
HAL Id: hal-01359622
https://hal.science/hal-01359622

Submitted on 2 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental Feedback on Prog&Play, a Serious Game
for Programming Practice

Mathieu Muratet, Patrice Torguet, Fabienne Viallet, Jean Pierre Jessel

To cite this version:
Mathieu Muratet, Patrice Torguet, Fabienne Viallet, Jean Pierre Jessel. Experimental Feedback
on Prog&Play, a Serious Game for Programming Practice. Eurographics European association for
computer graphics, May 2010, Norrköping, Sweden. �10.2312/eged.20101014�. �hal-01359622�

https://hal.science/hal-01359622
https://hal.archives-ouvertes.fr

EUROGRAPHICS 2010/ L. Kjelldahl and G. Baronoski Education Paper

Experimental feedback on Prog&Play, a serious game for
programming practice

Mathieu Muratet1,3, Patrice Torguet1,3, Fabienne Viallet2,3 and Jean-Pierre Jessel1,3

1IRIT/VORTEX
2CREFI-T/DiDiST

3Université Paul Sabatier, Toulouse, France

Abstract
This paper presents an experimental feedback on a serious game dedicated to strengthening programming skills.
This serious game called Prog&Play is built on an open source realtime strategy game. Its goal is to be compatible
with different students, teachers and institutions. We propose an iterative evaluation in order to improve it while
experiments are running. Through this evaluation, we define a framework that will be tested by third parties in
different contexts and we analyse negative points and mistakes in order to improve the project. In every instance,
evaluation is beneficial and allows establishing a communication about the implemented practices.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computers and Education]: Computer and
Information Science Education—Computer science education I.3.0 [Computer Graphics]: General—

1. Introduction

In many countries, students are becoming less interested
in science. In computer science, for example, according to
Crenshaw et al [CCMT08] and Kelleher [Kel06], the num-
ber of students is shrinking. Moreover, “colleges and uni-
versities routinely report that 50% or more of those students
who initially choose computer science study soon decide to
abandon it” [ACM05, p. 39]. Our university experiences the
same phenomenon with a decrease of 16.6% over the last
four years in students studying computer science.

In order to find a solution to this problem, we bet on seri-
ous games. Since the first boom of video games in the 80s,
the gaming industry has held an important place in the world
market. According to the Entertainment Software Associa-
tion figures [Ent09], in 2008 the market of U.S. computer
and video games amount to $11.5 billion. This is past the
U.S. movie market [The] ($9.8 billion in 2008). Students
currently in universities were born in the video games era.
And thus those games are as much a part of their culture as
TV, movies or books. We think that the use of video games
technologies in a serious game context to practice program-
ming could be a solution to attract and keep students in com-
puter science.

1.1. Related work

Learning programming is the basis of computer science
training and an important topic in many scientific train-
ings. However, programming fundamentals are hard skills to
learn, especially for novices. In order to help students, sev-
eral approaches exist to motivate them. For example, Steven-
son and Wagner [SW06] analyse assignments from text-
books and historical usage to look for student’s problems
and propose a “good programming assignment” in com-
puter science. These exercises could be completed by us-
ing block-based graphical languages like StarLogo [KY05],
Scratch [MBK∗04] or Alice2 [KCC∗02]. These novice-
programming environments allow students to forget syntax
and directly experiment with programming.

Another approach uses video games in order to hook the
player and bring him/her to programming. Two uses have
been experimented: implementing new video games and
playing video games. For example, Chen and Cheng [CC07]
ask students to implement in C++, through a collaborative
project, a small-to-medium scale interactive computer game
in one semester, using a game framework. Gestwicki and
Sun [GS08] have based a case study on EEClone. This game
is an arcade-style computer game implemented in Java:
students analyse various design patterns within EEClone,

The definitive version is available at diglib.eg.org and www.blackwell-synergy.com

M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play

and from this experiment, learn how to apply design pat-
terns in their own game softwares. Leutenegger and Edg-
ington [LE07] use a “Game First” approach to teach intro-
ductory programming. These authors believe that game pro-
gramming motivates most new programmers. They use 2D
game development as a unifying theme.

Another solution is to let students learn when they play
a game. Wireless Intelligent agent Simulation Environment
(WISE) [CHYH04] combines activities from virtual and
physical versions of the Wumpus World game. It allows
physically distributed agents to play an interactive game and
provides a dynamic learning environment that can enhance
a number of computer science courses: it can be used as
a medium for demonstrating techniques in lectures; in the
classes, students can work on laboratory exercises that test,
expand, or modify the simulator. The Wumpus World game
can be played cooperatively or competitively.

