
HAL Id: hal-01359633
https://hal.science/hal-01359633v1

Submitted on 13 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hyperbolic waveguide for long-distance transport of
near-field heat flux

Riccardo Messina, Philippe Ben-Abdallah, Brahim Guizal, Mauro Antezza,
Svend-Age Biehs

To cite this version:
Riccardo Messina, Philippe Ben-Abdallah, Brahim Guizal, Mauro Antezza, Svend-Age Biehs. Hy-
perbolic waveguide for long-distance transport of near-field heat flux. Physical Review B, 2016, 94,
pp.104301. �10.1103/PhysRevB.94.104301�. �hal-01359633�

https://hal.science/hal-01359633v1
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW B 94, 104301 (2016)

Hyperbolic waveguide for long-distance transport of near-field heat flux

Riccardo Messina,1 Philippe Ben-Abdallah,2,3 Brahim Guizal,1 Mauro Antezza,1,4 and Svend-Age Biehs5

1Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
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Heat flux exchanged between two hot bodies at subwavelength separation distances can exceed the limit
predicted by the blackbody theory. However, this super-Planckian transfer is restricted to these separation
distances. Here we demonstrate the possible existence of a super-Planckian transfer at arbitrary large separation
distances if the interacting bodies are connected in the near field with weakly dissipating hyperbolic waveguides.
This result opens the way to long-distance transport of near-field thermal energy.
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I. INTRODUCTION

Since the pioneering work of Polder and van Hove [1] it is
well known that the radiative flux exchanged between two hot
bodies at subwavelength separation distances can exceed the
limit predicted by the blackbody theory [2], thanks to the extra
contribution of evanescent waves. In the presence of resonant
surface modes such as surface plasmons or surface polaritons,
collective electron or partial charge oscillations coupled to
light waves at the surface, the radiative-heat exchange can
even drastically surpass this limit [1,3–6] by several orders
of magnitude. In the last decade several limits for this
enhancement effect were derived [7–12]. These discoveries
have opened the way to promising technologies for near-field
energy conversion [13,14] and data storage [15] as well as
active thermal management [16] at nanoscale with thermal
rectifiers [17–23], transistors [24,25], memories [26,27], and
heat flux splitters [28] based on exchanges of evanescent
thermal photons.

On the contrary, at long separation distances (i.e., in the
far-field regime) the transfer of energy between two bodies out
of thermal equilibrium results exclusively from propagating
waves. If it is possible to extract the nonradiative waves,
which are naturally confined on the surface of materials, using
various diffraction mechanisms, the flux exchanged between
two media cannot go beyond the Planck limit when the gap is
filled by vacuum as it can be shown in the framework of the
Landauer formalism [10,11,28], for instance.

The situation dramatically changes if a third body is
introduced between the two reservoirs. The reason for this
modification is twofold. First, the presence of a body modifies
the optical properties of the medium between the two external
bodies; thus, the evanescent waves existing at the interface
between each reservoir and vacuum can be coupled to the third
body and become propagating inside it. Second, the presence
of a third body modifies in a more fundamental fashion
the heat exchange, since the nonadditivity of radiative heat
transfer results in purely three-body effects that can hopefully
be exploited to amplify the energy flux. This idea has been
recently discussed in [29], where the near-field radiative heat

transfer between two bodies has been amplified thanks to the
coupling of the reservoirs to a third thin slab placed between
them.

Differently from this last work, our attention is focused
on the far field. We want to understand whether a third
intervening body can be exploited to obtain a far-field heat
transfer between two external planar slabs going beyond
the blackbody limit. In particular, by choosing a dielectric
source and sink, we exploit the properties and the anisotropy
of hyperbolic materials to produce a heat sink, transporting
the near-field energy over distances larger than the thermal
wavelength and going therefore beyond Planck’s blackbody
limit.

