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Speed of Vertex reinforced jump process on Galton-Watson
trees

Xinxin Chen, Xiaolin Zeng

Abstract

We give an alternative proof of the fact that the vertex reinforced jump process on Galton-
Watson tree has a phase transition between recurrence and transience as a function of ¢, the
initial local time, see [3]. Further, applying techniques in [I], we show a phase transition
between positive speed and null speed for the associated discrete time process in the transient
regime.

1 Introduction and results

Let G = (V, E) be a locally finite graph endowed with its vertex set V' and edge set E. Assign to
each edge e = {u,v} € E a positive real number W, = W,,, as its conductance, and assign to each
vertex u a positive real number ¢, as its initial local time. Define a continuous-time V' valued process
(Yi;t > 0) on G in the following way: At time 0 it starts at some vertex vy € V; If Y; = v € V, then
conditionally on {Y;;0 < s <t}, the process jumps to a neighbor u of v at rate W, , L, (t) where

Lu(t) = ¢u +/0 1{YS:u}d5. (1)

We call (Y}):>0 the vertex reinforced jump process (VRJIP) on (G, W) starting from wy.

It has been proved in [6] that when G = Z, (V) is recurrent. When G = Z% with d > 2, the
complete description of its behavior has not been revealed even though lots of effort has been made,
see e.g. [2, 13,5, 6, [7, [13].

Here we are interested in the case when G is a supercritical Galton-Watson tree, as we will see,
acyclic property of trees largely reduces the difficulty to study this model. In [5] it is shown that the
VRJP on 3-regular tree has positive speed and satisfies a central limit theorem. Later, Basdevant
and Singh [3] gave a precise description of the phase transition of recurrence/transience for VRJP on
supercritical Galton-Watson trees. In this paper, our main results, Theorem [2] describes the ballistic
case of the VRJP when it is transient on supercritical Galton-Watson trees without leaves. Our proof
is based on the random walk in random environment (RWRE) representation result of Sabot and
Tarres [13], and techniques on the studies of RWRE on trees, especially a result of Aidekon [I] (see
also e.g.[?, ?] for more on the studies of RWRE on trees).

Consider a rooted Galton-Watson tree T with offspring distribution (g, k& > 0) such that

b::quk> 1.

k>0

For some constant ¢ > 0, we denote VRJP(c) the process (Y;) on the Galton-Watson tree T' = (V, E)
with W, =1, Ve € E and ¢, = ¢, Vx € V, starting from the root p. Hence the behaviors of this
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process depends on G and c. This definition is equivalent to VRJP with constant edge weight 1/ and
initial local time 1, up to a time change. We first recall the phase transition result obtained in [6].
Let A be an inverse Gaussian distribution of parameters (1,c?), i.e.

exp{ — W}d% (2)

The expectation w.r.t. P(dx) is denoted E.

Theorem 1 (Basdevant & Singh). Let u(c) = inf,eg E[A%] = E[V/A], then the VRJP(c) on a
supercritical GW tree with offspring mean b is recurrent a.s. if and only if bu(c) < 1.

Remarks 1. This phase transition was proved in [3] by considering the local times of VRJP. We will
give another proof from the point of view of a random walk in random environment (RWRE), as a
consequence of Theorem 3

When bu(c) > 1, a further question is to study the rate of escape of the process. Define the

speed of the process (V') by
d(p,Y; d(p,Y;
v(Y) := liminf dlp. Y1) = lim dlp. ) (3)
t—00 t t—o0 t

where d is the graph distance, and the last equality will be justified by Lemmal[I] To study the speed,
we use the RWRE point of view, relying on a result of Sabot & Tarreés [13], in particular, the following
fact:

Let (Y;) be a VRJP on a finite graph G = (V, E') with edge weight (V) and initial local time
(). If (Z;) is defined by

Zy :=Yp-1(y where D(t) := ) (La(t)” — ¢2), (4)

zeV

then (Z;) is a mixture of Markov jump processes (c.f. also [14]). Moreover, the mixing measure is
explicit.

Applying this result to our VRIP(c) on a tree, denote (7,),>0 the discrete time process associ-
ated to (Z;), it turns out that (7,) is a random walk in random environment. In [I], Aidekon gave
a sharp and explicit criterion for the asymptotic speed to be positive, for random walks in random
environment on Galton-Watson trees such that the environment is site-wise independent and identi-
cally distributed. This result cannot apply directly to the time changed VRJP(c¢), since the quenched
transition probability depends also on the environment of the neighbors, see (7).

Aidekon's idea was to say that, most of the time the random walk will be wandering on long
branches of the GW tree, it is then enough to look at the random walk on the half line. Thanks to
the i.i.d. structure of the environment, he obtains sharp estimates for the one dimensional random
walk, which allows him to come back to the tree without losing too much information. This also
explains why the criterion depends on ¢y, the probability that the GW tree generate one offspring.

In our case the environment is also i.i.d., the same idea will also work. Compare to [1], we mainly
deal with the local dependences of the quenched probability transition. We believe that same type of
criterion also holds for a larger type of random walk in random environment, with suitable conditions
on the moments of the environment and locality of the transition probabilities.

Let us state our criterion, similar to , define

v(Z) = liminf M, v(n) = liminf M (5)

t—o0 n—oo n



To study the speed, our techniques can only deal with trees without leaves, hence we assume that
qo = 0. In addition, we assume that

M = Zk’qu < 0.

k>0

For any r € R, let
5 57“( ) = [A_T]'

By (@), & € (0,00) for any r. In particular, p(c) = €_1/2(c). Our main theorem states that the
speed depends on the value of ¢; and c.

Theorem 2. Consider VRJP(c) on a supercritical GW tree such that bu(c) > 1, we have

(1) lim;_, o M and lim,,_,~ W exist almost surely,

(2) Assume qo = 0 and M < oo. If 1&12 < 1, then v(n) > 0, v(Z) > 0; if ¢1&1/2 > 1, then
v(n) =v(Z)=0.

Corollary 1. VRJP(c) (Y;)i>0 on a supercritical GW tree such that bu(c) > 1, admits a speed
v(Y) > 0 a.s. If in addition o = 0, M < oo and ¢1&1/2 < 1, then v(Y) > 0.

Remarks 2. Our method cannot tackle the critical case q1§1/» = 1. Moreover, whether q,&1/2 > 1
implies v(Y) = 0 remains unknown.

The rest of this paper is organized as follows. In Section [2] we use a result of Sabot & Tarres [13]
to recover the RWRE structure of VRJP. Section 3 is devoted to an alternative proof of Theorem [I]
as an application of the RWRE point of view. Section 4 establishes the existence of the speed for
the RWRE and Theorem [2. The proofs of some technical lemmas are left in Appendix.

2 RWRE on Galton-Watson tree

2.1 Mixture of Markov jump process by changing times

In this subsection, we consider a VRJP (Y});>0 on a tree T' = (V, E) rooted at p, with edge weights
(W) and initial local time (¢). If x # p, let & be the parent of z on the tree, the associated edge is
denoted by ¢, = (z, z) with weight W,,

Recall that the time changed version of VRIP (Z;) defined in is mixture of Markov jump
processes with correlated mixing measure. The advantage of considering VRJP on trees is that, the
random environment becomes independent.

Theorem 3. Let T'= (V, E) be a tree rooted at p, endowed with edge weights (W, ).cr and initial
local times (¢)zcv. Let (Ay,x € V' \ {p}) be independent random variables defined by

Wez (bx(bg

(a—1)
53 )da.

P(A, € da) = 1g+(a)d, 5

eXp(_ Wel (bm ¢§

If X is a mixture of Markov jump processes starting from p, such that, conditionally on (A, x €

V\ {p}), X, jumps from x to & at rate Wexqs Z and from T to x at rate W, d’; 2222 - Then X,

and Z, (defined in (4))) has the same distribution.




Proof. On trees, VRJP observed at times when it stays on any finite sub-tree Ty = (V}, E) (also
rooted at p) of T, behaves the same as VRJP restricted to 7f; moreover, the restriction is independent
of the VRJP outside 7. Therefore, it is enough to prove the theorem on finite tree 7. By Theorem
2 of [13] (with a slight modification of the initial local time, or a more detailed version in [?], appendix
B), if we denote

t
lx(t) :/ ]lZs:xds,
0

then
U, = - lim

o 2t—>oo

(log L(t) + 6% log ¢_§)
L(t) + 3 %
exists a.s. and {U,,z € Vy, U, = 0} has distribution (where du =[], du,)

dQWﬁ? ('LL) _ H:c;ép ¢I o ZwEVf ux—Z{w,y}eEf %Wx,y (eue—uy qﬁfj—i-euyfuz 3220 dy) H Wx yeum—l—uy du.
pyly \/%“/ﬂfl ’

{z,y}eEy

Now, conditionally on (U,), Z; is a Markov process which jumps at rate (from x to z) 3 W, .eV=~=.

For e, = (z, %) € Ty, if we writes y., = (us —log ¢<) — (u, —log ¢,), then (note that u — y is a
diffeomorphism and dy = du) the density of (u) also writes

VVeI ¢m¢‘;

Q1 (u) = 2m

p7Tf

1
exp (i(y% — We, @utp (€¥ + e ¥ — 2))) dy.

em:{m,;}eEf

Plugging a, = e™¥*= entails that a, is Inverse Gaussian distributed with parameter (1, We, ¢,¢< ) and

Wez¢m¢§ ((lz — 1)2

W,¢ _
de,Tf (CL) — H ]laz>0 271_@2 eXp(_Wez¢x¢; 20@ )dax
z€Ve\{p}
Finally note that
1 N %Wx,z qu if 2=
— 2.2€ z fo— z Qx
2 ’ %Wx,z ¢;az if Z =x.