Robocode [Roba] is a Java programming game, where the
goal is to develop a robot battle tank to battle against other
tanks programmed by other players. It is designed to help
people learn Java programming. The robot battles are run-
ning in realtime and on-screen. It is suitable to all kind of
programmers from beginners (a simple robot can be written
in just a few minutes) to experts (perfecting an AI - Arti-
ficial Intelligence - can take months). Other such games are
Marvin’s Arena [Mar] using any .NET compatible language,
Gun-Tactyx [Gun] using SMALL and Robot Battle [Robb]
using a specific script language.

Colobot [Col] is the only example that we know, of a com-
plete video game, which mixes interactivity, storytelling and
programming. In this game, the user must colonize a planet
using some robots that s/he is able to program in a specific
object oriented programming language similar to C++.

1.2. Overview

Our approach consists in reusing existing games as the basis
of a serious game and making it compatible with a maximum
of teaching contexts. There are many open source video
game projects living on the Internet. We think that reusing
them gives advantages in playing and robustness. In order
to build our serious game to practice programming, we used
an open source realtime strategy game. Building an efficient
tool for a specific teaching course is already an interesting
work, but often it could be reused in peripheral contexts. Our
approach consists in working on a serious game compatible
with different students, teachers and institutions. This seri-
ous game is called Prog&Play and is quickly introduced in
section 2.

The evaluation of this type of tools in real contexts is a
complex task in particular due to the large number of un-
controllable parameters. We propose an iterative evaluation
detailed in section 3. This evaluation is discussed in the con-

text of an experiment in order to improve it for future exper-
iments.

2. Prog&Play

We consider Prog&Play as an example of a serious
game dedicated to programming practice. Currently, serious
games exist in several fields such as education, government,
health, defence, industry, civil security and science. How-
ever, what is a serious game?

2.1. Serious Games

For Zyda [Zyd05], a serious game is “a mental contest,
played with a computer in accordance with specific rules,
that uses entertainment to further government or corporate
training, education, health, public policy, and strategic com-
munication objectives.” Thus, we consider as serious games,
any video game built to differ from pure entertainment. Seri-
ous games use entertainment to pursue different learning ob-
jectives: “Darfur is dying” [Dar] tries to raise public aware-
ness; “Tactical Language & Culture” [Tac] aims to teach
foreign languages and cultures; “America’s Army” [Ame]
tries to recruit young people to join the US Army. Serious
games must be created according to the needs and expecta-
tions of different working sectors and the public, and within
the available resources (physical and financial) for their im-
plementation.

2.2. Overview of Prog&Play

Figure 1: Kernel Panic.

Prog&Play is based on an open source realtime strategy
(RTS) game called Kernel Panic [Ker]. Figure 1 presents a
screenshot of Kernel Panic. Kernel Panic uses computer sci-
ence metaphors, like bits and pointers, as units. It is a sim-
plified RTS with the following features: there is no resource
management except for time and space; all units are free to
create; it has a small technology improvement tree with less
than ten units; and it uses low-end vectorial graphics, which
match the universe. These characteristics emphasize strategy

The definitive version is available at diglib.eg.org and www.blackwell-synergy.com

M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play

and tactics in an action-oriented game while always remain-
ing user friendly. In RTSs, a player gives orders to his/her
units to carry out operations (i.e. moving, building, and so
forth). Typically, these instructions are given by clicking on
a map with the mouse. We modified the game to allow the
player to give these instructions through a program. This
program can load game data like unit features (number, po-
sition, type...), map size, etc. Using these data, the player
program can create a set of commands and send it to the
game. When the game receives these commands, it executes
them modifying the game state.

Students interact with the game using the Prog&Play Ap-
plicative Programming Interface (API). This API simplifies
programming as much as possible. It hides the game syn-
chronisation complexity and gives access to a sub-set of the
game data. We propose several versions of this API in dif-
ferent programming languages: C (Appendix A gives an ex-
ample), C++, Java, OCaml, Ada and an interpreted language
called “Compalgo” (used in a specific course at our univer-
sity). Thus, the serious game is adaptable to teaching choices
and is usable in different contexts.

In our previous papers [MTJV09], we identified two so-
lutions to map learning objectives into the game: using a
campaign, divided in missions (equivalent to exercises), to
gradually introduce learning topics and enable students to
learn how to play and to program AIs (the student motivation
is maintained by the campaign story); and using skirmishes,
as a project approach, where students program their own
AIs in order to use them in a multiplayer session (the stu-
dent motivation is maintained by competition between play-
ers). As the original Kernel Panic was only a multiplayer
game and did not provide campaigns, we had to build one
dedicated to our educational objectives.