II. PHYSICAL SYSTEM

Let us start our discussion with a review of the basics of
the radiative heat flux between two semi-infinite reservoirs
held at fixed temperatures T1 and T3, which are connected by
a thin slab of thickness δ and temperature T2 as depicted in
Fig. 1. Between both reservoirs and the intermediate slab is
a vacuum gap of thickness d. According to the three-body
theory of radiative heat transfer [29,30], which is based on
Rytov’s fluctuational electrodynamics [3], the heat flux �3

received in steady-state regime by the reservoir on the right side
reads

�3 =
∫ ∞

0

dω

2π
�ω

∑
j=s,p

∫
d2κ

(2π )2

[
n12T 12

j + n23T 23
j

]
, (1)

where nαβ(ω) = nα(ω) − nβ(ω) and nα(ω) = (e�ω/kBTα −
1)−1 are the mean photon occupation numbers at equilibrium
temperature Tα with α = 1,2,3. T αβ

j (ω,κ) are the energy
transmission coefficients for both polarizations j = s,p which
take into account the contributions of propagating (κ < ω/c,
κ being the component of the wave vector parallel to the slabs)
and evanescent waves in vacuum (κ > ω/c). They are defined
in terms of (optical) reflection and transmission coefficients of
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FIG. 1. Sketch of near-field heat pipe of length δ connecting a hot
reservoir at temperature T1 to a cold reservoir at temperature T3. The
separation distances between the pipe and the left and right reservoirs
are equal to d .

different media as

T 12
j =

⎧⎪⎪⎨
⎪⎪⎩

|τb,j |2(1−|ρ1,j |2)(1−|ρ3,j |2)∣∣D123
j D12

j

∣∣2 , κ < ω
c
,

4|τb,j |2Im(ρ1,j )Im(ρ3,j )e−4Im(kz )d∣∣D123
j D12

j

∣∣2 , κ > ω
c
,

(2)

T 23
j =

⎧⎪⎪⎨
⎪⎪⎩

(1−|ρ12,j |2)(1−|ρ3,j |2)∣∣D123
j

∣∣2 , κ < ω
c
,

4Im(ρ12,j )Im(ρ3,j )e−2Im(kz )d∣∣D123
j

∣∣2 , κ > ω
c
,

where kz =
√

ω2/c2 − κ2 is the normal component of the wave
vector, while

D12
j = 1 − ρ1,j ρb,j e

2ikzd , (3)

D123
j = 1 − ρ12,j ρ3,j e

2ikzd (4)

are the Fabry-Pérot-like denominators. Here ρ1,j and ρ3,j are
the Fresnel reflection coefficients of the two reservoirs, while

τb,j =
(
1 − ρ2

2,j

)
eikz2δ

1 − ρ2
2,j e

2ikz2δ
, (5)

ρb,j = ρ2,j

1 − ei2kz2δ

1 − ρ2
2,j e

2ikz2δ
(6)

are the transmission and reflection coefficient of the interme-
diate body (ρ2,j being the corresponding Fresnel coefficient
corresponding to a semi-infinite medium) and

ρ12,j = ρb,j + (τb,j )2 ρ1,j e
2ikzd

D12
j

(7)

gives the reflection coefficients of the left and interme-
diate bodies considered as a single entity. Here kz2 =√

ω2/c2ε2 − κ2 is the normal component of the wave vector
inside the intermediate body.

It can be easily checked that if δ = 0 then τb,j = 1
and ρb,j = 0 so that ρ12,j = ρ1,j e

2ikzd . When inserting these
expressions the energy transmission coefficients reduce to
the well-known expressions of Polder and van Hove [1]
for the radiative heat flux between two semi-infinite planar
reservoirs separated by a vacuum gap of distance 2d. In this
case (without an intermediate slab), it is well known that the
radiative heat flux can be larger than that predicted by the
Stefan-Boltzmann law when the distance 2d becomes smaller
than the thermal wavelength λth due to the extra contribution
of evanescent waves [1,5,6]. In many different experimental
setups this super-Planckian radiation has been verified in the

last ten years [31–38]. The near-field enhanced heat flux or
super-Planckian radiation is particularly large if both reservoirs
have surface phonon polariton resonances in the infrared [4].
This is the case, for instance, for SiC and GaN, that we will
use throughout the paper as examples of sources and sinks. As
anticipated, our aim here is to study how the introduction of
a hyperbolic intermediate slab can channel a super-Planckian
radiative heat flux from reservoir 1 to reservoir 2 over distances
which are larger than the thermal wavelength, of the order of
10 μm for T = 300 K.