For VRJP(c) on a GW tree, the theorem immediately implies:

Corollary 2. On a sampled GW tree T' = (V, E), the time changed VRJP(c) (Z;) is a random
walk in i.i.d. environment (A,,x € V' \ {p}), where (A,) are i.i.d. inverse Gaussian distributed with
parameters (1, c?), and conditionally on the environment, the process jumps at rate

2A;

H
%Az from x to x.

(6)

{ L from x to

2.2 RWRE on Galton Watson tree and notations

In the sequel, let 7' = (V, E) be a Galton-Watson tree with offspring distribution {g; k& > 0}. Recall
that (1), )n>0 denotes the discrete time process associated to (Z;) (or (Y;)), which is a random walk
in random environment.



Note that there are two level of randomnesses in the environment. First, we sample a GW
tree, T\, whose law is denoted by GW (dT'). Then, given the tree T' (rooted at p), we define
w={A;,x € V\{p}} as in Corollary , whose law is [ ],y (,; P(dAz), which we denote abusively
P(dw). Finally, given (w, T, the Markov jump process (Z;;t > 0) is defined by its jump rate in (f)).

For convenience, we artificially add a vertex Z to T, designing the parent of the root. Let A, be
another copy of A, independent of all others. Now, (abusively) let w = (A,, 2 € V') be the enlarged
environment. Given (w,T’), define the new Markov chain 7, which is a random walk on V' U {;}
with transition probabilities

N 1
p(x, $> — 1FA4, Zyj:m A,
—
p(z,2) = W where z =z €V (7)
— o
p(p,p) =1

This modification will not change the recurrence/transience behavior of the RWRE 7 nor its speed
in the transient regime. We will always work with this modification in the sequel.

Let us now introduce the notation of quenched and annealed probabilities. Given the environment
(w,T), let P*T denote the quenched probability of the random walk 1 with 7y = x € V a.s. Denote
by P7, Q, P, the mesures:

PT() = / PET()P(dw),
Q) = / 1P (dw)GW (dT)
P,()i= [ BS(GWI)

and the associated expectations are denoted E<7, ET, Eq and E. Note the slight difference for the
expectation corresponds to Q: Eq. For brevity, we omit the starting point if the random walk starts
from the root; that is, we write P“'T, PT and PP for P;*T, IF’E; and P,, Notice that IP is the annealed
law of 7.

For any vertex z, let |z| = d(p, ) be the generation of x and denote by [p, x] the unique shortest
path from z to the root p, and x; (for 0 < i < |z|) the vertices on [p, =] such that |z;| = i. In
particular, o = p and x|,) = x. In words, x; (for i < |z|) is the ancestor of x at generation 7. Also

denote [p, ] := [p, z]\{p} and ]p, z[:= [p, z[\{p, z}.

3 Phase transition: an alternative proof of Theorem [I]

The ideas follow from Lyons and Pemantle [11], by means of random electrical network.

Proof of Theorem[I. Recall that the environment w is given by i.i.d. random variables A,, x € T,
with inverse Gaussian distribution /G(1,c?). The RWRE is equivalent to an electrical network with
random conductances:

Ce, =Cla,z)=( [[ Au’4AsVzeV\{p}.
u€ Jp, [

We omit the proof of the transient case which is quite similar to that in Lyons and Pemantle [1I],
however, we will detail the recurrence case. That is, we will show that if bu(c) < 1, then the RWRE
Is recurrent a.s.



First consider the case bu(c) < 1, note that

EQ[Z 3 c;f] - Z/ (/ 3 CQ&P(W))GW(dT)

n>1 |z|=n n>1 |z|=n
=> [ Y EAVE[AYGW (dT)
n>1 |z|=n

_ Z bnE[Al/Q]n_lE[A1/4].

n>1
Because pi(c) = E[A/2] < 1/b, we have, for some constants ¢, c, € RT

Eq| Y. > C] e (ule)" < < o0,

Z Z (16132/4 < 00, Q-as.

which implies that

As a result, there exists a stationary probability a.s., moreover 7 is positive recurrent.
Turning to the case bu(c) =1, let I1,, :== {e, : |z| = n} be a sequence of cutsets. Observe that

SV I A= Y o
|z|=n ue]p, ] |z|=n

is a martingale with respect to its natural filtration. By Biggin's theorem ([4, [10]), it converges a.s.
to zero. We are going to show that Q-a.s.,
lim inf 01/4 =0, 8
minf ) )
|z[=n
in particular, this will imply that Q-a.s. infy;. cutset ), ey Ce, = 0. By the trivial half of the max-flow
min-cut theorem, the corresponding network admits no flow a.s. Hence, the random walk is a.s.
recurrent. Observes that

Z Clt = Z H AVZAY M oy + Z H AP AV M (4, ey

jal=n jal=n u€ I p, [ jal=n u€p, o
=2 I AP pen+ > [ A7 Z A,
|z|=n ue ]p, x] ly|l=n—1 u€]p,y] P =y

<Wot > ] Aw,

[yl=n—1ue]p,y]
where v, denotes the number of children of y. Letting n go to infinity yields that
< limi 1/4 < limi 1/2 '
O_hggolﬂz C,! _hggolf' Zl 1]]_[]]Au Uy
x|=n yl=n—1lue |p,y

For any K > 1, separating the sum over vertices y according to {v, < K} or {v, > K}, the last
term is bounded by

lim KW,_; + liminf Z H A1 Vyliv,>K}

n—oo n—oo
lyl=n—1u€]p,y]

o 1/2
:hggolf Z H Al Vyliv,>K}-

lyl=n—1u€]p,y]



By Fatou's lemma,

.. 1/2
Eq(hgbggjlf > I A Vyl{VyZK}>

lyl=n—1u€]p,y]

<timinfEq( Y [ AVlu,2x)) = Ealvv, > K],

n—oo
lyl=n—1u€ |p, y]

since for all |y| =n — 1, v, is independent of ] AY? and EQ<Z|y|:n—l Hue]]p,y]] A}/Q) =1.

u€Jp,y] “7¥
Consequently, for any K > 1,

. . 1/4 < >
Eq [hr{ggolf |Z_ C,/ ] < Eq[v,,v, > K].

As b = Eqly,| < oo, letting K — oo gives

L. 14| _
EQ[hﬂg}f |Z_: C,! } 0.

This implies ({)). O

4 Speed when transient

Turning to the positivity of v(Z) and v(n), note that the processes (Z;) and (n,) are mixture of
Markov processes but (Y;) is not, in fact, (Y;) escapes faster than (Z;), in particular, when v(Z) > 0,
we have v(Y') > 0. But we are not sure whether v(Z) = 0 implies v(Y") = 0.

4.1 Regeneration structure

In this section, we show that, when the process (7,,) (or (Z;)) is transient, its path can be cut into
independent pieces, using the notion of regeneration time. As a consequence, the speed v(n), v(2)
exists a.s. as a limit (not just a lim inf).

On a tree, when a random walk traverses an edge for the first and last time simultaneously, we
say it regenerates since it will now remain in a previously unexplored sub-tree. For any vertex x, let
D(z) =inf{k > 1, m_y = z,mp = &}, write 7, = inf{k > 0, || = n} and define the regeneration
time recursively by

Ty =0
{Fn =TI,(n) =inf{k > T'n_1; d(ne) > 3,D(nk) = 00, )y, | = k}-
where d(x) is the degree of the vertex .
Lemma 1. Let S(-) = P(:|d(p) > 3, D(p) = o0), if n is transient, then
i) Foranyn >1,T, < oo P-as.

i) UnderP, (I'ni1 =T, [n0,,0 | = |00, |5 Ar,.,y )n>1 are independent and distributed as (I, |nr, |, Ar,)
under S.

i) Es(Inr,]) < .



We feel free to omit the proof because it is analogue to ‘Fact’ in [I] p.10. In addition, Lemma
also holds without assuming d(n;) > 3 in the definition of I';,, but we will need this assumption later
in the proof of Lemma [7]

By strong law of large numbers, one immediately sees that there exist two constants ¢, > ¢35 > 1
such that P-a.s.,

lim ra] c3 € [1,00), lim — = ¢4 € [c3,00].
n—oo N n—oo T

In addition, for any n > 1, there exists a unique u(n) € N such that
Fu(n) <n< Fu(n)+1
and [nr, | < |nal <m0, |- Letting n go to infinity, (in particular u(n) — oo) in

70| < M0l IMruyea]l 1P u(n)
<M< = -

We have P-a.s.

|7]n’ C3
—_— = = — € /0,1].
nl o) = S e o,

For Z,, the same arguments can be applied. As a consequence of the i.i.d. decomposition, v(Z) =

limy_, oo |ZT’5| exists a.s. The existence of v(Y) = lim;_, @ can be justified by performing the time

change D(t) between consecutive regenerative epochs.

4.2 The auxiliary one dimensional process

The RWRE can also be defined on the deterministic graph H = {—1,0,1,...}, on which many
quantities are viable by explicit computations. The strategy is to compare the random walk on a
tree to the random walk on the half line, in the forth coming sections we will explain how these
comparisons will be done. In this section we list some properties of the one dimensional random walk,
their proofs can be found in Appendix [Al

Let 7, be the random walk on the half line H = {—1,0,1,...} in the random environment
w = (Ag, k > 0) which are i.i.d. copies of A under P, with transition probability according to ([7));
that is,

plii+1) = i — >0

. 1/A; .
p(l’z_l)zl/Aiér—Am ’LZO

p(-1,0)=1

Similarly we denote Ew,}f”i,E;’,E respectively the quenched and annealed probability/expectation
for such process starting from 4, and for any n € H, define the following stopping times

To =inf{k >0, M =n}, 7, =inf{k > 1, M =n}.