3. Evaluation

The conception of an evaluation to assess the positive or neg-
ative impacts of our serious game on students is a complex
task. This is due to the large number of uncontrollable pa-
rameters inherent to experiements in a real context. Never-
theless, an evaluation is necessary for several reasons. First,
it allows defining a framework that will be tested by third
parties in different contexts. Second, results of evaluation
show negative points and mistakes and will be analysed in
order to improve the project. Indeed, evaluation is beneficial
and allows establishing a communication about the imple-
mented practices.

In subsection 3.1 we define the methodology of design
experiments that serves us as theoretical framework. Then,
we present in subsection 3.2 specifications of our evaluation
and we discuss it in subsection 3.3 with an analysis of a first
experiment. Finally, from this analysis, we propose in sub-
section 3.4 some improvement for future experiments.

3.1. Theoretical framework

We propose to study if serious games, which can be col-
laborative learning games, could be useful in order to teach
programming, and to attract and keep computer science stu-
dents. The question is: Is it interesting to use a serious game
for teaching programming?

To achieve this goal, we propose the methodology of
design experiments [CCD∗03]: “prototypically, design ex-
periments entail both “engineering” particular forms of
learning and systematically studying those forms of learn-
ing within the context defined by the means of supporting
them. This designed context is subject to test and revision,
and the successive iterations that result play a role similar
to that of systematic variation in experiment”. The intent of
this methodology in educational research is to investigate the
possibilities for educational improvement by bringing about
new forms of learning in order to study them. Because de-
signs are typically test-beds for innovation, the nature of the
methodology is highly interventionist, involving a research
team, one or more teachers, at least one student and even-
tually school administrators. Design contexts are conceptu-
alized as interacting systems and are implemented with a
hypothesized learning process and the means of supporting
it. Although design experiments are conducted in a limited
number of settings, they aim to develop a relatively hum-
ble theory that target a domain specific learning process. To
prepare a design experiment, the research team has to de-
fine a theoretical intent and specify disciplinary ideas and
forms of teaching that constitute the prospective goals or
endpoints to student learning. The challenge is to formulate
a design that embodies testable conjectures about both sig-
nificant shifts in student learning and the specific means of
supporting those shifts. In our experiments, the theory we
attempt to develop is the process of learning programming
through serious games.

3.2. Evaluation criteria

In order to define the evaluation criteria, we recall objectives
of our projet: “determine the efficiency of our serious game
for learning programming. This serious game must be usable
in various training groups (academic or professional) with-
out modifying educational choices of institutions (program-
ming languages, operating systems...). The serious game is
used in addition to classic lessons.”

From these objectives, we define three evaluation criteria:
learning programming; entertainment; and system usability.
The first two criteria evaluate the “serious game” concept.
Indeed, it is fundamental to check the “serious” side (learn-
ing programming) and the “game” side (entertainment) of
Prog&Play. The last criterion allows identifying bottlenecks
that would disturb students.

We design a temporal schedule of evaluation (see fig-

The definitive version is available at diglib.eg.org and www.blackwell-synergy.com

M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play

ure 2). This evaluation is organized in three steps: before,
during and after the use of the serious game.

Start of
experiment

End of
experiment

Observations

Test on algorithmic
loop Post-questionnaire on

 - usability
 - entertainment

Results of
mid-semester
examination

Results of final examination

Students' works analysis:
 - program quality
 - game progress
 - number of lines and
 functions written

Figure 2: Temporal schedule of evaluation.

The learning evaluation is based on works of Chen and
Cheng [CC07], Gestwicki and Sun [GS08] and Leutenegger
and Edgington [LE07]. We define three indicators: acquired
knowledge; program quality and quantity of work achieved.
Acquired knowledge will be evaluated with students’ results
of mid-semester and final examinations. These examinations
are designed by external (to the research team) teachers and
are the same for all students. Program quality will be evalu-
ated with criterions of Smith and Cordova [SC05] like pro-
gram correctness, programming style, program documenta-
tion and design documentation. Quantity of work achieved
will be evaluated using the game progress (number of mis-
sions completed) and the number of code lines and functions
written.

The usability and the entertainment evaluation are based
on a post-questionnaire. We ask students to evaluate the seri-
ous game and give their criticisms, remarks and suggestions.
Using works of Siang and Rao [SR03], we include questions
to evaluate the hierarchy of the players’ needs in order to
identify which part of our serious game needs improvement.

