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Speed of Vertex reinforced jump process on Galton-Watson
trees

Xinxin Chen, Xiaolin Zeng

Abstract

We give an alternative proof of the fact that the vertex reinforced jump process on Galton-
Watson tree has a phase transition between recurrence and transience as a function of c, the
initial local time, see [3]. Further, applying techniques in [1], we show a phase transition
between positive speed and null speed for the associated discrete time process in the transient
regime.

1 Introduction and results

Let G = (V,E) be a locally finite graph endowed with its vertex set V and edge set E. Assign to
each edge e = {u, v} ∈ E a positive real number We = Wu,v as its conductance, and assign to each
vertex u a positive real number φu as its initial local time. Define a continuous-time V valued process
(Yt; t ≥ 0) on G in the following way: At time 0 it starts at some vertex v0 ∈ V ; If Yt = v ∈ V , then
conditionally on {Ys; 0 ≤ s ≤ t}, the process jumps to a neighbor u of v at rate Wv,uLu(t) where

Lu(t) := φu +

∫ t

0

1{Ys=u}ds. (1)

We call (Yt)t≥0 the vertex reinforced jump process (VRJP) on (G,W ) starting from v0.
It has been proved in [6] that when G = Z, (Yt) is recurrent. When G = Zd with d ≥ 2, the

complete description of its behavior has not been revealed even though lots of effort has been made,
see e.g. [2, 3, 5, 6, 7, 13].

Here we are interested in the case when G is a supercritical Galton-Watson tree, as we will see,
acyclic property of trees largely reduces the difficulty to study this model. In [5] it is shown that the
VRJP on 3-regular tree has positive speed and satisfies a central limit theorem. Later, Basdevant
and Singh [3] gave a precise description of the phase transition of recurrence/transience for VRJP on
supercritical Galton-Watson trees. In this paper, our main results, Theorem 2, describes the ballistic
case of the VRJP when it is transient on supercritical Galton-Watson trees without leaves. Our proof
is based on the random walk in random environment (RWRE) representation result of Sabot and
Tarrès [13], and techniques on the studies of RWRE on trees, especially a result of Aidekon [1] (see
also e.g.[?, ?] for more on the studies of RWRE on trees).

Consider a rooted Galton-Watson tree T with offspring distribution (qk, k ≥ 0) such that

b :=
∑
k≥0

kqk > 1.

For some constant c > 0, we denote VRJP(c) the process (Yt) on the Galton-Watson tree T = (V,E)
with We ≡ 1, ∀e ∈ E and φx ≡ c, ∀x ∈ V , starting from the root ρ. Hence the behaviors of this
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process depends on G and c. This definition is equivalent to VRJP with constant edge weight W and
initial local time 1, up to a time change. We first recall the phase transition result obtained in [6].
Let A be an inverse Gaussian distribution of parameters (1, c2), i.e.

P(A ∈ dx) = 1x≥0
c√

2πx3
exp

{
− c2(x− 1)2

2x

}
dx, (2)

The expectation w.r.t. P(dx) is denoted E.

Theorem 1 (Basdevant & Singh). Let µ(c) = infa∈R E[Aa] = E[
√
A], then the VRJP(c) on a

supercritical GW tree with offspring mean b is recurrent a.s. if and only if bµ(c) ≤ 1.

Remarks 1. This phase transition was proved in [3] by considering the local times of VRJP. We will
give another proof from the point of view of a random walk in random environment (RWRE), as a
consequence of Theorem 3.

When bµ(c) > 1, a further question is to study the rate of escape of the process. Define the
speed of the process (Y ) by

v(Y ) := lim inf
t→∞

d(ρ, Yt)

t
= lim

t→∞

d(ρ, Yt)

t
(3)

where d is the graph distance, and the last equality will be justified by Lemma 1. To study the speed,
we use the RWRE point of view, relying on a result of Sabot & Tarrès [13], in particular, the following
fact:

Let (Yt) be a VRJP on a finite graph G = (V,E) with edge weight (W ) and initial local time
(φ). If (Zt) is defined by

Zt := YD−1(t) where D(t) :=
∑
x∈V

(Lx(t)
2 − φ2

x), (4)

then (Zt) is a mixture of Markov jump processes (c.f. also [14]). Moreover, the mixing measure is
explicit.

