to the hyperbolic character of the equation for q, prior available global existence results of classical solution for equation ( 1) impose several assumptions. Namely,

• either d = 1 and α = 2 [START_REF] Zhang | Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system[END_REF][START_REF] Li | Nonlinear stability of large amplitude viscous shock waves of a generalized hyperbolic-parabolic system arising in chemotaxis[END_REF],

• or d = 2, 3, α = 2 and the initial data verifies some smallness condition on strong Sobolev spaces H s , s ≥ 2 [START_REF] Xie | Global existence and convergence rates for the strong solutions into the 3d chemotaxis model[END_REF][START_REF] Zhang | Global existence and exponential stability for the strong solutions in H 2 to the 3-d chemotaxis model[END_REF]. Our results removed some of the previous conditions. On the one hand, we prove global existence for arbitrary data in the cases d = 1 and α ≥ 1.5 and d = 2 and α = 2. On the other hand, in the cases where we have to impose size restrictions on the initial data, the Sobolev spaces are bigger than H 2 (thus, the norm is weaker). Finally, let us emphasize that our results can be adapted to the case where the spatial domain is R d .

A question that remains open is the trend to equilibrium. From ( 5) is clear that the solution (u(t), q(t)) tends to the homogeneous state, namely ( u 0 , 0). However, the rate of this convergence is not clear.

Proof of Theorem 1

Step 1; H 1 estimate: Testing the first equation in (1) against Λ 2 u, integrating by parts and using the equation for q, we obtain 1 2

d dt u 2 Ḣ1 + ∂ x u 2 Ḣα/2 = - T ∂ x (uq)∂ 2 x udx = 1 2 T ∂ x q(∂ x u) 2 dx - T ∂ x qu∂ 2 x udx = 1 2 T ∂ x q(∂ x u) 2 dx - T ∂ x q(∂ t ∂ x q -(∂ x u) 2 )dx, so 1 2 d dt ( u 2 Ḣ1 + q 2 Ḣ1 ) + u 2 Ḣ1+α/2 = 3 2 T ∂ x q(∂ x u) 2 dx. Denoting I = 3 2 T ∂ x q(∂ x u) 2 dx,
and using Sobolev embedding and interpolation, we have that (6)

I ≤ 3 2 q Ḣ1 ∂ x u 2 L 4 ≤ 3 2 C S q Ḣ1 ∂ x u 2 Ḣ0.25 ,
where C S is the constant appearing in the embedding [START_REF] Jun | Global solutions to a hyperbolic-parabolic coupled system with large initial data[END_REF] g L 4 ≤ C S g Ḣ0. [START_REF] Zhang | Global existence of solutions to a hyperbolic-parabolic system[END_REF] .

Using the interpolation

H 1+α/2 ⊂ H 1.25 ⊂ H α/2 ,
and Poincaré inequality (if α > 1.5) we conclude

I ≤ c q Ḣ1 Λ α/2 u L 2 u Ḣ1+α/2 ,
Using (4), we have that

d dt E 1 + D 1 ≤ c u 2 Ḣα/2 E 1 .
Using Gronwall's inequality and the estimate ( 5), we have that

sup 0≤t<∞ E 1 (t) ≤ C( u 0 H 1 , q 0 H 1 ), T 0 D 1 (s)ds ≤ C( u 0 H 1 , q 0 H 1 , T ), ∀0 < T < ∞.
Step 2; H 2 estimate: Now we prove that the solutions satisfying the previous bounds for E 1 and D 1 also satisfy the corresponding estimate in H 2 . We test the equation for u against Λ 4 u. We have that 1 2

d dt u 2 Ḣ2 + u 2 Ḣ2+α/2 = - T ∂ 2 x (uq)∂ 3 x udx = T ∂ x q 5(∂ 2 x u) 2 2 dx - T ∂ 2 x q(∂ t ∂ 2 x q -5∂ x u∂ 2 x u)dx, so 1 2 d dt ( u 2 Ḣ2 + q 2 Ḣ2 ) + u 2 Ḣ2+α/2 = 5 2 T ∂ x q(∂ 2 x u) 2 dx + 5 T ∂ 2 x q∂ 2 x u∂ x udx.
We define

J 1 = 5 2 T ∂ x q(∂ 2 x u) 2 dx, J 2 = 5 T ∂ 2 x q∂ 2 x u∂ x udx.
Then, we have that

J 1 ≤ c ∂ x q L ∞ ∂ 2 x u 2 L 2 ≤ c ∂ 2 x q 0.5 L 2 u α Ḣ1+α/2 u 2-α Ḣ2+α/2 ,
so, using Young's inequality,