Let £, F5 > 0 be two expressions which can depend on any variable, but in particular on n. If there

exists f : N — R* with lim,,_,« %log f(n) = 0 such that F f(n) > F,, then we denote F| 2 F,

(Fy greater than F5 up to polynomial constant). If F 2 F» and F} < F, then we write Fy ~ F5.
Recall that A is Inverse Gaussian distributed with parameter (1,c?), define the rate function

associated to log A by

I(x) = sup{tz — log E(A")}, (9)
teR
also define
t* =sup{t e R, E(A")q < 1}. (10)
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Lemma 2. Forany z > 0 and 0 < z; < 1, we have, for any 0 < a < 1

Po (7, A 71 > m|Ag € [a, 2]) % exp{—n (211(2%) - 21)1(2(1_——221)))}

where m € N is such that n = [“%J

Lemma 3. Denote

logqy, z,, 2 1—2z —z
L'= su ——I(=—)— I ;
2>0, o<pzl<1{ z z (2z1) z (2(1 - zl))

we have [/ = —t* + %

Lemma 4. Define, for i € H and any stopping time 7, G™(i,i) = E¥(37_, 1ij=i). Let 0 <Y; <
Y, < y < Y3 be points on the half line, we have, for any 0 < X <1,

P27, < )G (y, ) < B [y, 1 A ). (11)
Eﬁu;l [%Yl—l A 7~—Y:z])\ < S)\vﬂ:YLYQ]] <1 + Ai\/z-l-l <1 + E§2+1[7~—Y2 A %YB]A>)‘ (12)

where

S)\y[[yhyﬂ =14 2A§\/1 Z H A?L)\Ai + A?/l H Ai)\

Y1 <z<Ys2 Yi<u<z Y1 <u<Ys
Lemma 5. I[f0 < A < (t*— %) A1, then there exists sufficiently small 6 > 0 such that for all n, > 0
1 1 Wi~ ~ 1A\ < -n
E((1+ )1+ ) AE 1 A7) S (@ +0)7"
n1 n
4.3 Null speed regime

In this section we prove (2) of Theorem [2]

Proposition 1. Recall the definition of t* in (10), if E(A™Y2) > 1, then 1 < t* < % and

1 n 1
limsupM <tr——.
n logn 2

In particular, if ;E(A™'/2) > 1, then P-a.s., v(n) = 0; in fact,
[l = 1D Z (), 1 5 o0,

Remarks 3. Similar arguments can be carried out for the continuous time process (Z;), i.e. if
G E(A7Y2) > 1, then

. log | Zy| 1
1 ——— <t - 13
i Sup gt = (13)

(\]

Let us state an estimate on the tail distribution of the regeneration time I'; under S(-):

Lemma 6. )
S(T'y >n) 2 n~ttz (14)



E(A) log B(A")

Figure 1: The function ¢ — E(A") and t — log E(A") for ¢ = 1.

With the help of the above lemma, we prove Proposition [T}

Proof of Proposition[l Note that ¢ — E(A") is a convex function, and it is symmetric w.r.t. the line
t = 1, where it takes the minimum, in particular E(A~"/2) = E(A%?). As we have assumed that
GE(A7Y2) > 1, it follows that ¢* < 2. On the other hand, since E(A) = 1, obviously ¢* > 1. For
any A € (t* —1/2,1), by Lemma [p] there exists ¢ > 0 such that

L N e R
< (1= 7)1 S exp(—n).
Therefore,

ZIP’ max (I, — [j_1) < n'/?) < 0.

2<k<n
n>2

By Borel-Cantelli lemma, P-a.s., for all n large enough,

[, > max (I — Tyq) > n'/?,

2<k<n

It follows that P-a.s., liminf, 2= > 1 = Ag liminf, 2™ > liminf, “8I= (see (3.1) in [I]), we

n logn — A logn — " logn
have log ||
. 0 1
lim sup & T <A y " — = < 1,P-as.
n ogn decreasing 2

O

It remains to prove Lemma [6] In fact, when ¢, is large, it is more likely that there will be some
long branch constituting vertices of degree two on the GW tree, especially starting from the root.
These branches will slow down the process and entail zero velocity. The following lemma gives a
comparison between the tail distribution of the regeneration time I'; and the probability that the
process wanders on these branches (which is a one dimensional random walk in random environment,

that is, (7,)).

Lemma 7. Foranym > 1, 0 < a < 1, we have

> . 1
STy > > 1Po(7-1 AT, > m|A ;=)
(I m)_C5ZQ1 o(T-1 AT > m|Ag € [a a])

n=1

Now we prove Lemma [6] with the help of Lemma [7] and some results on the one dimensional RWRE.
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Proof of Lemmal6. By Lemma , one sees that for z > 0, 0 < z; < 1 and m such that n = LIO@%J

Po(%n A7y > m|Ao c [CL, %]) pe exp(—n (le(QiZl> + (1 - 2’1)[(2<1_—_221))))

where we recall that I(z) = sup,cg{tz — log E(A")}. For large m, by Lemma(7] then Lemma 2

~ 1
S<F1 > m) > Cs max q?PO(%n A 7~-71 > m|A0 € [Cl, 5])

n:n:[lm%J
z —z
> n — - _ -
2wy grewlon (0G5 (- )l ) )
logm z —z2
2 sup exp——(zl—+1—z I——logq).
2>0,21€(0,1) { z ' (221) ( 1) (2(1—z1)) 1))

It follows from Lemma [3] that
STy >m) = m /2

It remains to prove the comparison Lemma . We define, for x # ;
7, = inf{n > 0; n, =z}, 7, =inf{n > 0; n, =z}, f(x) = P;“’T(T; = 0)

Note that for any = € T, S(x) depends only on the sub-tree T, rooted at = and the environment
{A,(w);y € T, }, let us denote (3 a generic r.v. distributed as 3(p), by transient assumption, 5 > 0
a.s. and E(B) > 0.

Moreover, by Markov property,

Blx) =Y pla,y)Py" (1, = 00) + P (2 < 00)B(x)]
= > p(x,y)By) + (1 - By))B)):

Note that 5(x) > 0, P-a.s. hence,

1 1
—— =1+ . (15)
B ALY, AR
In particular, B(x) is increasing as a function of A,.
Proof of LemmalZ. For any vertex x, let h(x) be the first descendant of = such that d(h(x)) > 3.
Let kg = inf{k > 2: ¢, > 0}. According to the definition of I';, one observes that when 7, # ;

Fl Z T;/\Th(Xl)-

In fact, we are going to consider the following events

1
Ey={d(p)=ko+1, A, >a, A, €la,—],V1 <i <ky} where p; are children of p,
a

Ey=EyN {771 7é ;vm < T; < Th(m)s Tz +1 ¢ {;7771}} N {7771 7é Pi Vn > T; + 1}7

-
Ey = EyN{m # ;,m < Th(m) < T;} N {mn # h(m),VYn = The,) + 1}

11



As Fl Z T; /\Th(m)v we have E1 U E2 C EO N {D(,O) = OO,Pl > m} and E1 N E2 = @ SO,

For £y, by strong Markov property at 7, and weak Markov property at time 1,

PoT(Ey) = L, P27 ({m # pom < 70 < T, T o & {p.myy 0, # piVn > 75+ 1))
ko

=g, Y _p(p, p) P (m — 1< 7, < Tig) Y 0o 0j)B(py).

i=1 i
Given Ey, p(p, pi) > Tog = Co- S0,

ko
PeT(Ey) > collp, Y PT(m—1<7, < ) Y p(p.pi)B(p),

i=1 j#i

Conditionally on {d(p), A,, A,,,1 < i < d(p)—1}, the independence of the environment implies that

P <E1

d(p), AP? Apml RS d(ﬂ) - 1)

0
> collp, » P (m—1<7,< 7)) > 0o, pj)EqlB(p)|A,,].
i= JFi

where, for each j # i, p(p, p;) and Eq[B(p;)|A,,] are increasing functions of A,.. By FKG inequality,
and the fact that E(8(p)) > 0 and >, p(p, p;) > -1 - ( on B,

— 1+kg
ko
P(E)) > c6E<]1EO SRS (m -1 <7, < ) S plps ) E(53(p))
i=1 J#
ko
> R (]IEO Z Pt (m—1<1,< Th(pi))). (16)
i=1

Similarly for Es,, by Markov property,

PoT(By) = L, P27 ({m # pom < Ty < 703 0 {1 # h(m) Vn > The,) + 1))

ko
=T,y p(p, p) Pt (m =1 < Ty < 7,)B(R(ps))
=1
ko
> cgllp, Y PoT(m — 1< 1) < 7)B(h(p:)).
i=1

Again P2 (m — 1 < Ty, < 7,) and B(h(p;)) are both increasing on Ay,,). FKG inequality entails

ko

P(Ey) > C6E<]1Eo ZP;:’T(m — 1 <Thpy) < TP)) x E(6(p))
i=1

ko
= sB(lg, > Pl (m—1< Ty <7,)), (17)

i=1

12



with cg := c6E(B(p)) > 0. Combining with yields that

ko
P(EL) + P(B2) 2 oB (1, > P (7 A iy > m = 1))
i=1
1
> CgKoQ(EU)]P)(T; N Th(p) >m — 1|Ap c [a, a])
1
> ClO]P(T; ATy >m —1|A, € [a, a]) (18)
Let us go back to S(I'y > m). As P(d(p) > 3, D(p) = oc0) > 0, recall that

STy >m) =PIy > m|d(p) > 3,D(p) = 0)
> P(EyN{D(p) = o0,I'y >m})
> P(E1) + P(Ez).

by (18)), taking c5 = c19, we have
1
STy >m) > C5P<T<E ATy >m — 1|4, € |a, a])

© 1
= C5Zq’fP0(7’_1 ATn>m—1|Ag € [a, E])

n=1

4.4 Positive speed on big tree and asymptotic of |Z;| on small tree

This subsection is devoted to the proof of the following propositions, firstly when the tree is big (i.e.
¢; small), the RWRE has positive speed; when the tree is small (¢; large), we can compute exactly
the asymptotic behavior of |n,| and |Z;].