Applying this result to our VRJP(c) on a tree, denote (ηn)n≥0 the discrete time process associ-
ated to (Zt), it turns out that (ηn) is a random walk in random environment. In [1], Aidekon gave
a sharp and explicit criterion for the asymptotic speed to be positive, for random walks in random
environment on Galton-Watson trees such that the environment is site-wise independent and identi-
cally distributed. This result cannot apply directly to the time changed VRJP(c), since the quenched
transition probability depends also on the environment of the neighbors, see (7).

Aidekon’s idea was to say that, most of the time the random walk will be wandering on long
branches of the GW tree, it is then enough to look at the random walk on the half line. Thanks to
the i.i.d. structure of the environment, he obtains sharp estimates for the one dimensional random
walk, which allows him to come back to the tree without losing too much information. This also
explains why the criterion depends on q1, the probability that the GW tree generate one offspring.

In our case the environment is also i.i.d., the same idea will also work. Compare to [1], we mainly
deal with the local dependences of the quenched probability transition. We believe that same type of
criterion also holds for a larger type of random walk in random environment, with suitable conditions
on the moments of the environment and locality of the transition probabilities.

Let us state our criterion, similar to (3), define

v(Z) = lim inf
t→∞

d(ρ, Zt)

t
, v(η) = lim inf

n→∞

d(ρ, ηn)

n
. (5)
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To study the speed, our techniques can only deal with trees without leaves, hence we assume that
q0 = 0. In addition, we assume that

M :=
∑
k≥0

k2qk <∞.

For any r ∈ R, let
ξr = ξr(c) := E[A−r].

By (2), ξr ∈ (0,∞) for any r. In particular, µ(c) = ξ−1/2(c). Our main theorem states that the
speed depends on the value of q1 and c.

Theorem 2. Consider VRJP(c) on a supercritical GW tree such that bµ(c) > 1, we have

(1) limt→∞
d(ρ,Zt)

t
and limn→∞

d(ρ,ηn)
n

exist almost surely,

(2) Assume q0 = 0 and M < ∞. If q1ξ1/2 < 1, then v(η) > 0, v(Z) > 0; if q1ξ1/2 > 1, then
v(η) = v(Z) = 0.

Corollary 1. VRJP(c) (Yt)t≥0 on a supercritical GW tree such that bµ(c) > 1, admits a speed
v(Y ) ≥ 0 a.s. If in addition q0 = 0, M <∞ and q1ξ1/2 < 1, then v(Y ) > 0.

Remarks 2. Our method cannot tackle the critical case q1ξ1/2 = 1. Moreover, whether q1ξ1/2 > 1
implies v(Y ) = 0 remains unknown.

The rest of this paper is organized as follows. In Section 2, we use a result of Sabot & Tarres [13]
to recover the RWRE structure of VRJP. Section 3 is devoted to an alternative proof of Theorem 1,
as an application of the RWRE point of view. Section 4 establishes the existence of the speed for
the RWRE and Theorem 2. The proofs of some technical lemmas are left in Appendix.

2 RWRE on Galton-Watson tree

2.1 Mixture of Markov jump process by changing times

In this subsection, we consider a VRJP (Yt)t≥0 on a tree T = (V,E) rooted at ρ, with edge weights

(W ) and initial local time (φ). If x 6= ρ, let
←
x be the parent of x on the tree, the associated edge is

denoted by ex = (x,
←
x) with weight Wex .

Recall that the time changed version of VRJP (Zt) defined in (4) is mixture of Markov jump
processes with correlated mixing measure. The advantage of considering VRJP on trees is that, the
random environment becomes independent.

Theorem 3. Let T = (V,E) be a tree rooted at ρ, endowed with edge weights (We)e∈E and initial
local times (φx)x∈V . Let (Ax, x ∈ V \ {ρ}) be independent random variables defined by

P(Ax ∈ da) = 1R+(a)φx

√
Wexφxφ←x

2πa3
exp(−Wexφxφ←x

(a− 1)2

2a
)da.

If Xt is a mixture of Markov jump processes starting from ρ, such that, conditionally on (Ax, x ∈
V \ {ρ}), Xt jumps from x to