J 1 ≤ c ∂ 2 x q 1 α L 2 u 2 Ḣ1+α/2 + 1 4 u 2 Ḣ2+α/2 .
Similarly, using Poincaré inequality and α ≥ 0.5,

J 2 ≤ c ∂ x u L 4 ∂ 2 x u L 4 ∂ 2 x q L 2 ≤ c u Ḣ1+α/2 u Ḣ2+α/2 ∂ 2 x q L 2 ,
and

J 2 ≤ c u 2 Ḣ1+α/2 ∂ 2 x q 2 L 2 + 1 4 u 2 Ḣ2+α/2 .
Finally,

d dt E 2 (t) + D 2 (t) ≤ c u 2 Ḣ1+α/2 (E 2 (t) + 1)
and we conclude using Gronwall's inequality.

Proof of Theorem 2

Step 1; H α/2 estimate: Testing the first equation in (1) against Λ α u, we obtain 1 2

d dt u 2 Ḣα/2 + u 2 Ḣα = T ∂ x (uq)Λ α udx = - T Λ α (uq)∂ x udx = - T (Λ α (uq) -uΛ α q) ∂ x udx - T Λ α qu∂ x udx, so 1 2 d dt u 2 Ḣα/2 + q 2 Ḣα/2 + u 2 Ḣα ≤ - T [Λ α , u]q∂ x udx.
We define

K = - T [Λ α , u]q∂ x udx.
Using the classical Kenig-Ponce-Vega commutator estimate [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-De Vries equation via the contraction principle[END_REF] and Sobolev embedding, we have that

[Λ α , u]q L 2 ≤ c ∂ x u L 2+ǫ Λ α-1 q L 4+2ǫ ǫ + Λ α u L 2 q L ∞ ≤ c u Ḣ1+ ǫ 4+2ǫ Λ α-1 q Ḣ 1 2 -ǫ 4+2ǫ + u Ḣα q Ḣ α 2 . (8) 
Thus, taking ǫ such that 1 + ǫ 4 + 2ǫ = α, i.e. ǫ = 4α -4 3 -2α Equation ( 8) reads [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF] [Λ α , u]q L 2 ≤ c u Ḣα q Ḣ 1 2 + u Ḣα q Ḣ α 2 Using (9) and Poincaré inequality, we have that

K ≤ c u 2 Ḣα q Ḣ α 2
Then, we have that

d dt E α 2 + D α 2 ≤ c E α 2 D α 2 .
Thus, due to the smallness restriction on the initial data, we obtain

E α 2 (t) + δ t 0 D α 2 (s)ds ≤ E α 2 ( 
0) for 0 < δ small enough.

Step 2; H 1 estimate: Our starting point is [START_REF] Jin | Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity[END_REF]. Then we use the interpolation g 2 Ḣ0.25 ≤ c g L 2 g Ḣ0. [START_REF] Hao | Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces[END_REF] , to obtain

I ≤ c q Ḣ1 u Ḣ1 u Ḣ1.5 ≤ cE 1 D α 2 + D 1 2 .
Collecting all the estimates, we have that

d dt E 1 + D 1 ≤ cE 1 D α 2 ,
and we conclude using Gronwall's inequality. The H 2 estimates follows as in the proof of Theorem 1.

Proof of Corollary 1

Using α ≥ 0.5 and the estimate (6), we have that

I ≤ 3 2 C S q Ḣ1 u 2 Ḣ1+α/2 ≤ 3 2 C S E 1 D 1 .
Thus, 1 2

d dt E 1 + D 1 ≤ 3 2 C S E 1 D 1 .
Thus, due to the smallness restriction on the initial data, we obtain

E 1 (t) + δ t 0 D 1 (s)ds ≤ E 1 (0)
for 0 < δ small enough. Equipped with this estimates, we can repeat the argument as in Step 2 in Theorem 1.

Proof of Theorem 3

Recall that the condition curl q 0 = 0 propagates in time, i.e. curl q(t) = curl q 0 + 1 2 t 0 curl∇u 2 ds = 0.