Proposition 2. If g E(A™Y/2) < 1, then
v(n) >0 and v(Z) > 0. (19)

As a consequence, also v(Y') > 0.

Proposition 3. Assume that (;E(A™Y/2) > 1, we have P-a.s.

108 |7 log | Z
i 18Tl _ . logl|Zi] _

= t—1/2€(1/2,1 20
Nm oen A g /2 € (1/2,1) (20)

where t* = sup{t € R, E(A")q; < 1}.
Let us give some definitions and heuristics before proving these propositions, write, for n > 0,
To(n) = inf{k > 0; |ni| = n} and 7,,(Z) = inf{t > 0; |Z;| = n}

the hitting times of the n-th generation for  and Z respectively. As a consequence of the law of

large numbers, P-a.s.,
n 1 (7 1
limT(n):—and limT( ): .
n—oo N 7}(77) n—oo M U(Z)

13



The study of the speed is reduced to the study of 7,,() and 7,,(Z). Forany x € T, n > —1, let N,
and N,, denote the time spent by the walk n at x and at the n-th generation respectively:

N@)=> 1y No=> N(z),

k>0 lz|=n
observe that
a A
w, T e
Ta(n) < Z Ny, BN [m(Z2)[n] < Z le—l-AxBx’
k=—1 z:—1<|z|<n
where B, =3 o A, .
In what follows, we actually study N, for large n to show that liminf,, @ < 00, P-as.

The heuristics is the following. Fix some ng, K (to choose later), pick some vertex y at the n-th
generation, if y roughly lies in a subtree of height ng with more than K|, leaves, then the random
walk will immediately go down, thus E(V,) will be small c.f. Figure [2| left. Otherwise, we seek a
down going path ¢,...,y,...,9y such that every vertex in this path does not branch much except
for the two ends, and we need these two ends have more than K descendants after n, generations.
In such configuration, we can compare the random walk to the one dimensional one, and once the
walker reaches one of the ends, it immediately leaves our path g, ...,y c.f. Figure 2| right.

A no { Y

Yo

"o /A n- ——

Nt

no {
Figure 2: Two cases to bound E(N,).

If the root have more than K descendants after n, generations, then we can always find g.
Otherwise, we need to take n large and use the Galton Watson structure. To handle this issue, let
us introduce the following notations. For the GW tree T, let ZZ; be the number of vertices at the
n-th generation. By Lemma 4.1 of [1], we have for any Ky > 1,

Eew(Zi 1 zr<x,) < Kon'0gi .
Let r € (¢1,1) be some real we choose later, let
ng = no(Ko,r) :=inf{n > 1, EGW(ZglzggKo) <r"},
which is thus a finite integer. In fact, Ky will be chosen according to Corollary [3] Define
Z (u,n) = |{x € T; u < x,|z| = |u| +n}.

Let 7, be a tree induced from 7" in the following way: starting from the root p, v is a child of x in
T,, if z <y and |y| = |z| + ng. Define a subtree W of T,,, by

W={ze€T,: YueT,,u<z= Z"(ung) < Ko}.

14



T Tno w

Figure 3: An example in the case Ky = ng = 2.

Let W) be the population of the k-th generation of YW, W is a sub critical Galton Watson tree
of mean offspring IEGW(Z ]lZT <K,) < 7™; in particular, for any k > 0, Eqw (W) < r*o.

Forany y € T, let yp be the youngest ancestor of y in T,,,. For n > no, let j = [;-] > 1 so that
Jjno <n < (j + 1)ng. Define

. A
Nn,l = Z N(y)]lZT(yo,no)>Koa le = Z N(y) 1+ /4y B ILZT(yo,no)>Ko (21)
Y=y

lyl=n ly|l=n

Npa = Z N(y)]IZT(yo,no)SKo, YogEW> n2 = Z N(y 1—|—A B, T4 B L2 (yo,n0) <Ko, yogW (22)
lyl=n lyl=n

Lemma 8. There exist r € (q1,1) and Ko > 0, such that, with the definitions of ng, Ny1, Ny
above, for some constant L > 0, for any n > ny

E(N,i) <L, E(N;,) < L. (23)

Lemma 9. With the same assumption as in Lemma([§, if 0 < A < 1 A (t* — 1/2) where t* is define

in (10)), then

E(N;,) < L, E((N;2)") < L. (24)
We are prepared to prove Proposition [2] and Proposition [3

Proof of Proposition[J. Since yE(A™Y/%) < 1, t* > 3/2. We choose A\ = 1. As W is finite a.s., if
= (height(W) + 1)ng (where for a finite tree 7', height(T") := max,cr |z|), then

foralln > x, N, < N,1+ Npo.

By Lemma [8] [9) for any n > ny,

E(N,, ) <2L
Thus, .
hmianE[Zi:X n} < 2L.
n—00 n
By Fatou's lemma, a.s.
n n N
lim inf =k==1 - — lim inf Z=F=X i
n—o0 n n—oo n



Therefore,

1 N
— = liminfE < liminlek < 00.
U(n) n—oo N n—00 n
This implies that v(n) > 0.
The case for Z; can be treated in a similar manner with N instead of N,. Finally, to prove
v(Y) > 0, it is enough to recall Zp() = Y; where D(t) = > (1,(¢)* + 2cl,(t)) and note that

D(t) _ 3, (=(t)* + 2cla(t))

= > 2c > 0.

t 22 (1)

It follows that

Y, Z D
v(Y) = lim 1Y = lim 2o > v(Z) liminf# > 2cv(2).

t—oo 1 t—o0 t t—o00

]

Proof of Proposition[3. If i E(A™Y/2) > 1, A < t* — 1/2 < 1. Let N;(Z) be the time spent at the
i-th generation by (Z;). Let I'y(Z) be the regenerative times corresponding to (Z;);>¢. Let u(n) be
the unique integer such that T',(,) < T(Z) < Lyny+1- Then,

=Zrgz)|=1 5 \
Fu(n)(Z))\ < Zkgu(n)<rk(z> - 1—‘k*l(Z)))\ _ Zkgu(n)(Zi:|Zrzil(z>\ NZ(Z))
n - n n
< Zign Ni(Zy\‘
n

Taking limit yields that

N GAL i (Lk(Z) = D1 (2)A S AVAL
lim inf —22 27 () < lim inf st ( )( H(2) k1(2)) §liminf—zzfx 2) :
n—00 n n—o0 n n—00 n

Applying Jensen's inequality then Lemma [9] implies that
E[N.(Z2)*n > x] < E[E[N,(Z);n > xIn]"] < E[(N;)*n > x] < 2L.
It follows from Fatou's lemma that

Ty (2 (T(Z) = T (2))
]iminfM < liminf Zkﬁ ( )< k< ) k 1( )) < 00,
n—00 n n—00 n

By law of large numbers,

Tu(Z2) = Tp_1 (2N
lim —— = Es[|Zr,(2)]] < 00, and lim Zkg"( k(2) k-1(2))

= Es[['(2)Y].

Therefore there exists a constant C' € (0, 00) such that

A
lim inf In(2) < C.

n—o0 n

Note that | Z;| > #{k : Tx(Z) < t}. So we get |Z;| > t*/C for all sufficiently large t. We hence
deduce that

1 7
L)
t—o00 og t

> A\

16



Letting A T ¢* — 1/2 yields

log | Z
liminf 0812 5 40 (25)
n—00 Ogt
The result follows by Remark . Similar arguments can be applied to lim,,_,, 1%";'. n

It remains to show the main Lemmas [§)[9] Let us first state some preliminary results. As the
walk is transient, the support of the random walk should be slim. This is formulated in the following
lemma:

Lemma 10. There exists a constant c1; > 0 such that for any n > 1, E( Z 1, <o) < 1.

|z|=n

The following lemma shows that, the escape probability is relatively large. In fact, we cannot show

that E(ﬁ) < oo for all g1 > 0, since the GW tree branches anyway, there will be a large copies of

independent sub-trees, we show E(=z—) < oo instead.

ZiKzl 61

Lemma 11. Consider i.i.d. copies of GW trees T® rooted at p'”) with independent environment w®,
for each T9, define f3; = Pwm’T(l)(T o= 00). There exists an integer K = K(q1,c) > 1 such that
p 3

()
E(—) < e1p < 00 and B ) < ¢33 <
= C12 oo an —_— C12 0.
Zfil ﬁl Zfil Ap(i>5i
. 1
Moreover, if ¢1&; < 1, then E(m) < ¢19 < 00 and E(m) < C1g < 0.

Remarks 4. In fact, if ¢E(A™?) < 1, a proof similar to Proposition 2.3 of [I] shows that n has
positive speed, in particular, the VRJP on any regular tree (except 7.) admits positive speed.