In addition to these indicators, we plan to observe teacher
and student activities during experiment. For teachers, we
study the duration of teaching dedicated to the game and the
one dedicated to the knowledge. For students, we observe
his/her activities related to gaming and programming.

Finally, we design a test based on the algorithmic loop
manipulation in order to determine the profile of students.
These data will allow us to compare results of several exper-
iments on students’ skill levels.

3.3. Implementation and analysis

This experiment took place with first-year students learning
computer science at an institute of technology in Toulouse
(IUT A). Among 196 students, we chose 15 students from 40

volunteers. Students were novices: at the time of the experi-
ment, they did not know any programming language, except
“Compalgo”, an algorithmic language developed by teachers
of IUT A. During five sessions of an hour and a half each,
students used Compalgo in the Windows environment.

For this experiment, we structured lessons in two phases.
During the first phase, students play the game in a multi-
player session without programming. They familiarize them-
selves with the game universe and units. The second phase is
a presentation of the Prog&Play API. Students learn to use
it through missions solving after a presentation of the API
by the teacher. After these two phases, students should be
able to do small-scale programming compatible with Kernel
Panic.

In order to select these students, we designed a new ques-
tionnaire to evaluate their motivation to play video games
and learn programming. We selected in priority students
who are not motivated by programming but very motivated
by video games. This questionnaire is based on the goals
of Viau [Via97]; the value and success expectation model
of Bandura [Ban97]; and the causal model of Pintrich and
Schunk [PS96]. Each model suggests specific indicators,
which we adapted to students’ motivation in learning pro-
gramming and practicing video games. We inspired our-
selves from the “motivated strategies for learning” question-
naire [PMB93].

During this experiment, we filmed teacher activities for
one session. We identified activities dedicated to game us-
ability, teaching contents and other tasks. The “game usabil-
ity” activity concerns explanations on game’s control (How
to launch the game? How to move the camera?) and on
game’s interaction with students’ programs (How to select
or command units? How to check if programs are correct?).
The “teaching contents” activity concerns explanations on
programming obstacles like variables (types, assignments,
records), functions (call, argument passing), control struc-
ture (conditional, iterative). The “other tasks” activity con-
cerns administrative tasks (students welcome, roll call), ex-
planations on operating system usability, etc. The time spent
by the teacher on each activity is detailed in table 1 (Note
that some teacher speeches are counted in several activities,
which explains why the sum of time spent is higher than the
duration of a session).

Activity Time spent
Game usability 22m 13s

Teaching contents 1h 3m 42s
Other tasks 41m 27s

Table 1: Time spent by the teacher on each activity during
one session

The definitive version is available at diglib.eg.org and www.blackwell-synergy.com

M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play

3.3.1. Learning programming

The first analysis is based on some algorithmic loop manip-
ulation. We have built this test from Ginat’s work [Gin04].
This knowledge is a central point of programming. We ask
students eight progressive questions. They have to answer
in twenty minutes, without documentation and on a paper
sheet. This test was proposed after the gaming phase and its
rating was not taken into account for obtaining a degree.

Students solutions have been analysed with criteria from
Smith and Cordova [SC05]. We keep from these criteria
“Correct Output”, “Coding style” and “Neatness/Clarity”.
For the “Correct Output” we check if student programs pro-
duce expected output with no error, many errors, no output at
all or completely incorrect output. For the “Coding style” we
check if identifiers are descriptive and follow naming con-
ventions and if program constructs are simple and elegant.
For the “Neatness/Clarity” we check indentation, comments
and code readability. We add to these criteria an analysis of
students’ difficulties on variables, loops and subroutines.

In order to evaluate pertinence of this test, we compare
students’ results to this test with those they got to their mid-
semester algorithmic examination. The latter examination is
about basic algorithmic concepts like variables, types, as-
signments, functions, parameter passing, records and condi-
tional and interative control structure. Comparison is shown
in figure 3 and gives for each of the fifteen students their
grades (ranging from 0 to 20) for the Prog&Play prelimi-
nary evaluation and the mid-semester examination. Please
note that both evaluations are carried out by students before
experiment. The objective of this comparison is to check if
our evaluation reflects students skill level. This seems to be
the case with a mean difference of 2.06 points between these
two evaluations for the fifteen students. Future experiments
will take place with different institutions, students and teach-
ers. We need an identical comparison basis for every experi-
ment. We plan to use this algorithmic loop manipulation test
as this basis. This will be performed by comparing the re-
sults of future experiments and taking account of students’
skill levels evaluated before each of these experiments.