←
x at rate 1

2
Wex

φ←
x

φxAx
and from

←
x to x at rate 1

2
Wex

φxAx
φ←
x

. Then Xt

and Zt (defined in (4)) has the same distribution.
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Proof. On trees, VRJP observed at times when it stays on any finite sub-tree Tf = (Vf , Ef ) (also
rooted at ρ) of T , behaves the same as VRJP restricted to Tf ; moreover, the restriction is independent
of the VRJP outside Tf . Therefore, it is enough to prove the theorem on finite tree Tf . By Theorem
2 of [13] (with a slight modification of the initial local time, or a more detailed version in [?], appendix
B), if we denote

lx(t) =

∫ t

0

1Zs=xds,

then

Ux =
1

2
lim
t→∞

(
log

lx(t) + φ2
x

lρ(t) + φ2
ρ

− log
φ2
x

φ2
ρ

)
exists a.s. and {Ux, x ∈ Vf , Uρ = 0} has distribution (where du =

∏
x6=ρ dux)

dQW,φρ,Tf
(u) =

∏
x 6=ρ φx√

2π
|Vf |−1

e
−

∑
x∈Vf

ux−
∑
{x,y}∈Ef

1
2
Wx,y(eux−uyφ2

y+euy−uxφ2
x−2φxφy)

√ ∏
{x,y}∈Ef

Wx,yeux+uydu.

Now, conditionally on (Ux), Zt is a Markov process which jumps at rate (from x to z) 1
2
Wx,ze

Uz−Ux .

For ex = (x,
←
x) ∈ Tf , if we writes yex = (u←

x
− log φ←

x
)− (ux − log φx), then (note that u 7→ y is a

diffeomorphism and dy = du) the density of (u) also writes

dQW,φρ,Tf
(u) =

∏
ex={x,←x}∈Ef

√
Wexφxφ←x

2π
exp

(
1

2
(yex −Wexφxφ←x (eyex + e−yex − 2))

)
dy.

Plugging ax = e−yex entails that ax is Inverse Gaussian distributed with parameter (1,Wexφxφ←x ) and

dQW,φρ,Tf
(a) =

∏
x∈Vf\{ρ}

1ax>0

√
Wexφxφ←x

2πa3
x

exp(−Wexφxφ←x
(ax − 1)2

2ax
)dax

Finally note that

1

2
Wx,ze

uz−ux =

{
1
2
Wx,z

φz
φxax

if z =
←
x

1
2
Wx,z

φzaz
φx

if
←
z = x.

For VRJP(c) on a GW tree, the theorem immediately implies:

Corollary 2. On a sampled GW tree T = (V,E), the time changed VRJP(c) (Zt) is a random
walk in i.i.d. environment (Ax, x ∈ V \ {ρ}), where (Ax) are i.i.d. inverse Gaussian distributed with
parameters (1, c2), and conditionally on the environment, the process jumps at rate{

1
2Ax

from x to
←
x

1
2
Ax from

←
x to x.

(6)

2.2 RWRE on Galton Watson tree and notations

In the sequel, let T = (V,E) be a Galton-Watson tree with offspring distribution {qk; k ≥ 0}. Recall
that (ηn)n≥0 denotes the discrete time process associated to (Zt) (or (Yt)), which is a random walk
in random environment.
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Note that there are two level of randomnesses in the environment. First, we sample a GW
tree, T , whose law is denoted by GW (dT ). Then, given the tree T (rooted at ρ), we define
ω = {Ax, x ∈ V \ {ρ}} as in Corollary 2, whose law is

∏
x∈T\{ρ}P(dAx), which we denote abusively

P(dω). Finally, given (w, T ), the Markov jump process (Zt; t ≥ 0) is defined by its jump rate in (6).

For convenience, we artificially add a vertex
←
ρ to T , designing the parent of the root. Let Aρ be

another copy of A, independent of all others. Now, (abusively) let ω = (Ax, x ∈ V ) be the enlarged

environment. Given (ω, T ), define the new Markov chain η, which is a random walk on V ∪ {←ρ},
with transition probabilities

p(x,
←
x) = 1

1+Ax
∑
y:
←
y =x

Ay

p(x, z) = AxAz
1+Ax

∑
y:
←
y =x

Ay
where

←
z = x ∈ V

p(
←
ρ, ρ) = 1

(7)

This modification will not change the recurrence/transience behavior of the RWRE η nor its speed
in the transient regime. We will always work with this modification in the sequel.

Let us now introduce the notation of quenched and annealed probabilities. Given the environment
(ω, T ), let P ω,T

x denote the quenched probability of the random walk η with η0 = x ∈ V a.s. Denote
by PTx , Q, Pρ the mesures:

PTx (·) :=

∫
P ω,T
x (·)P(dω),

Q(·) :=

∫
1{·}P(dω)GW (dT )

Pρ(·) :=

∫
PTρ (·)GW (dT ),

and the associated expectations are denoted Eω,T
x , ETx , EQ and E. Note the slight difference for the

expectation corresponds to Q: EQ. For brevity, we omit the starting point if the random walk starts
from the root; that is, we write P ω,T , PT and P for P ω,T

ρ , PTρ and Pρ, Notice that P is the annealed
law of η.