To this end, we simplify the discussion by assuming
that T1 = T + 
T and T2 = T3 = T . This corresponds to a
situation where we start with the whole structure at equilibrium
at temperature T and then we heat up body 1 from temperature
T1 to T1 + 
T . This results in a heat flux which is channeled
toward reservoir 2. If the losses in the intermediate slab
are small enough, then the temperature of the intermediate
medium 2 will not change, which justifies the assumption that
T2 = T3 = T . Moreover, we remark here that having T2 > T3

would result in a contribution of thermal radiation coming
from body 2, producing an increased flux toward reservoir 3.

Under this assumption, the contribution proportional to T 23
j

in Eq. (1) does not play any role, and we are led to define a
heat-transfer coefficient as

H := lim

T →0

�3


T

:=
∫ ∞

0

dω

2π

d�ωn(ω)

dT

∑
j=s,p

∫
d2κ

(2π )2
T 12

j . (8)

Here n(ω) = [exp(�ω/kBT ) − 1]−1 is the mean occupation
number of the thermal photons at temperature T . This
expression, which is only valid for 
T � T , is much more
compact than Eq. (1) and it depends only on one temperature T .
From this expression it becomes obvious that the heat-transfer
coefficient is quite sensitive with respect to the transmission
coefficient τb,j of the intermediate slab. This is so because
τb,j determines the properties of the intermediate slab and
in particular the eigenmodes inside the slab which can be
used to guide or channel the radiative heat flux between both
reservoirs. Since

τb,j ∝ eikz2δ (9)

with kz2 =
√

ε2ω2/c2 − κ2 it is clear that waves with
κ >

√
ε2ω/c are exponentially damped along the slab. For

large δ such waves can therefore not be guided between both
reservoirs. Therefore a material with a large permittivity ε2

would be ideal for the purpose of heat flux channeling, offering
us a wide region of modes of the (κ,ω) plane being evanescent
in vacuum, while propagating inside our waveguide.

III. ISOTROPIC WAVEGUIDE

To gain some insight into the mechanism we want to
address, we start with the simple case of an isotropic waveg-
uide. For this purpose we choose germanium, an excellent
candidate for two reasons: in the infrared region it has a high
dielectric permittivity (εGe = 16 ≡ ε2) and negligible losses.
It thus allows propagating modes with lateral wave vectors
up to κmax = √

εGeω/c = 4ω/c which means that waves with
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FIG. 2. Heat-transfer coefficient H for SiC-Ge-SiC as a function
of the thickness of the intermediate germanium slab δ for a fixed
gap distance d of 50, 100, and 500 nm. The heat-transfer coefficient
is normalized to the blackbody value HBB = 6.12 Wm−2 K−1 for
T = 300 K.

ω/c < κ < 4ω/c which are thermally excited in reservoir 1
can tunnel into the intermediate Ge slab (if d is smaller than
the thermal wavelength). Inside the Ge slab these waves are
converted to propagating waves which can travel through the
Ge slab until they reach the second vacuum gap where they
can tunnel to the second reservoir.