A second analysis concerns the processing of data pro-
duced by students during experiment. We count the number
of missions completed by each student and for each mission
the number of compiling and executions necessary for per-
fecting their solution. With these data we can define a dif-
ficulty ratio for each mission shown in figure 4. Missions
and teaching content are more detailed in a previous pa-
per [MTJV09].

In contrary to what we expected, missions’ difficulty is
not progressive. There is an important difficulty difference
between the first three missions and the fourth mission. For
future experiments, we plan to split mission 4 into two new
missions in order to propose a more progressive challenge.
The lessening of difficulty between missions 1 and 3 is cred-
ited to the appropriation of the API. Finally, we will up-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

14

16

18

20

Mid-semester
algorithmic
evaluation
Prog&Play
preliminary
evaluation

Figure 3: Comparison of students’ results at the Prog&Play
preliminary evaluation and at the mid-semester algorithmic
examinations.

M
ission 1

M
ission 2

M
ission 3

M
ission 4

M
ission 5

0

5

10

15

20

25

Difficulty
ratio

Figure 4: Difficulty ratio for each mission.

date mission 5 to propose a better challenge for ending the
campaign. Indeed several students who reached this mission
have been frustrated by its simplicity.

To evaluate game impact on students’ acquired knowl-
edge, we plan to compute the evolution of students’ results
between mid-semester and final examinations and to com-
pare this evolution with students who did not use Prog&Play.
Owing to the small population of this first experiment, we
cannot compare these two populations statistically. New ex-
periments will increase our sample groups in order to carry
out quantitative analyses and robust statistics.

3.3.2. Entertainment

Some questions dealing with the entertainment post-
questionnaire are presented in figure 5.

The average and median answer to the first question are,
respectively, 5.85 and 6 which show that students liked play-
ing the campaign. We think that missions’ interest is partly
due to the first phase of the experimentation. The multiplayer
session allows students to appropriate the universe of the
game and makes students immersion into the story easier.

The second question was crucial for us. Introducing algo-
rithmic concepts into the game do not reduce entertainment.

The definitive version is available at diglib.eg.org and www.blackwell-synergy.com

M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play

• Q1: Do you appreciate the campaign story (missions)?
(1=“not at all”, 7=“a lot”)

• Q2: Do you think that using programming in Kernel Panic
increases entertainment?
� Reduces entertainment � Do not change enter-

tainment
� Increases entertainment � I don’t know

Figure 5: Relevant questions for entertainment post-
questionnaire.

This requirement is due to our vision of serious games that
have to be above all entertaining. 100% of students found
that using programming in the game increases entertain-
ment. We attribute this success to the original approach of
Prog&Play, which enables to use programs to interact with
a RTS. In addition to this novelty, students appreciate using
their programming knowledge in a real context. The second
element taking part in this success is the campaign story,
which has a double objective. Firstly, it motivates the player
making him/her actor/actress of the story development. Sec-
ondly, it introduces gradually the pedagogical contents of
the serious game. At the end of the story, students mas-
ter the programming interface and are pleased to start the
last session, which consists in programming their own AIs.
Johnson et al. [JVM05] argue that story maintains user in-
terest, encourages player to progress all the time and links
together actions and future objectives. Challenges are intro-
duced with the story and must match player experience. Gre-
itzer et al. [GKH07] highlight the difficulty to build a suit-
able scenario, neither too easy nor too difficult, in order to
submit a challenge without discouraging the player.

We found out during this first experiments that the game is
fun and rewarding: fun because all students found that pro-
gramming increases entertainment; and rewarding because
even though we initially planned, for the final session, to let
students play a normal multiplayer game, more than half of
the students preferred to continue programming.

3.3.3. System usability

First, we note that Prog&Play is functional because no criti-
cal bugs were revealed during experiment. Nevertheless, re-
liability is not sufficient and we evaluate the hierarchy of the
players’ needs [SR03]. This hierarchy is divided into seven
levels where lower levels are to be fulfilled before moving
to the higher levels in the pyramid. The seven levels by pri-
ority order are as follows: Rules need, players are seeking
for information to understand the basic rules of the game;
Safety need, players need helping information; Belonging-
ness need, players need to know it is possible to win; Es-
teem need, players need to be in possession and have full
control over the game; Need to know and understand,
players need to understand and know more about the game
such as different strategies, hidden items, etc.; Aesthetic

need, players need good graphics and visual effects, ap-
propriate music, sound effects, etc; Self actualisation need
players want to be able to do anything as long as it conforms
to the game rules. Figure 6 shows students satisfaction for
each level of this hierarchy in our serious game.