Corollary 3. There exists Ky > K, such that

1

E(—) < c13 < 0Q.
Ko 42 2
10Ap<i>5z'

The proof of Lemma [I0] [11] and Corollary 3] will be postponed to the Appendix B}, let us state the
consequence of these preliminary results. Recall that Z! is the population at generation n, and that
for any x € T', 7, is the first hitting time, 7 the first return time to x. For u,v € T write u < v if
u is an ancestor of v and define

pi(u,v) = P& (1o = 00,7 = 00,7, = 0)

Lemma 12. For any n > 2 and k € {1, 2}, consider K as in Corollary[3, we have

1
Bl Y ) << oo

|u‘:np1(p7u)k
In addition, | |
E(1 —’A < (14 —), 26
(Z,M%lwu)k ) < el ) (26)
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Proof of Lemmall2. Fixn > 2, let Yo :=inf{l > 1; Z; > Ky}, then {ZI > Ky} = {To < n}. For
any u € T such that |u| > Ty, let U be its ancestor at the T-th generation. By Markov property,

pp,u) > Z P/‘)‘”T(Ty < T;)P;’T(TZ = 00, Ty = 00)
ly]="o—1

To—2 (27)
Z H p(yi73/i+1)PyMT(T§ = 00, Ty = 00)

ly|=To—1 i=0

%
where {yo(= p),v1,---,yr,—1(= y)} is the unique path connecting p and y. Note that if U = vy,
then

Pyl(rg =co,mu=o00)= Y py,2)B)+ Y ply,2)(1=B)P " (ry = oo, = o0).

z:(zzy,z;éU z:?:y,z;ﬁU
Otherwise
P;J’T(TE =00, Ty = OO) - Z p(yv 2)5(2) + p<y7 Z)(]' - B(Z»wa’T(T‘?j =00, Ty = OO)
zz=y zz=y

It follows that in both cases,

>ty Lerup(y, 2)B(2)
(. y) +ply,U) + > gy Lazup(y, 2)B(2)
N >y LzvAyALB(2)
T1+ A A+ Y o L AyALB(2)
oA 1 > vy LrvAB(2)
T 1+ A I+ Ap L+ o L ALB(2)

P;’T(TZ = 00, Ty = 00) =

Plugging it into yields that

YTo—2
0— A 1 Zz:gzy ]lz;éUAzﬁ<z)
p1<p7 Z H p Yir yZ—H) 1+ A 1+ AU 1+ Zz:?:y ]lz;éUAZ/B(z)

|y‘T0120

1 . (TOQ Ay ) ) Zz:|z\:To,z;£U AZﬁ(Z)

> min i Ui
— L Ay =101 g P vy t A ) T ey AB(2)

Thus, for k € {1,2},

1 1 1 g
IR (o y
k ] _ k G A,

p1(p,u) min gy _r,-1 (Hfﬁo *p(yi, ym)lf—;y) D ez =oev AzB(2)

Given the tree T', by integrating w.r.t. P(dw), we have

1
T T
n>T0 Z E ( ) <E .
i pile minyy o1 (T0% 7 POy v )12 )
1 k
(U,n — To)ET[(1 + Ap)YJE" | (1
Xu;oz (Un — To)E"[(1 + Au)E” { ( +Zz:|z:ro,z¢UAzﬁ<z)>

18



It follows from Lemma [I1] for k£ = 1 or Corollary [3| for k = 2 that

1
Eq | Lu>v, Z — Y0, Z;;0 <1 <y

o pu)
1

<crsLzr BT 2 < D0 El+ A

: To—2 Ay

MiN}y|=1p-1 (Hi:o p(yiayiJrl)m) lU1="o

(A B 1+ 4,
<ciglp>r, Z E H 1A 1 Z b o,
ly|="Yo—1 i=0 Yit "Yit1 Y =

By independence of A,,x € T, we see that

with ¢17 € (1,00). Consequently,
1 ) _
EQ ]anTo Z (—U,)k < EQ <0161n2’r0 Z CIT5O 1 Z b To)
fu=n 1P ly|="To—1 U|="o
<ci6KoEq <]lnzroc?5_1Zg>
§018(617b)n < 0Q.

follows in the same way. O

Proof of Lemmal8. We only bound E(N,, ), the argument for E(N; ) is similar. For any y € T
at the n-th generation such that Z% (yy,ng) > Kj, let Y be the youngest ancestor of 3 such that
ZT(Y,ng) > Ky. Clearly, yo <Y <. So,

Npa = Z N(y)]lZT(yo,no)>K0 < Z N(y) Ly <y<y-

lyl=n ly|=n

Taking expectation w.r.t. %" implies that

BT (Naa) < ) BN (N Lyevey = Y PUT(r, < 00) By (N() Lyp<y <y

lyl=n lyl=n
Applying the Markov property at 7y to E"(N(y)), we have
EZT(N(y) = G™ (y,y) + By (v < 00) P (1, < 00) BT (N (y))
where (write {(7y A oo) > 77} = {7, < 0o and 7, < 7y} for short)

1
1— P;’T((Ty A oo) > T;)

TY
G (yy) =BT 1ymy) =
k=0
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Hence

w G™(y,y
BT (N(y) = —— W)
1— P (1, < 00) Py (1y < 00)
G™ (y,y) _ G™(y,y)

T1-P (< o0)  PET(rp = o0)

We bound G™ (y, y) first. As Pe"((1y Aoo) > 1) < >y P, 2) +p(y, Z)P;T(Ty < (v Ao0)),

1= BT ((ry Aoo) > ) = ply, y) (1 - P27 (ry < 7v)).

By Lemma 4.4 of [I] and , the right hand side of the above inequality is larger than

1 1
1+ AyBy 1+ Ay ZY<z<y AZ Hz<u<y Az

Py, Z)(l - P27 < %Y)> =
where we identify P~ to the probability of (7},,) on the segment [Y,y[. Therefore,
Y
G™ (y,y) < (1 +A4, > A ] Ai)(l +A,B) = V,y.
Y <z<y z<u<y

Consequently,

V,y
Pt (15 = 00)

EW’T(N(?/))]IZT(yo,nobKO < Pw’T(TY < 00) ]lZT(Y,no)>K0, Yo<Y<y-

Summing over all possibilities of Y yields that (recall that j = [ ])

Z =n,Y< VyY
EwT PwT 7_ < 00 ly|=n,Y <y ’ 1,1 "
>~ Z Z )P;)’T(T;; _ OO) ZT(Yno)>Ko

I=jno |Y|=1

= w Z n,Y < yY
S Z Z P 7T<T§7 < OO) W= = ﬂZT(Y,no)>K()7

w, T’
l=jno |Y|=l PY (TY - 0077—37 - OO)

where the last inequality holds because P“T(1y < o0) < P“’T(T; < 00) and P27 (15 = o0) >

+—
P2 (15 = o0, T = 00). Summing over the value of Y yields that

w, w, Z =n,Y < ‘/Z/»Y
PELRT SIS PO e s L
I=jno—1 |z|=l v, Y "y
As conditionally on T', P“*(7, < 00) and )N P%(‘i‘ s Vyy)]ld(yno)>;(o are independent,
T Y= b o
n—1 Z Vv
13} :’I’L,YS y’Y
BN SE| Y SEN P (m < oo BT (X g e gk,
I=jno—1 |z|=l v, Y (73 = oo, = 00)
n—1 Z 174
yl=n—ty <y Vo ¥ >
E(S 1, o IE< Lyryn
5 uS (el

I=jno—1 |a|=l [V|=1
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Note that for any |Y| =1, Z,'y'z’j_l’ygy Vy’y)ILZT(ymbKO are i.i.d. By Lemma ,

T
Py (5 =00,T¢; =00

n—1
E(Nu) <ben ) Au (28)
l=jno—1
where
Z\y|:nflfl ‘/yvp

Ay = E( Lyre,, )
l PT (13 = 00, T = 00) Z" (pno)>Ko
P

By Cauchy-Schwartz inequality,

nl<E{( S Vyp)] [PWT(EZTZZO);?O_OO)J

lyl=n—I-1

Recall that ZI" denote the number of vertices at the n-th generation of the tree 7', using Lemma
2
then Applying again Cauchy-Schwartz inequality to <Z|y|:n—l—1 VW,) implies that

A l<cloE(er;l 1 Z Vy2,p)

ly|l=n—1-1

2
- T
< CI9EGW[C§0 ! (anlfl) ],

where the second inequality follows from EZ[V, ] < c. Plugging it into implies that

n—1 2 no
E(N,1) < berierg Z Ecw| Cgol ! (ZZ,I,J | <o ZCSOEGW [(ZkT)ﬂ < 99,
k=0

l=jno—1

since Eqw [(Z])?] < co. Analoguesly, for N, we get that

Z|y| =n,Y <y y Ym
EwT N* < PWT T < OO Y ]lzT Y. Ko-
Z Z z Z P T(T — 00, Te = OO) (Yino)>Ko
I=jno—1 |z|=l viyes ¥ VY Y
And recounting on the same arguments gives a finite upper bound for E[N]. O

Proof of Lemma[9. Again we only give the proof for E(N;),). Fory € T, as Z"(yo,no) < Ky and
Yo & W, we can find the youngest ancestor Y; of y in T;,, such that Z7 (Y}, ng) > K, automatically
Y1 < yo. Let Ys be the youngest descendant of Y; in T}, such that it is an ancestor of y. Let Y3 be
the youngest descendant of y in T},, such that Z7(Y3,ng) > K.