We show in Fig. 2 the heat-transfer coefficient calculated
for two SiC reservoirs, for three different distances d, and as a

function of the thickness δ of the intermediate slab. We describe
the dielectric properties of SiC by means of a Drude-Lorentz
model [39]

ε(ω) = εinf
ω2 − ω2

L + iγ ω

ω2 − ω2
R + iγ ω

, (10)

with ε∞ = 6.7, ωL = 1.827 × 1014 rad/s, ωT = 1.495 ×
1014 rad/s, and γ = 0.9 × 1012 rad/s. We have considered the
range of thicknesses δ ∈ [10−9 m,10−4 m]. We have plotted
unphysical small values of δ = 10−9 m just to illustrate the
convergence. At such small δ the heat-transfer coefficient
H converges to the value for two SiC reservoirs which are
separated by a vacuum gap of thickness 2d. In all the cases con-
sidered here (d = 50,100,500 nm) this value is of course larger
than the blackbody value HBB = 6.12 Wm−2 K−1, showing the
super-Planckian effect. While this is not surprising for δ going
to zero, since we fully are in a near-field regime, we have
to focus on large values of δ, and remark that for very large
δ = 100 μm (i.e., δ 	 λth) the heat-transfer coefficient is still
larger than the blackbody value although the overall distance
is much larger than the thermal wavelength. This is exactly the
waveguide effect we are looking for.

The coupling of the surface polaritons inside the SiC
reservoirs and the waveguide modes inside the Ge slab is
shown in Fig. 3. In the left column we have plotted the
transmission coefficient of the intermediate slab |τb,p| for
the p polarization and in the right column the corresponding
energy transmission of the radiative heat flux T 12

p , choosing
d = 500 nm. For a very thin Ge slab with δ = 10 nm the
transmission coefficient |τb,p|2 is very close to 1 for all plotted
ω and κ . Therefore all the waves in this (κ,ω) region are

FIG. 3. Transmission coefficients of the intermediate slab |τ2p| and energy transmission T 12
p for p-polarized light for d = 500 nm and

different thicknesses δ of the intermediate slab in (κ,ω) space. The red lines are the light line in vacuum (ω = cκ) and the light line in
germanium (ω = cκ/

√
εGe). As the reservoir we used SiC. Note that in (a) we have suppressed the values of |τ2p| close to the light line that are

larger than unity in order to make it obvious that in a large ω-κ region, |τ2p| is close to unity.
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nearly perfectly transmitted. As a consequence, the energy
transmission T 12

p plotted in Fig. 3(b) is only slightly different
from the energy transmission without the intermediate slab as
it could be expected. In this plot the coupled surface phonon
polaritons of both reservoirs can be very nicely seen. Now,
when δ = 10 μm is very large, we find in Fig. 3(c) that |τb,p|
is very large between the light line in vacuum (ω = cκ) and
the light line in Ge (ω = cκ/4). It should be noted that |τb,p| is
much larger than 1 as a result of the poles (or better resonances)
in τb,p which are determined by the condition

1 = ρ2
2,j e

i2kz2δ. (11)

These are the Fabry-Pérot modes inside the slab. The surface
phonon polaritons as well as the total internal reflection modes
of the reservoirs which are between the light lines in vacuum
and in Ge can couple to these Fabry-Pérot modes, leading to
a large transmission for these coupled modes as can be seen
in Fig. 3(d).

IV. IDEAL ANISOTROPIC WAVEGUIDE

In the previous section we have seen that the super-
Planckian heat radiation can be efficiently channeled or guided
through an intermediate slab if this slab supports propagating
waves with κ > ω/c in a broad frequency and wave-vector
range. As an alternative to the Ge slab we want to study
now uniaxial slabs and in particular hyperbolic or indefinite
materials [40]. These materials have already been considered
for thermal radiation, because they allow broad-band radiative
heat fluxes [12,41–46], with a large penetration depth [47,48]
in contrast to phonon polaritonic materials [49]. The advantage
of hyperbolic materials is that in such materials propagating
waves with large wave vectors can exist, a property that can
be exploited for hyperbolic lensing [50–52], for instance. Our
goal is now to discuss this hyperbolic lensing for thermal
radiation. Since we are looking for an ideal waveguide we will
neglect losses (we actually introduce a very small imaginary
part for each component of ε, equal to 10−5, to ensure
convergence of the numerical calculations) and dispersion
during the discussion. For a real material one has to include
losses as well as dispersion. Nonetheless such an idealization
helps us find optimal parameters for the heat flux tunneling,
which can serve as a basis for the search of a real hyperbolic
waveguide structure.