Rules need

Safety n
eed

Belongingness need

Esteem need

Need to know and understand

Aesthetic need

Self actualisation need
0

10
20
30
40
50
60
70
80
90

100

Max value
Mean value
Min valueS

at
is

fa
ct

io
n

pe
rc

en
ta

ge

Figure 6: Students satisfaction for the hierarchy of the play-
ers’ needs with min and max value.

The lower satisfaction concerns the aesthetic need with a
greater proportion of satisfaction between 28.57% and 55%
than between 55% and 100%. The low-end vectorial graph-
ics of Kernel Panic seem disturbing for our students. Nev-
ertheless, this simplified RTS allows a quick learning curve
which takes part in the positive satisfaction of lower levels.
Therefore we still think that Kernel Panic is not a bad choice
for supporting Prog&Play.

We notice that the second level (Safety need) has been
resolved, in a large part, by teachers. In the filmed session
example (see table 1), the teacher spent twenty two minutes
and thirteen seconds explaining how to use the game. Cur-
rently Prog&Play is a serious game for programming prac-
tice; help information about programming, learning contents
and game usability are not included into the game and must
be added by teachers according to their teaching choices.

3.4. Report and evolutions

As we have defined in subsection 3.1, a design experiment
“is subject to test and revision”. After the analysis of this
first experiment (first iteration), we propose a revision of our
evaluation in order to prepare for future experiments.

Our questionnaire on motivation, designed for students’
selection, has been reviewed to be integrated into the eval-
uation. This integration enables to evaluate influence of
Prog&Play on students’ motivation. We center this question-
naire on Viau [Via97] works. Indeed, as we have detailed
before, we want to use a serious game to motivate students.
However, what is motivation and how can we evaluate its
evolution? For Viau, the performance to achieve an activity
is the observable result of learning and is a consequence of

The definitive version is available at diglib.eg.org and www.blackwell-synergy.com

M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play

motivation (i.e. performance is an indicator of motivation).
Acting on motivation is a means to indirectly allow the stu-
dents’ performance to evolve. In Viau’s model, determinants
and indicators characterize the motivation. Determinants of
motivation concern: the student’s perception of the value of
an activity; the perception of his/her ability to achieve it; and
the perception of the controllability of its unfolding and of
its consequences. Indicators of motivation are characterized
by: the choice to start an activity; the determination and the
cognitive commitment to achieve it; and the student’s perfor-
mance. Operating on one of these motivational components
can affect all the others and indirectly improve students’ per-
formances. In order to evaluate the evolution of motivation
during the experiments, we built two questionnaires. The
first one is handed out to students at the beginning of the first
lab session and the second one is handed out to students at
the end of the last lab session. Using these, we will be able to
answer the following questions: Is the students’ motivation
to persevere with computer science modified through the use
of our serious game? Which feature of our serious game is
the most important for motivation?

We think that Prog&Play could be interesting not only
for programming practice but also for recruiting students in
computer science. Therefore we plan to analyse students’
orientation choice after the use of Prog&Play.

Studying the usability of the serious game only for stu-
dents is not sufficient. We also need to check its usability
for teachers (Did they succeed in inserting the game in their
lessons?) and for system engineers (Did they manage to in-
stall the game into their environment?). For future experi-
ments, we plan to integrate this into our evaluation.

With these revisions, we designed a new temporal sched-
ule of evaluation (see figure 7).

Start of
experiment

End of
experiment

Observations

Test on algorithmic loop
Pre-questionnaire on
 - motivation (students)
 - installation (engineers)

Post-questionnaire on
 - usability (students/teachers)
 - entertainment (students)
 - motivation (students)

Results of
mid-semester
examination

Results of final examination

Students' works analysis:
 - program quality
 - game progress
 - number of lines and
 functions written

students orientation choice

Figure 7: Temporal schedule of evaluation for future exper-
iments.

4. Conclusion

This paper describes Prog&Play, a serious game to encour-
age students to persevere in computer science. We present an

evaluation and we discuss it in the context of a first experi-
ment. We are aware of the small amount of data of this exper-
iment and we are careful from hasty conclusions. Currently,
we are not in position to validate or to invalidate interest of
Prog&Play to learn programming. We wait for new exper-
iments to increase our sample groups in order to carry out
quantitative analyses and robust statistics. Nevertheless, first
results on entertainment and usability of the serious game are
encouraging and incite ourselves to persevere in this way.