For any vertex x, let |x| = d(ρ, x) be the generation of x and denote by [[ρ, x]] the unique shortest
path from x to the root ρ, and xi (for 0 ≤ i ≤ |x|) the vertices on [[ρ, x]] such that |xi| = i. In
particular, x0 = ρ and x|x| = x. In words, xi (for i < |x|) is the ancestor of x at generation i. Also
denote ]]ρ, x]] := [[ρ, x]]\{ρ} and ]]ρ, x[[:= [[ρ, x]]\{ρ, x}.

3 Phase transition: an alternative proof of Theorem 1

The ideas follow from Lyons and Pemantle [11], by means of random electrical network.

Proof of Theorem 1. Recall that the environment ω is given by i.i.d. random variables Ax, x ∈ T ,
with inverse Gaussian distribution IG(1, c2). The RWRE is equivalent to an electrical network with
random conductances:

Cex := C(x,
←
x) = (

∏
u∈ ]]ρ, x[[

Au)
2Ax,∀x ∈ V \ {ρ}.

We omit the proof of the transient case which is quite similar to that in Lyons and Pemantle [11],
however, we will detail the recurrence case. That is, we will show that if bµ(c) ≤ 1, then the RWRE
is recurrent a.s.
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First consider the case bµ(c) < 1, note that

EQ

[∑
n≥1

∑
|x|=n

C1/4
ex

]
=
∑
n≥1

∫ (∫ ∑
|x|=n

C1/4
ex P(dω)

)
GW (dT )

=
∑
n≥1

∫ ∑
|x|=n

E[A1/2]n−1E[A1/4]GW (dT )

=
∑
n≥1

bnE[A1/2]n−1E[A1/4].

Because µ(c) = E[A1/2] < 1/b, we have, for some constants c1, c2 ∈ R+

EQ

[∑
n≥1

∑
|x|=n

C1/4
ex

]
≤ c1

∑
n≥0

(bµ(c))n ≤ c2 <∞,

which implies that ∑
n≥1

∑
|x|=n

C1/4
ex <∞, Q-a.s.

As a result, there exists a stationary probability a.s., moreover η is positive recurrent.
Turning to the case bµ(c) = 1, let Πn := {ex : |x| = n} be a sequence of cutsets. Observe that

Wn :=
∑
|x|=n

∏
u∈ ]]ρ, x]]

A1/2
u =

∑
|x|=n

C1/4
ex A

1/4
x .

is a martingale with respect to its natural filtration. By Biggin’s theorem ([4, 10]), it converges a.s.
to zero. We are going to show that Q-a.s.,

lim inf
n→∞

∑
|x|=n

C1/4
ex = 0, (8)

in particular, this will imply that Q-a.s. infΠ: cutset

∑
ex∈Π Cex = 0. By the trivial half of the max-flow

min-cut theorem, the corresponding network admits no flow a.s. Hence, the random walk is a.s.
recurrent. Observes that∑

|x|=n

C1/4
ex =

∑
|x|=n

∏
u∈ ]]ρ, x[[

A1/2
u A1/4

x 1{Ax≥1} +
∑
|x|=n

∏
u∈ ]]ρ, x[[

A1/2
u A1/4

x 1{Ax<1}

=
∑
|x|=n

∏
u∈ ]]ρ, x]]

A1/2
u A−1/4

x 1{Ax≥1} +
∑
|y|=n−1

∏
u∈ ]]ρ, y]]

A1/2
u

∑
x:
←
x=y

A1/4
x 1{Ax<1}

≤ Wn +
∑
|y|=n−1

∏
u∈ ]]ρ, y]]

A1/2
u νy,

where νy denotes the number of children of y. Letting n go to infinity yields that

0 ≤ lim inf
n→∞

∑
|x|=n

C1/4
ex ≤ lim inf

n→∞

∑
|y|=n−1

∏
u∈ ]]ρ, y]]

A1/2
u νy.