Assuming that the optical axis of the uniaxial intermediate
slab is along the z direction, we can use the same heat flux
expression as before since in this case there is no depolariza-
tion [53–57]. We just need to replace the reflection coefficients
ρb,j by the corresponding uniaxial expressions [57]

ρb,s = kz − kz,o

kz + kz,o
, ρb,p = kzε⊥ − kz,e

kzε⊥ + kz,e
, (12)

with the wave numbers kz,o of the ordinary and kz,e of the
extra-ordinary waves fulfilling the dispersion relations [57]

k2
z,o

ε⊥
+ κ2

ε⊥
= ω2

c2
and

k2
z,e

ε⊥
+ κ2

ε‖
= ω2

c2
, (13)

where ε‖ (ε⊥) is the permittivity parallel (perpendicular) to the
optical axis.

Furthermore, it is necessary to replace kz2 in the expressions
for s polarization by kz,o and by kz,e for p polarization.
Therefore, the transmission coefficient for p polarization of
the intermediate slab satisfies

τb,j ∝ eikz,eδ. (14)

This implies that only modes for which

kz,e =
√

ε⊥
ω2

c2
− κ2

ε⊥
ε‖

(15)

is a real number can efficiently guide the heat flux through
the intermediate slab with large δ. In order to get some more
insight we have to study the behavior of kz,e in different regions
of the plane (ε⊥,ε‖):

(i) ε⊥ > 0 and ε‖ > 0: In this case we have a dielectric
uniaxial material. For such materials we have propagating
waves in the slab for κ <

√
ε‖ω/c. As a result, materials with

large ε‖ are very useful for our purpose.
(ii) ε⊥ > 0 and ε‖ < 0: This is a so-called type-I hyperbolic

material. In this material we can write the wave number of
extra-ordinary waves as

kz,e =
√

ε⊥
ω2

c2
+ κ2

ε⊥
|ε‖| , (16)

showing that for such materials kz,e is real for all κ , meaning
that such materials support propagating waves with arbitrarily
large wave vectors. Of course in a real material there will be
a cutoff at a given κ which is determined by the microscopic
properties of the structure. The type-I hyperbolic material is
clearly an ideal candidate for our purpose.

(iii) ε⊥ < 0 and ε‖ > 0: This is a so-called type-II hyper-
bolic material. In this case we can write the wave vector of
extra-ordinary waves as

kz,e =
√

−|ε⊥|ω
2

c2
+ κ2

|ε⊥|
ε‖

. (17)

Therefore kz,e is real if κ >
√

ε‖ω/c. Again we can have
propagating waves inside the slab for arbitrary large κ , at
least in principle. In contrast to the case of a dielectric uniaxial
material, it is advantageous to have small ε‖ in this case.

(iv) ε⊥ < 0 and ε‖ < 0: This anisotropic metallic case has
to be treated separately. Actually in this case kz,e is always

FIG. 4. Heat-transfer coefficient H for SiC-HM-SiC for different
values of εx = ε⊥ and εz = ε‖, for δ = 10 μm and d = 100 nm. The
HTC is normalized to the blackbody value HBB = 6.12 Wm−2 K−1

for T = 300 K.
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FIG. 5. Heat-transfer-coefficient ratio H/HBB for SiC-HM-SiC
as a function of the thickness δ of the intermediate slab for a fixed
gap distance of d = 100 nm and three different choices of εx = ε⊥
and εz = ε‖. The case of a SiC slab is also shown.

imaginary. Therefore all the waves are damped inside the slab.
But this is not the whole story. Actually it can be shown that for
the special case where ε‖ε⊥ = 1 the transmission coefficient
of the intermediate slab is [58]