Forany 0 < A <1,

EW.T[N’/?Q BT [ Z N(y ]IZT (yo,m0) <Ko, yoﬁw}

ly|=n

A
< Uurumerzro, wewP* (7 < 00) (B TINW) ) (29)

lyl=n

In what follows, we identify P* with the distribution of a one-dimensional random walk 7 on the
—
path [Y1, Y3]. Let us state the following lemmas which will be used in (29).
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Y3

Figure 4: An example of Y7, Y5, V3.

Lemma 13. For any y € T such that' Yy, < Y, <y < Y3, let y* be the unique child of y which is
also ancestor of Y5. Then,

A 14+ A,By\» ~x 1= 2
E“’T[N(y)D < (¢> G™ s (y, y) w (30
( Y 1+ AyAy* pl(}/ia YVZ)PY;T(T;?) = %9 7—{/_':«5 B OO)
where G175y, y) = By (0™ 1=, ) is the Green function associated with (7).
Lemma 14. 1
PT(r, < 00) < P71y, < 00)PE(F, < Fyyo1) ——- -
(1, < 00) < (Tvi < 00) Py (Ty < Tyi—1) p1(Y1,Y2) Gy

The proofs of Lemmas |13|and [14] can be found in section 5.2 of [I] with slight modifications, so

we feel free to omit them (see (5.10) and (5.11) therein). Now plugging and into
yields that

2pT < 1+ A,B, ~ ~a g *
Ew,T(NT)L\Q) S - T(TYI OO) ( + Y=y P)o/ul (7~_y < 7~_Y1_1)G7y1/\7—y3 (y’ y)) )
’ |y|:n pl(Yla Yé)2py3’ (T;;S = 00, 7'34;3 = OO) 1 + AyAy*

By Lemma [4] one sees that

2pwT 1+ A,B, ~ A
E%T(N,jg) < wT(TYI < ) ( A5y EY 7o A %yg])
|y|:n pl(YL YQ)QPYS’ (7—;3 = 00, 7—% = OO) 1 + AyAy* Y1

2P (1y, < 00) 1+ A,B,\* _
= 1 < s y) Sx Y1,Y2 1+A/\*<1+Ew*[7-Y /\7:}‘])\)
Z p1(Y1,Y2)2P}2’T(T§*,3 =00, Ty, = oo) \1 + AyA,- [ ] 2 PRARE 3

ly|=n

where Y, is the children of Y5 along [Y2, Y3]. Decompose the sum over |y| = n by

(3-1)
Y= Y Y X
= Hly|= = =1 = - Vi
lyl=n  y:lyl=n,Y1=p |z|=tno 1y:Y1=~’f?7\y|=n
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We get that

25 Ipyal
ECT(N),) < o Ox(Y2,y,Y3)
’ 2 pi(p, Y2)2 P, ;T(Tiﬁg = 00,7y = o0)

ly|l=n,Y1=p

Ty, < OO)SA [1,Ys]
+ Z Z Z wT @)\(}/27247}/3)7

where

1+ A,B,\"
Ox(Y2,y,Y3) = (#) (1 +AA*<1 + B [Ty, /\TYS]A>)-
y<iy*

Given the GW tree T', note that Sy [v, ;] € 0{A.:Y1 < 2 < Ya}, mi(p,Y2) € oA, 1w € (T
Ty,) U{Y5}}, P;%’T(T{;s =00, Ty = o0) € 0{Ay;u € Ty,} and O, (Ya,y,Y3) € 0{A,; Yo <u < Y3}
Therefore,

ET[N;L\Q] < Z ET 25,\ [,;/YQ]] ]ET|:®>\W(¥27iZ7§f3>]lZT(Y3,no)>Koi|
ly|=n,Y1=p P p’ 2) PY3 <TY3 - OO’T; - OO)
- r[2PT (v, < 00)S) v va] Ox(Y2, ¥, Y3) 127 (v4 m0)> Ko
> > E v R el @)
=1 |z|=lno—1, , & ity 12 v (Ty, = 00, )Ty =
ly|l=n,Y1=2
Observe that
P%’T(Tﬁ =00, T = 00) > p1(Ya, w) Lyy < jul=|vs|+n0-
Ox(Ya, v, Vi) Ly iy Lyrey
[ Aw(T2 Y, Y3) L 27 (v no)> Ko A, Yo <u < Y3] = @,\(Y'Q,y,Yg)E[ - *ZT(Yg, 0)>Ko ‘AY3:|
PYs (TY3 = 0077-{;3 = 00) PY3 (TY3 = oo,Ti;3 = 0)

< O, (Y2, v, }@,)E{]lzT(y3,n0)>Ko Z

w:Y3<u,|u|=|Y3|+ng

m)%}

Applying Lemma [12] to the subtree rooted at Y3 implies that

T [@/\(Y% Y, YS)]IZT(Y;smobKO

" ] S ng]ET |:(1 +
PYB’T(ﬁ*,3 =00, Ty = 00)

An)@my,m]

Plugging it into implies that
ET[N;5] < Ai(n) + As(n),

where

Ai(n) :=2cp; Y ET SW’YQH ]ET[(H

PRt O:(Y2, 5, Y5)] (33)

1
)

|y| n,Y1=p

T
_20232 > Z ET[ T;(;fzfxﬂyl YQH}ET[(l AYS)@A(Y'Q,y,YS)

I=1 |z|=Ing—1

|y\:n1Y1:96

(34)
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So,
E[N,,] < Eq[Ai(n) 4+ Ay(n)). (35)

We firstly bound A;(n), note that (since A < 1)

by

( 1+ AyBy ))‘ < (1 n 2232:y72¢y* Az>>‘ <14 Zzzgiy,@éy* Az
1+ A,A,7 — Ay - A).

with 37 o .1 < Ko If [Ya| = mng <n, [Y3] = (m + k)ng > n, by Markov property and the

fact that {Az,g =y,z # y*} is independent of {A,,z € [Ys,Y3] :=[—1,kno — 1]},

T

E|(1+ Ayg)@m,y,m]

1 Zz'gz ZFY* AQ ad ~ ~
SEY (14 )1+ SR (14 431+ B (7 A Tkno_m»]

no— n—mng

1 ~ e .
< coq + C24E<(1 + Akn0_1)(1 + M)ASEO [T-1 A Tkno—l]k>'
Now apply Lemma 5] we have
1
BT (14 )0 (Y20, Y5) | < easlay +9) PO, (36)
3

Applying Cauchy-Schwartz inequality to E [}%] yields

Ai(n) < ca Z 2(\/ [Si[[pyz}]] T[mDET[(l‘FAYs)@A(%,yJ@)

ly|=n,Y1=p

S DN Prrarr CH R rw ARG

|y\=n,Y1 =p

where the last inequality holds because E” [Si[[p’yﬂ]} < ¢a7(ng) < oo. By (36)),

0, 5 gl

lyl=n,Y1=p
:CQS]ET|: Z ]lZ{0>K0 (p ) } Z ((h +5)—|Y3|+n0+1
[ul=no ’ y:ly|=n,Ya=u

Observe that

Z (g1 + 6) Wsltmotl < Z (q1 + &) VFHHmott,

y:lyl=n,Ya=u zi|z|>n,zeW(Ty)

Hence,

1
Aq(n) < cosET [ Z ]IZT >Ko ] Z (qn + o) IeHHnotL,
(p’ ) ;|z‘>n,Z€W(Tu)

|ul=n0

24



Taking expectation under GW (dT') implies that

Eq[Ai(n)] < Czs]E[ > Lz Ko ) }EQ[ Y (m+ 5)_|Z‘+1}7
lul=no p’ ) zi|z|>n—ng,z€W
which by Lemma [12]is bounded by
c20Eq [ Z (1 + 5)7|Z|+1} = C9 Z Eq [ Z (@1 + 5)7|Z‘+1} .

zi|z|>n—ng,z€W I>n/np—1 |z|=lng,zeW

Recall that W is a GW tree of mean E[Z,,; Z,,, < K| < r". We can choose r to be ¢; + /2 so

that
ZEQ[ > [+ zl+1] <) (qr 4 0) 7T < g,
1>1 |2|=lno,zeW 1>1

where v := (q;r—j:(/f)”o <landly:=[;t] —1=j—1 Asa result, for any n > ny,

Eq[Ai(n)] < 317" < 0. (37)

Turn to Az(n). As P97 (1y, < 00) < P“7(r < 00), one sees that
1

Tx < OO)S)\ [Y1,Yz]
<2cQ32 >y ET[ T ]ET[(1+AY?))®A(Y2,y,Y3)}

=1 |z|=lno— 1\y|:n,Y1:x

which equals to

S Y Fcn Y e 0 g0 ),

=1 |z|=lno—1 5.5 = lyl=n,Y1= ’

Sx,[v1.Yo]
1(Y1,Y2)2

Note that for all z € T, 2023 ) ymnyimz BT |:S>\ Y1, i|ET [(14_%%)@/\(}/2’ ” Yg)} are i.i.d. copies

p1(Y1,Y2)
of Ay(n — |z|). Taking expectation yields that

as PT (7, < o) and are independent under P7.

n)]sjim:[ > Lecold(x) = 1)|BqlAi(n — ny)]

|z|=lno—1
j—1
i
< bC31 ZE[ Z ]1"':6<00i| fyj 17
=1 |z|=lng—1

where the last inequality follows from ([37)). By Lemma [10] for any j > 2,

J—1

Eq[A2(n)] < e ZVj_l_l < ¢33 < 00.