Using Plancherel Theorem, we have that

∇q 2 L 2 = C ξ∈Z 2 |ξ| 2 |q(ξ)| 2 = C ξ∈Z 2 (ξ 2 1 + ξ 2 2 )(q 2 1 + q2 2 ).
Due to the irrotationality ξ ⊥ • q = 0. Then, we compute

∇ • q 2 L 2 = C ξ∈Z 2 |ξ • q(ξ)| 2 = C ξ∈Z 2 (ξ 1 q1 (ξ) + ξ 2 q2 (ξ)) 2 = C ξ∈Z 2 (ξ 1 q1 (ξ)) 2 + (ξ 2 q2 (ξ)) 2 + 2ξ 1 q1 (ξ)ξ 2 q2 (ξ) = C ξ∈Z 2 (ξ 1 q1 (ξ)) 2 + (ξ 2 q2 (ξ)) 2 + (ξ 2 q1 (ξ)) 2 + (ξ 1 q2 (ξ)) 2 .
So, the vector field q satisfies

∇q L 2 ≤ ∇ • q L 2 .
As a consequence of ∂ t q i = 0 and q 0 = 0, every coordinate of q satisfy q i (t) = 0, and the Poincaré-type inequality

(10) q L 2 ≤ c ∇ • q L 2 .
Notice that in two dimensions we also have the energy balance [START_REF] Hao | Global well-posedness for a multidimensional chemotaxis model in critical Besov spaces[END_REF]. We test equation (1) against Λ 2 u and use the equation for q. We obtain 1 2

d dt u 2 Ḣ1 + ∇ • q 2 L 2 = -u 2 Ḣ2 - T 2 ∇u • q∆udx + T 2 |∇u| 2 ∇ • qdx.
Using Hölder inequality, Sobolev embedding and interpolation, we have that

d dt u 2 Ḣ1 + ∇ • q 2 L 2 + 2 u 2 Ḣ2 ≤ c u Ḣ1.5 q L 4 u Ḣ2 + u 2 Ḣ1.5 ∇ • q L 2 ≤ c u 0.5 Ḣ1 q 0.5 L 2 q 0.5 H 1 u 1.5 Ḣ2 + c u Ḣ1 u Ḣ2 ∇ • q L 2 .
Using the Hödge decomposition estimate together with the irrotationality of q and (10), we have that ( 11)

q H 1 ≤ c ( q L 2 + ∇ • q L 2 ) ≤ c ∇ • q L 2 .
Due to (5), we obtain that

q 2 L ∞ (0,∞,L 2 ) + u 2 L 2 (0,∞, Ḣ1 ) ≤ C( u 0 L 2 , q 0 L 2 ) so, d dt u 2 Ḣ1 + ∇ • q 2 L 2 + u 2 Ḣ2 ≤ c u 2 Ḣ1 ∇ • q 2 L 2 .
Using Gronwall's inequality and the integrability of u 2 Ḣ1 (see ( 5)), we obtain E 1 ≤ C( u 0 H 1 , q 0 H 1 ), T 0 D 1 (s)ds ≤ C( u 0 H 1 , q 0 H 1 , T ), ∀0 < T < ∞.

To obtain the H 2 estimates, we test against Λ 4 u. Then, using the previous H 1 uniform bound and q 2 L ∞ ≤ c q L 2 q H 2 ≤ c q L 2 ∆q L 2 , we have that [START_REF] Li | Quantitative decay of a one-dimensional hybrid chemotaxis model with large data[END_REF] 1 2

d dt ∆u 2 L 2 + u 2 Ḣ3 = - T d ∇∆u∇(∇u • q)dx - T d u∇∆u • ∇(∇ • q)dx - T d ∇u • ∇∆u∇ • qdx.
Due to the irrotationality of q and the identity ∇∇ • q -∆q = curl (curl q), we have ∂ t ∆q = ∂ t ∇(∇ • q) = ∇|∇u| 2 + u∇∆u + ∇u∆u. Applying Sobolev embedding and interpolation, we obtain that [START_REF] Li | Quantitative decay of a one-dimensional hybrid chemotaxis model with large data[END_REF] and we conclude using Gronwall's inequality.

Proof of Corollary 2

We test the equation (1) against Λ 2 u. We obtain that 1 2

d dt u 2 Ḣ1 + ∇ • q 2 L 2 = -u 2 Ḣ1+ α 2 + T 2 ∇(∇u•q)∇udx+ T 2 |∇u| 2 ∇•qdx.
After a short computation, using Hölder estimates, Sobolev embedding and interpolation, we obtain that 1 2

d dt u 2 Ḣ1 + ∇ • q 2 L 2 + u 2 Ḣ1+ α 2 ≤ c u 2 Ḣ1.5 q Ḣ1 .
Using [START_REF] Li | On a hyperbolic-parabolic system modeling chemotaxis[END_REF] and α ≥ 0, we obtain 1 2

d dt u 2 Ḣ1 + ∇ • q 2 L 2 + D 1 ≤ cD 1 ∇ • q 2 L 2 .
We conclude the result with the previous ideas.

  + D 2 ≤ cE 2 ,

	so,	
		d dt	E 2
			can be
	estimated as	
	d dt	∆u 2 L 2 + ∆q 2 L 2 + u 2 Ḣ3 ≤ c ∆q 2 L 2 ,
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