τb,j ∝ eκδ (18)

in the quasistatic limit. This means that for ε‖ε⊥ = 1 the
evanescent waves are amplified. This is nothing else than
the perfect lens effect found by Pendry [59] for an isotropic

metallic slab with ε‖ = ε⊥ = −1. The condition ε‖ε⊥ = 1 is a
generalization to the uniaxial case. For the radiative heat flux
this effect has been demonstrated in [29], thus we will not
follow this route further. Another reason is that this effect is
quite sensitive to losses, and metals are typically very lossy
so we cannot use that amplification effect for guiding heat
radiation.

In Fig. 4(a) we show H/HBB for different combinations of
ε‖ and ε⊥. First, we observe the existence of several regions
where the ratio is larger than 1, i.e., where super-Planckian
heat transfer can be indeed guided to far-field distances.
It seems, in particular, that the type-I hyperbolic materials
are quite advantageous for heat channeling because one can
have large values of H/HBB in a large parameter range of
ε‖ and ε⊥.

The values of H/HBB for three combinations of ε⊥ and ε‖ as
a function of the slab thickness δ setting d = 100 nm are shown
in Fig. 5. In particular, we consider the cases (ε⊥,ε‖) = (−1,5)
and (ε⊥,ε‖) = (5,−1), corresponding respectively to a type-
II and type-I hyperbolic material, the case (ε⊥,ε‖) = (16,16)
describing Ge, and compare these results to the case of using a
SiC slab. As stated before, germanium has very low losses in
the region of the spectrum relevant in our case. We have verified
that the calculations performed using real optical data [39] give
almost undistinguishable results. In Fig. 5 it can be clearly seen
that for large δ the type-I and type-II hyperbolic materials are
better than Ge. Moreover, the type-I hyperbolic material is
better than type II for the chosen parameters. Interestingly
for a thickness of δ � 100 nm we find values for H/HBB

which are larger than for δ → 0 indicating an enhancement
or amplification effect for the hyperbolic materials (hyperlens
effect) which does not exist for a Ge slab. This amplification

FIG. 6. Transmission coefficient of the intermediate slab |τ2p| and the energy transmission T 12
p for p-polarized light for d = 100 nm and

different thicknesses δ of the intermediate hyperbolic slab of type II with εx = ε⊥ = −1 and εz = ε‖ = 5 in (ω,κ) space. The inserted lines are
the light line in vacuum (ω = cκ) and the light line ω = √

ε‖cκ). As the reservoir we use SiC.
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FIG. 7. Transmission coefficient of the intermediate slab |τ2p| and the energy transmission T 12
p for p-polarized light for d = 100 nm and

different thicknesses δ of the intermediate hyperbolic slab of type I with εx = ε⊥ = 5 and εz = ε‖ = −1 in (ω,κ) space. The inserted lines are
the light line in vacuum (ω = cκ) and the light line ω = √

ε‖cκ). As the reservoir we use again SiC.

is similar to that found in [29] (perfect-lens effect) where a
thin metallic layer was used. Nevertheless, in this case the
total distance 2d + δ between the two reservoirs is still in the
near-field regime.

In Figs. 6 and 7 we show the plots of |τb,p| and of T 12
p for the

two hyperbolic materials. The coupling between the surface
modes and the Fabry-Pérot modes in the hyperbolic slab can
be nicely seen in both figures, illustrating the channeling of the
surface mode resonances through the hyperbolic waveguide.
Furthermore, in Figs. 6(a) and 6(b) we show the transmission
coefficients for the thickness δ = 74 nm for which the first
resonance can be seen in Fig. 5 for the type-II material. From
the plot it becomes apparent that the first resonance is due to
the coupling of the surface modes to the first Fabry-Pérot
mode of the guide. The second resonance for larger δ is
due to the coupling to a second Fabry-Pérot mode; further
resonances for thicker slabs corresponding to the coupling to
more Fabry-Pérot modes are washed out and cannot be seen
in Fig. 5. Note that the slope of the Fabry-Pérot modes in the
type-I hyperbolic materials is negative, which is due to the
fact that type-I hyperbolic materials show negative refraction
[60,61].