=1

Plugging the above inequality and into implies that
E[Ny,] < Eq[Ai(n)] + Eq[As(n)] < co.

The estimate of ]E[(N;:’Q)A] follows from similar arguments. We feel free to omit it. O
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A Proofs of one dimensional results

Proof of Lemmal2. For any i > 1, let S; = —Z;Zl log(A;A;_1) and define Sy = 0. As i —
P¥(7_y > 7,) is the solution to the Dirichlet problem

{s{(—l) =0, p(n) =1

E¢ (¢(in)) = (i) i€[0,n—1].
It follows that :

Z;‘:O exp(.5;)

Po(r w5y o im0 ®xP(Si)
> ) = S S

(38)

As a consequence, for any 0 <[ < n,
- 1 _ S,
Pl <70) = = > (T mavosz 5)
> j—0 exp(S;) [+1

exp(Si+1)
< - p—
2 i1 €XP(S;) exp(= max (5 = i)

% < exp(— max (S; — 9))).
> i—0exp(S)) 0<;<l

We only need to consider n large, take [ = |2z1n], note that

Py (fn < 71) =

PPi(fo < 7)) =

PP > T AFa) = p(L L+ 1) P (Fa < 71) +p(L L= 1) P2 (7o < 7)
< max(P{, (7, < 7), P24 (71 < 7).
Therefore,
Py (Fu NFor>m) > B (7 < F0) PP (7 < T AF)"
exp(— maxo<;<i 5)
[+1
> exp(— maxog;<i ;) <1 —exp(— max (Sg— Si1) A gggfl(sk - Sl)))m

> (1 _PU(FF > T A %n))m

- [+1 I+1<k<n

]lmaxogkngkg() (1 .
[+1

As m =~ e*", we have (1 — e~*")™ = O(1), taking expectation under P(:|4, € [a, 1]) yields

- 1
Bo(7 AT-1 > m|Ag € [a, —])

A%

—zn) ]l 1
max1<k<n(Sp—Si41)>2n t maxg<<i (S —51)>2n-

1
> EP(max Sk <0, gggi(l(Sk —S)) > zn|Ay € [a, 5DP( max (Sg — Siy1) > 2n)

n 0<k<l I+1<k<n

> “P(max S < 0, S < —2n|Ag € [a, 2])P((Sn — Si1) > 2n).

n 0<k<l
For k > 1, write ., = — Zle log A;, then as Sy = —log Ag + S%1 + Y%,
1

P(max S; <0, S; < —zn|A € [a, —])
0<k<l a

1
>P(Ag> 1L,A > 1, max % <0, S 4 < - |4 € [a,~])
1<k<i—1 2 a

1
= P(Ao > 1|40 € [0, -)P(4 > DP( max 4 <0, F < —?)

- 1<k<l—1
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note that

n 1 n
< < ——) > — < -
P(lgrggf_lfk <0, A< -5) 2P < -5)
and X
Sp— S = —log Ay —log A, — 2 Z log Ag.
k=1+2
Therefore,
~ 5 1 c n
]ID()(Tn NT_1 > m]Ag € [a, a]) > EP(%,l < —T)P(Sn — SlJrl 2 zn)
n—1
c zn zn
> P < —)P(An < DP(A, < DP(— > log Ay > )
k=142
n—1
c zn n
> P < =)P(= ) log Ay > T
k=142
. n = n
> —P loc A, > —)P log A, < ——

Applying Cramér’s theorem to sums of i.i.d. random variables log A, we have

Bl A1l € o, 1) 2 esplon (402 + (1= =) (=) )

where [(x) = sup,cp{tr —log E(A")} is the associated rate function. O

Proof of Lemma[3. Replace 1(2(1_—_221)) using

I(—2) = sup{—tz — log E(A")} = sup{—tz — log E(A'™")}

teR teR
=sup{—(1 —s)z —log E(A")} = I(x) — x.
seR

For fixed z, by convexity of the rate function I, the supremum of —2/(5>) — (1 — zl)I(ﬁ) is
obtained when z; = 1, we are left to compute

Sup{log% - I(Z>

1
0<z z i 5}’

clearly, M < —t*, when z is such that (¢t — logE(A"))(t*) = z > 0, the maximum is
obtained. O

Proof of Lemmal4 . Observe that
Fyy Ay,
Py (7, < 7~'§71)GTY1ATY3 (v,y) = Py, (7, < G4 7~'Yg,)E(; [ Z 1{771@1/}}
k=0
’7'<)/—1A7:Y3 7:<Y—1/\7:y3

SP{% (7y < 7:)(71 N 7~_Y3)E;j Z 1{77k=y}:| = E% Z 1{77k=y}]'
k=0 k=0
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Obviously,

'T—Vl /\7~'Y3

E?%{ > 1{77“}} < By [T A Tyl

k=0

This gives us (11)).
Moreover, to get , we only need to show that for any 0 < p < m, we have

E9[Fpr A Tm) < 14 ApApin + ApAp i B2 [7y A T (39)
In fact, since 0 < A < 1, implies that
E9[Fyy AT < 1+ (ApAps) + (ApApin) B2 [7p AT

applying this inequality a few times along the interval [Y7, Y3], we obtain . It remains to
show (9). Observe that

E¥[Fyey A ) = w(p,p 1)+ @(p,p+ 1) (1 + By [Fpet AT

=1+ 3(p,p + DE [Tyt AT

=1+w(pp+ 1)( U Tms T < Tp) + E 1 [T Tp < Tn) + P (T < Tm)E';)[%p_l A %m]>
It follows that

- 14+ w + DEY Ty A T
E;}[%p—l A7 = w(p, p ) p+1[ p ]
1—w(p,p+ 1)Pp+1(7p < Tm)
1+w(p,p+ 1)Ep+1[7_p/\7'm] < 1 +w(p,p+ 1)Ep+1[Tp/\Tm]
G(p,p— 1) +@(p,p+ V)P4, (Fn < 7) w(p,p — 1)

Therefore, B
E9[Fpr A ) < (14 ApApin) + ApApi1 B [Fp A Tl

]

Proof of Lemma[3. Recall that E[A'] < oo for any ¢t € R. By Holder's inequality, it suffices to show
that there exists some ¢’ > 0 such that for all n large enough,

B[(Blnnl) ] <@ +o) (40)

It remains to prove ([40)). In fact, we only need to show that for 1 > X = A(1 +4) >0

s logE [(E [T1 A T,J)X}

n—00 n

< YN +1/2) (41)

where 1(t) = log E(A"). One therefore sees that if t* — 1/2 > X, then (N + 1/2) < ¢(t*) =
—logq,. To show , recall that for any 0 <7 <n —1,

T_1A\Tn
GF1M (3,4) = EZW[ Z 1n=1}
k=0
1
1—&(i,i — )Py (7 < 71) — @(i,i + 1) Py (7 < Tn)
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Then, E¢[71 A7) =1+ S Pg(7; < 7_1)G™1"(i,4) implies that

E¢[7_1 A7) 1—1—2 Py (7 < 7)
-1 Al 5 w(i,i— )P (7o) < 7)) +a(iyi+ 1)R+1(Tn <)

Recall that by (38), if 5; := 3", —log(A;_1A;) fori > 1 and S, =0, then

~ 1
Pt <T{)= ———
0 ( i 1) ZZ:O oSk
~ eSi
P’ (7T ,<T) = —
~ 1
P (T <T) =
+1\'n 7 Zk i1 eSk Si+1
It is immediate that
~ 1
Py (7, < 7-1) B S ek
~ ~ Si AzAz
(i, 1 1)PW (T4 <) +w(i,i+ 1)R+1(Tn < Ti) 1+A3Ai+1 Z;:O = + 1+AiA+i1+1 ZZ:iJrlflfs’“*S"“
< 1
— 1 eSi AiAi 1

1+A;Ai41 22:0 eSk 1+A;Ai41 ZZ:iJrl esk_si+1

Let X, = —log Ax. For any 0 <14 < n, define

H(—X):=max(—X; — Xj41 — - — X;1)
0<5<e
H,_i1(X):= z‘ngg%én(XiH + -+ X;)
Note that
Sy — S; < 2Hi(=X) + (—X) 1, Y0 < k < 4,
and that
Sk — Si+1 S 2Hn_i_1(X) + (Xi+1)+,Vi +1 S k S n.
Then,
1 .esi S 1 1 S 1 o 2Hi(~X)
1+ AiAi—i-l Z’ILc:O eSSt T 1+ AiAi+1 (1 + i>e2Hi(—X)+(—Xi)+ - n(Al —+ 1)(1 + AiAH—l) '
Similarly,
AiAH—l 1 > (Ai-i-l VAN 1)A1Az+1 —2H i 1(X)
1+ AiAi+1 ZZ:i—i—l eSk=Sit1 n(l + AiAi+1) '
So,
1 €Si AiA/L'Jrl 1
L+ AiAin ST _geSe 1+ AjAip Do, e Sim
> 1 o 2Hi(=X) (Aip1 A 1)AiAi+1e—2Hn,i,1(X)
l( 1 (Aiga A 1)AiAi+1>€2Hz‘(X) Ve 2Hn-i—1(X)
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This implies that

Pe(7; < 71)

Wi, i — 1) P2 (T2 < T) + (6,0 + 1) Py (T < T)

1+ A A o A
<n((A; Vv 1)(1+ AA, il >2Hz< X)AHn i1 (X)
(A D+ Ao & oSG )e

Thus, for any A <1, n > 2,

n—1

- 14+ A A; A S ,
Eéd[i1 A 7~_n]>\ 5 n+ n2 Z ((Az V. 1)(1 + AiAi+1> + (A.Jrj_/\ 1)A-"r;1‘+1> €2>\HZ( X)NHp—i—1(X)
i=0 1 (] 1