A possible evolution of the serious game is to combine it
with a block-based graphical language like StarLogo. It will
be interesting to study the impact of these two technologies
on students’ grades. We made Prog&Play flexible towards
programming languages; we plan to do the same with video
games. Indeed, with the quick evolution of video game stan-
dards, its integration into new RTSes is essential to continue
interesting students. It would also be interesting to evaluate
this approach with another video game genre and to compare
it with our RTS based serious game.

The Prog&Play system with Kernel Panic and compati-
ble interfaces are downloadable at http://www.irit.
fr/~Mathieu.Muratet/progAndPlay.php. These
pages are currently available in French only but will soon be
translated into English. If you are interested in our serious
game, do not hesitate to get in touch with us!

References
[ACM05] ACM/IEEE-CURRICULUM 2005 TASK FORCE (Ed.):

Computing Curricula 2005, The Overview Report. IEEE Com-
puter Society Press. and ACM Press., New York, 2005. 1

[Ame] AMERICA’S ARMY: http://www.americasarmy.com/. ac-
cessed 10 December 2009. 2

[Ban97] BANDURA A.: Self-efficacy: The exercise of control.
New York: Worth Publishers, 1997. 4

[CC07] CHEN W.-K., CHENG Y. C.: Teaching object-oriented
programming laboratory with computer game programming. Ed-
ucation, IEEE Transactions on 50, 3 (Aug. 2007), 197–203. 1,
4

[CCD∗03] COBB P., CONFREY J., DISESSA A., LEHRER R.,
SCHAUBLE L.: Design experiments in educational research. Ed-
ucational Researcher 32, 1 (Jan. 2003), 9–13. 3

[CCMT08] CRENSHAW T. L., CHAMBERS E. W., METCALF
H., THAKKAR U.: A case study of retention practices at the
university of illinois at urbana-champaign. 39th ACM Technical
Symposium on Computer Science Education 40, 1 (2008), 412–
416. 1

[CHYH04] COOK D. J., HUBER M., YERRABALLI R., HOLDER
L. B.: Enhancing computer science education with a wireless
intelligent simulation environment. Journal of Computing in
Higher Education 16, 1 (2004), 106–127. 2

[Col] COLOBOT: http://www.ceebot.com/colobot/index-e.php.
accessed 10 December 2009. 2

[Dar] DARFUR IS DYING: http://www.darfurisdying.com/. ac-
cessed 10 December 2009. 2

[Ent09] ENTERTAINMENT SOFTWARE ASSOCIATION: Es-
sential facts about the computer and video game industry.
http://www.theesa.com/facts/pdfs/ESA_EF_2009.pdf, 2009. 1

The definitive version is available at diglib.eg.org and www.blackwell-synergy.com

http://www.irit.fr/~Mathieu.Muratet/progAndPlay.php
http://www.irit.fr/~Mathieu.Muratet/progAndPlay.php

M. Muratet & P. Torguet & F. Viallet & J.P. Jessel / Experimental feedback on Prog&Play

[Gin04] GINAT D.: On novice loop boundaries and range con-
ceptions. Computer Science Education 14, 3 (2004), 165–181.
5

[GKH07] GREITZER F. L., KUCHAR O. A., HUSTON K.: Cog-
nitive science implications for enhancing training effectiveness in
a serious gaming context. J. Educ. Resour. Comput. 7, 3 (2007),
2. 6

[GS08] GESTWICKI P., SUN F.-S.: Teaching design patterns
through computer game development. ACM Journal on Educa-
tional Resources in Computing 8, 1 (2008), 1–22. 1, 4

[Gun] GUN-TACTYX: http://apocalyx.sourceforge.net/guntactyx/.
accessed 10 December 2009. 2

[JVM05] JOHNSON W. L., VILHJALMSSON H., MARSELLA S.:
Serious games for language learning: How much game, how
much ai? In Proceeding of the 2005 conference on Artificial Intel-
ligence in Education (Amsterdam, The Netherlands, The Nether-
lands, 2005), IOS Press, pp. 306–313. 6

[KCC∗02] KELLEHER C., COSGROVE D., CULYBA D., FOR-
LINES C., PRATT J., PAUSCH R.: Alice2: Programming without
syntax errors. In 15th annual symposium on the User Interface
Software and Technology (Paris, France, Oct. 2002). 1

[Kel06] KELLEHER C.: Alice and the sims: the story from the
alice side of the fence. In The Annual Serious Games Summit
DC Washington (DC, USA, Oct. 30–31, 2006). 1

[Ker] KERNEL PANIC: http://springrts.com/wiki/Kernel_Panic.
accessed 10 December 2009. 2

[KY05] KLOPFER E., YOON S.: Developing games and simu-
lations for today and tomorrow’s tech savvy youth. TechTrends:
Linking Research and Practice to Improve Learning 49, 3 (2005),
33–41. 1