FIG. 8. Heat-transfer-coefficient ratio H/HBB for GaN-HM-GaN
as a function of the thickness δ of the intermediate slab for a fixed
gap distance of d = 100 nm and three different choices of εx = ε⊥
and εz = ε‖. The case of GaN is also shown.

In order to check the robustness of our results with
respect to the choice of the reservoirs, we calculate the same
heat-transfer-coefficient ratio for two gallium nitride (GaN)
reservoirs. The dielectric properties of GaN can again be
safely described in the frequency region of interest by means
of a Drude-Lorentz model [39], by choosing the parameters
ε∞ = 5.35, ωL = 1.41 × 1014 rad/s, ωT = 1.06 × 1014 rad/s,
and γ = 1.52 × 1012 rad/s. We plot in Fig. 8 the quantity
H/HBB as a function of the thickness δ for four different
slabs: the two hyperbolic materials considered before, as well
as Ge and GaN itself. As evident from the figure, apart from
an overall increased value of the amplification factor, the
same kind of conclusions can be drawn. First of all, also in
this case in the limit of large thickness δ, both hyperbolic
materials perform well in guiding modes into the far field
and are even better than Ge. Moreover, we observe again the
small-thickness peak in the amplification, and the preference
of type I over type II in the regime of large thickness.

V. REAL ANISOTROPIC WAVEGUIDE

The considerations in the last section were made assuming
the ideal case of a dispersion and dissipationless material.
As it is well-known, causality demands both dispersion
and dissipation which are connected by the Kramers-Kronig
relations. Nonetheless, one can hope to find materials which
fulfill the type-I hyperbolic property in the infrared with small
dispersion and dissipation in the frequency window which
is important for thermal radiation. In order to explore the
possibility of a real anisotropic material we consider the
very simple case of a multilayer structure where thin slabs
(orthogonal to the z axis) of SiC and Ge are periodically
alternated. This structure is described by a filling factor f ,
associated with the fraction of SiC present in one period. The
case f = 1 (f = 0) gives back a standard SiC (Ge) slab. By
choosing two SiC reservoirs, we hope in this way to exploit
both the presence of a phonon-polariton resonance in one of the
two materials (SiC) constituting the intermediate slab which
can couple to the resonances of the reservoirs, and the fact that
this artificial material can produce anisotropy and a hyperbolic
behavior.

Before looking at the heat-transfer-coefficient ratio, let us
check that this structure can indeed produce a hyperbolic
behavior. To this aim we make use of the effective descrip-
tion in terms of an anisotropic dielectric permittivity. The
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FIG. 9. Heat-transfer-coefficient ratio H/HBB for SiC-HM-SiC.
The hyperbolic material is a periodic arrangement of SiC and Ge thin
films, having a SiC filling fraction f . The cases of SiC (f = 1), Ge
(f = 0), and (εx,εz) = (5, −1) are also shown for comparison. The
inset shows ε⊥ (red line) and ε‖ (black line) for f = 0.5, highlighting
the hyperbolic regions (see text).

perpendicular and parallel components of ε can be connected
to the permittivities of SiC and Ge by means of the following
expressions [62], valid for each frequency:

ε⊥ = f εSiC + (1 − f )εGe, ε‖ = εSiCεGe

(1 − f )εSiC + f εGe
. (19)

The result is plotted for a filling factor f = 0.5 in the inset of
Fig. 9. It is clear that the two components ε⊥ (red line) and ε‖
(black line) have in some parts of the spectrum opposite sign.
In particular we have a type-II hyperbolic behavior for lower
frequencies (the red area in figure), while we have a type-I
hyperbolic region for higher frequencies (the grey area).