By independence,

EE(U)J [T_1 A %n]/\ <n4n? Jdnax E[GZAH”L(_X)/\anifl(X)] (42)

Recall that ¢(\) = log E[A*] and % = — >_F_ log A;. Let t > 0, fori > 1, z > 0,
P(Hi(~X) > zi) < P(max [1.% — w(t)k] > ati — (1)i)

< P(max e VO > p@t=v(®)i)
0<k<i

< e (@-v )i (43)

where the last inequality stem from Doob’s maximal inequality and the fact that (e*t’yf*w(t)j)] is a
martingale. Since z > E(log A), I(x) = sup,o{tz — ¢ (t)}, we have

P(H;(—X) > xi) < e 1@, (44)
Similarly, for any j > 1 and = > E[—log A] .
P(H,(X) 2 ) < P(quis [0 — v(~)K] = 1] — (~))
< P(max ¢ 7b0k > oat—i(-1)i)

0<k<j
< e (@t=v(=0) (45)
which implies that '
P(H;(X) > xj) < e 1020, (46)

Further, for 0 < x < E[— log A], one sees that by Cramér’s theorem,
P(H;(X) < zj) < P(Xy + - + X; < xj)
=P(—X; — - — X; > —aj) < e 100, (47)

Take nn > 0. In (42), we can replace H;(—X) A H,—;—1(X) by Hi(—=X) A Hy—i—1(X) A Knn with
some K > 1 large enough. In fact,

E[e2/\Hi(_X)/\Hn7i71(X)] < E[ez)‘Hi(_X)/\anifl(X); HZ-(—X) Vi aniq(X) < KU”]

-

Ex (@)

+ B[N i (0 (X)) v H, 1 (X) > Knl

J/

Ex )

[1]
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Observe that
=k(i) < E[e?CX: Hy(—X) > Knn] + E[e2Mr-i1 0 1 (X)) > Knn)
= El + EQ
Let us bound =,

Hi(-X)
=1 :E/ 20" L, x> K dT = / 22 P(H;(—X) > Knn V x)dx
i

—00

Knn 00
= / 22 dxP(H;(—X) > Knn) + / 22 P (Hy(—X) > x)da

Knn

—eP KPP (H(—X) > Knn) +/ 2Anne* MM P (Hy(—X) > tnn)dt
K

o0

By applying (43), one sees that for any 0 < i <n—1and =3 > 2},

oo
=, <A oKt (u)i +/ 2)\nn€2>\tnn€—utnn+w(u)idt
K

e K@) 4 9y e¥l / nne " dt
K
S36—Knn—l—’t,/)(ii)n7

which is less than 1 when we choose K large enough. Similarly, we can show that for any ¢ < n —1,
E2 S ]-)
for K large enough. Consequently, becomes that

EES[7 1 A7) < 3n° +n oJuax =5 (7). (48)

It remains to bound =y (i). Take sufficiently small e > 0 and let L = [%]. For any i such that
lilen] <i<(lh+1)|en] and lhlen] <n—i—1< (la+1)|en] with 0 <,y < L, we have

Eeli) < Y @R IImP (hpn < Hi(—X) < (ky + Dgn)P(kangn < Hy_io1(X) < (ka + 1)nn)
0<k1,k2<K
S 62)\klAk2nn+2)\nnP(Hi(—X) 2 k‘ﬂ?n)P(lﬂﬂ]n S Hn,ifl(X) < (k’g + 1)7777,)

0<k1,ko<K

By (44)), we have
P(H;(—X) > kymn) < e L(@1)i
klnn klnn

where x; is the point in —m) LenJ’llLan
deviation estimates 6 we have

where I reaches the minimum in this interval. By large

P(kaynn < Hy_i 1(X) < (ky + )gn) < ¢ 1@2)0=0)

kinn (k2+1)nn
lo+1)en]|’ l2|en]

where x5 is the point in [( | where I reaches the minimum in this interval. Therefore,

= 2Xk1 Akaonn42Ann  —I(z1)l1 |en] ,—I(—z2)l2|en]
Ex() < E e e e

0<k1,k2<K
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Taking maximum over all [1, 5, k1, ko yields that

EES[F ATt < 3n2+n?K? max  exp{2Xe Akonn+2Xnn—1I(z1)l |en] —1(—x2)ly|en]}. (49)

11,12 k1 ko
Observe that
20k1 A konn + 2 nn — I(z1)ly |en| — I(—x9)la|en]
2N (1l A wala)|en] — I(xy)l|en] — I(—x2)lz2[en] + 3Ann.
Define
LX) = S%p{ (xlzl A x222>)\ — I(x1)z1 — I(—x2) 22},

where D = {z1, 29, 21,20 > 0,21 + 29 < 1}.

By Lemma 8.1 in [1], one concludes that
log EES[7_1 A 7A 142\
lim sup 0g BEG(T1 A Tl < L(2X) = ¢( +

n—00 n 2

).

B Some observations on random walks on random trees

Proof of LemmalI0 As [(z) is identically distributed under P,
Ep( D Tr<oo)E(B) = E[ Y F;" (7 < 00)E(B)

|z|=n |z|=n.

=E | > E"(P7(r, < 00))ET(B(x))

|z|=n

P T (1, < 00) is an increasing function of A, since

P;J’T(Tz < 0) = P;J’T(T; < 00) (Z P;’T(T;g < min(7, oo))k> p(z,z)
k>0
w, T
Pp (T; < OO) A;Am

1 — P27 (12 < min(7,,00)) 1 + A¢ B’

recall that () is also an increasing function of A,, moreover, conditionally on A,, P;;)’T(Tx < o0)
and 5(z) are independent, thus by FKG inequality,

E" (P (1, < 00)B(x)) = EN(ET (P (1, < 00)B(2)|As))
= E"(E"(Py7 (7, < 00)|4,)E" (B(x)|A,))
> E'(P27 (7, < 00))E" (B(2))

Therefore,

E( Y E'(PoT(r, < 00)E(B(x) | <E| D E"(PY (1, < 00)B(x))

|z[=n |z|=n

=E Z PoT (7, < 00)B(x)

|z|=n
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For any GW tree and any trajectory on the tree, there is at most one regeneration time at the n-th

generation, therefore,
Z ]17z<007 nk7£;7Vk>Tz S 1

|z|=n

. . (JJ,T .
By taking expectation w.r.t. E%>" and using the Markov property at 7.,

> PeT(r, < 00)B(z) < 1

|z|=n
Whence
E() 1, <)E(B) <1
|z|=n
By transient assumption it suffices to take c¢;; = E(ﬁ) < 00. ]

Proof of Lemma (11| and Corollary[3 Let T;, i > 1 be independent copies of GW tree with offspring
distribution (g), each endowed with independent environment (w,,z € T;). Let p(¥ be the root of
T;. In such setting, 5(p™), i > 1 are i.i.d. sequence with common distribution 5.

For each T}, take the left most infinite ray, denoted v{” = p® v{?, . o . Let Qz) = {y #
x; T = Z} be the set of all brothers of x. Fix some constant C, deflne

. 1
R; =inf{n > 1; 3z € Q(vV), < O
{ (o) A.B(z) J
By Equation ([15]),
<1+ ! <1+ ¢
Blow.,) —  Ag APR) T Ag

Also R; and {A (), n > 0} are independent under (). By iteration,

1 1 1 1
S <14 <l ————(1+ =)
ﬁ(p( )) Avéi)Aygi)ﬁ(v§ )) Av(()i) AUY') Avgi)AUgi)ﬁ(Ué ))
<1+ A2+ A2
zA() H : AS)H 2

For any n > 0, denote

—1+ZA() HA(,+A( HA2 (50)

1
Thus 300 < C(R; — 1), note also that, since & = E(A™?) =1+ 34 + 3, E(C(n)) < &5t
Therefore, for any K > 1,

; <C(min R; —1).
Zilil B(p@) 1<i<K
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Taking expectation under IP yields (as R; i.i.d. let R be a r.v. with the common distribution)

1

)< B Cie
E(Zi]il 5(/)“))) IE(E<C(1][<m<n;<R DIR; 1<i<K))
< C34E( m1n1<z<KR < c34 Z£3+1P<R >+ 1)1{
n=0
n—1
< C3q Z ngE((%:k:O (d(”k)ﬂ))z{
n>0

where ¢ = P(ﬁ > ). Let f(s) = Y41 k5", as f(s)/s L ¢ as s | 0, for any e > 0, we can
take C' large enough to ensure % < q1(1+¢), thus

1 f(d¢)
El=m——= <034Z§n+1 1) ) < ean Y G (@ (1+e)™
Zz 1 B< n>0 n>0

Now take € such that ¢;(1+¢) < 1, then take K large enough such that &(q;(1+¢))® < 1 leads to

1
() < 15 < 00

S B(p")

Similarly, the following also holds

1
]E( )<612<OO.

S AwBpD)

In particular, if ¢;(, < 1, we can take K = 1 and obtained Further, it follows from and
Chauchy-Schwartz inequality that

: 1
C(n)> < (n+2) (1 +
kz-; Ao A

(%)
Uk

k—1

H (z>+AUéZ)HA )

Thus,
E[C*(n)] < cs5(n + 2)E7.

As soon as (4 < 00, the previous argument works again to conclude that for K large enough,

1 1
F(— ~
S rem) TSR 2 e

plt

)<Cl3<OO.
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