[LE07] LEUTENEGGER S., EDGINGTON J.: A games first ap-
proach to teaching introductory programming. SIGCSE ’07: Pro-
ceedings of the 38th SIGCSE technical symposium on Computer
science education 39, 1 (Mar. 2007), 115–118. 2, 4

[Mar] MARVIN’S ARENA: http://www.marvinsarena.com/. ac-
cessed 10 December 2009. 2

[MBK∗04] MALONEY J., BURD L., KAFAI Y., RUSK N., SIL-
VERMAN B., RESNICK M.: Scratch: A sneak preview. In 2nd
International Conference on Creating Connecting, and Collab-
orating through Computing (Keihanna-Plaza, Kyoto, Japan, Jan.
2004), pp. 104–109. 1

[MTJV09] MURATET M., TORGUET P., JESSEL J.-P., VIALLET
F.: Towards a serious game to help students learn computer pro-
gramming. Int. J. Comput. Games Technol. 2009 (2009), 1–12.
3, 5

[PMB93] PINTRICH P., MARX R. W., BOYLE R. A.: Beyond
cold conceptual change: the role of motivational beliefs and
classroom contextual factors in the process of contextual change.
Educational Research 630, 2 (1993), 167–199. 4

[PS96] PINTRICH P. R., SCHUNK D. H.: Motivation in Edu-
cation: theory, research and applications. Englewood Cliffs :
Prentice Hall, 1996. 4

[Roba] ROBOCODE: http://robocode.sourceforge.net/. accessed
10 December 2009. 2

[Robb] ROBOT BATTLE: http://www.robotbattle.com/. accessed
10 December 2009. 2

[SC05] SMITH L., CORDOVA J.: Weighted primary trait analysis
for computer program evaluation. J. Comput. Small Coll. 20, 6
(2005), 14–19. 4, 5

[SR03] SIANG A., RAO R. K.: Theories of learning: a computer

game perspective. In Multimedia Software Engineering, 2003.
Proceedings. Fifth International Symposium on (Dec. 2003),
pp. 239–245. 4, 6

[SW06] STEVENSON D. E., WAGNER P. J.: Developing real-
world programming assignments for cs1. In ITICSE ’06: Pro-
ceedings of the 11th annual SIGCSE conference on Innovation
and technology in computer science education (Bologna, Italy,
June 2006), pp. 158–162. 1

[Tac] TACTICAL LANGUAGE AND CULTURE:
http://www.tacticallanguage.com/. accessed 10 December
2009. 2

[The] THE NUMBERS: http://www.the-
numbers.com/market/2008.php. accessed 10 December
2009. 1

[Via97] VIAU R.: La motivation en contexte scolaire. Bruxelles :
De Boeck, 1997. (in French). 4, 6

[Zyd05] ZYDA M.: From visual simulation to virtual reality to
games. IEEE Computer 38, 9 (2005), 25–32. 2

Appendix A: Exercice example

We present in figure 8 a solution (in C) to the following
scenario: “You need to find an allied unit near to the po-
sition of your unit. Tracks indicate that it has moved away
at a distance of 1060 units and an orientation of 209 de-
grees.” In this context, we have used the native Prog&Play
API. In “C”, a unit is an abstract type that can be con-
sulted with a set of functions. For example, the function
PP_Unit_GetPosition(u) allows getting the position of a
unit. With the assistance of teachers, students have to find
in the documentation which function is useful to complete
this exercice.

01 - #include "PP_Client.h"
02 - #include "constantList_KP3.1.h"
03 - #include <math.h>
04 -
05 - int main (){
06 - PP_Unit u;
07 - PP_Pos unitPos, targetPos;
08 - double radianAngle;
09 -
10 - PP_Open(); /* Open the game API */
11 - PP_Refresh(); /* Refresh game state */
12 - u = PP_GetUnitAt(ME, 0); /* Get my first unit */
13 - /* Compute target position */
14 - unitPos = PP_Unit_GetPosition(u); /* Get unit's position */
15 - radianAngle = 3.14159265*(209)/180;
16 - targetPos.x = unitPos.x + cos(radianAngle) * 1060;
17 - targetPos.y = unitPos.y - sin(radianAngle) * 1060;
18 - /* Order the unit to move to the position */
19 - PP_Unit_ActionOnPosition(u, MOVE, targetPos);
20 - PP_Close(); /* Close the game API */
21 - }

Figure 8: A solution written in C

The definitive version is available at diglib.eg.org and www.blackwell-synergy.com