Based on this observation we have calculated for three
different filling factors the heat-transfer coefficient for this
structure. The results are presented in the main part of Fig. 9.

Several comments are in order. First of all, we notice
that the behavior of this hyperbolic material is nontrivial,
in the sense that the heat-transfer coefficient is not always
intermediate between the one of SiC and the one of Ge. This
can be clearly seen around δ � 400 nm. The heat-transfer
coefficient becomes indeed intermediate between the ones of
SiC and Ge for large values of δ. Nevertheless, even if the final
super-Planckian amplification is lower than the one given by
Ge alone, we stress the fact that by using a realistic material
we still achieve our goal of channeling near-field effects to far
field, since the ratio is still larger than 1.

The main message of the comparison between this analysis
and the one performed in Sec. IV is that the presence of
losses plays a key role in the existence and amplitude of
this phenomenon. For this reason, we will in the next section
go back to the cases considered in Sec. IV and realize a
quantitative study of the role of losses.

VI. ROLE OF LOSSES

As anticipated, we perform in this section a quantitative
study of the role played by the losses of the intermediate
slab. To this aim, we focus our attention on the case

FIG. 10. Heat-transfer-coefficient ratio H/HBB for the SiC-HM-
SiC configuration. The solid lines correspond to the cases of SiC and
Ge, while the dashed lines are associated with different choices of
the imaginary part ε ′′ of the permittivity of the intermediate slab.

(ε⊥,ε‖) = (5,−1) and introduce to both components of the
anisotropic permittivity an imaginary part

ε⊥ → ε⊥ + iε′′ and ε‖ → ε‖ + iε′′. (20)

Also in this case, for the sake of simplicity, we assume this
imaginary part ε′′ to be constant as well with respect to
frequency.

The results obtained are shown in Fig. 10 in the case of SiC
reservoirs. We show the case of the imaginary part ε′′ = 10−5,
i.e., the one considered before, and go up to 10−1. We find
that the ability of channeling super-Planckian radiation on
long distances is a very strong function of the losses in the

FIG. 11. Heat-transfer-coefficient ratio H/HBB for the GaN-HM-
GaN configuration. The solid lines correspond to the cases of GaN
and Ge, while the dashed lines are associated with different choices
of the imaginary part ε ′′ of the permittivity of the intermediate slab.
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intermediate material. This is not fully surprising, considering
that we want to exploit propagating waves inside the middle
slab, and the imaginary part ε′′ directly determines their typical
decay length. We observe that for ε′′ = 10−2 the effect is
already for δ � 1 μm very important so that in this case the
hyperbolic waveguide slab performs worse than both SiC and
Ge for far-field distances. Nevertheless, even for ε′′ = 10−2

we still have a ratio bigger than 1 for the largest δ considered
here, whereas this is not the case for ε′′ = 10−1. Finally, we
show the same result in the case of two GaN reservoirs (see
Fig. 11). Also in this case, we see basically the same trend and
a strong transition in the behavior of our hyperbolic waveguide
happens around ε′′ = 10−2.

VII. CONCLUSIONS

In this work we have investigated heat exchange by radia-
tion between two hot bodies interconnected in the near field

with anisotropic waveguides. We have predicted that a class of
hyperbolic media could transport a super-Planckian heat flux
over separation distances much larger than Wien’s wavelength.
By analyzing the transmission coefficients between these
bodies we have shown that this behavior results from the
presence of hyperbolic modes which remain propagating far
beyond the light line. Hence, we have demonstrated that
provided the exponential damping of these modes due to
intrinsic losses of materials is weak the magnitude of heat
flux exchanged between two hot bodies can be larger that that
one predicted by the Stefan-Boltzmann law.

We believe that the hyperbolic waveguides could find broad
applications in the field of thermal management by allowing
the long-distance transport of the huge energy density which is
usually confined close to the surface of materials. However, so
far these waveguides have been considered as purely photonic
systems. Further works are needed to evaluate the role played
by heat conduction on heat transport.
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