For any K ≥ 1, separating the sum over vertices y according to {νy < K} or {νy ≥ K}, the last
term is bounded by

lim
n→∞

KWn−1 + lim inf
n→∞

∑
|y|=n−1

∏
u∈ ]]ρ, y]]

A1/2
u νy1{νy≥K}

= lim inf
n→∞

∑
|y|=n−1

∏
u∈ ]]ρ, y]]

A1/2
u νy1{νy≥K}.
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By Fatou’s lemma,

EQ

(
lim inf
n→∞

∑
|y|=n−1

∏
u∈ ]]ρ, y]]

A1/2
u νy1{νy≥K}

)
≤ lim inf

n→∞
EQ

( ∑
|y|=n−1

∏
u∈ ]]ρ, y]]

A1/2
u νy1{νy≥K}

)
= EQ[νρ, νρ ≥ K],

since for all |y| = n− 1, νy is independent of
∏

u∈ ]]ρ, y]] A
1/2
u and EQ

(∑
|y|=n−1

∏
u∈ ]]ρ, y]] A

1/2
u

)
= 1.

Consequently, for any K ≥ 1,

EQ

[
lim inf
n→∞

∑
|x|=n

C1/4
ex

]
≤ EQ[νρ, νρ ≥ K].

As b = EQ[νy] <∞, letting K →∞ gives

EQ

[
lim inf
n→∞

∑
|x|=n

C1/4
ex

]
= 0.

This implies (8).

4 Speed when transient

Turning to the positivity of v(Z) and v(η), note that the processes (Zt) and (ηn) are mixture of
Markov processes but (Yt) is not, in fact, (Yt) escapes faster than (Zt), in particular, when v(Z) > 0,
we have v(Y ) > 0. But we are not sure whether v(Z) = 0 implies v(Y ) = 0.

4.1 Regeneration structure

In this section, we show that, when the process (ηn) (or (Zt)) is transient, its path can be cut into
independent pieces, using the notion of regeneration time. As a consequence, the speed v(η), v(Z)
exists a.s. as a limit (not just a lim inf).

On a tree, when a random walk traverses an edge for the first and last time simultaneously, we
say it regenerates since it will now remain in a previously unexplored sub-tree. For any vertex x, let
D(x) = inf{k ≥ 1, ηk−1 = x, ηk =

←
x}, write τn = inf{k ≥ 0, |ηk| = n} and define the regeneration

time recursively by{
Γ0 = 0

Γn = Γn(η) = inf{k > Γn−1; d(ηk) ≥ 3,D(ηk) =∞, τ|ηk| = k}.

where d(x) is the degree of the vertex x.

Lemma 1. Let S(·) = P(·|d(ρ) ≥ 3, D(ρ) =∞), if η is transient, then

i) For any n ≥ 1, Γn <∞ P-a.s.

ii) Under P, (Γn+1−Γn, |ηΓn+1|−|ηΓn|, AΓn+1)n≥1 are independent and distributed as (Γ1, |ηΓ1|, AΓ1)
under S.

iii) ES(|ηΓ1|) <∞.
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We feel free to omit the proof because it is analogue to ‘Fact’ in [1] p.10. In addition, Lemma 1
also holds without assuming d(ηk) ≥ 3 in the definition of Γn, but we will need this assumption later
in the proof of Lemma 7.

By strong law of large numbers, one immediately sees that there exist two constants c4 ≥ c3 ≥ 1
such that P-a.s.,

lim
n→∞

|ηΓn|
n

= c3 ∈ [1,∞), lim
n→∞

Γn
n

= c4 ∈ [c3,∞].

In addition, for any n ≥ 1, there exists a unique u(n) ∈ N such that

Γu(n) ≤ n < Γu(n)+1

and |ηΓu(n)
| ≤ |ηn| < |ηΓu(n)+1

|. Letting n go to infinity, (in particular u(n)→∞) in

|ηΓu(n)
|

Γu(n)+1

≤ |ηn|
n

<
|ηΓu(n)+1

|
Γu(n)

=
|ηΓu(n)+1

|
u(n)

u(n)

Γu(n)

.

We have P-a.s.
|ηn|
n
→ v(η) :=

c3

c4

∈ [0, 1].

For Zt, the same arguments can be applied. As a consequence of the i.i.d. decomposition, v(Z) =

limt→∞
|Zt|
t

exists a.s. The existence of v(Y ) = limt→∞
|Yt|
t

can be justified by performing the time
change D(t) between consecutive regenerative epochs.

4.2 The auxiliary one dimensional process

The RWRE can also be defined on the deterministic graph H = {−1, 0, 1, . . .}, on which many
quantities are viable by explicit computations. The strategy is to compare the random walk on a
tree to the random walk on the half line, in the forth coming sections we will explain how these
comparisons will be done. In this section we list some properties of the one dimensional random walk,
their proofs can be found in Appendix A.

Let η̃n be the random walk on the half line H = {−1, 0, 1, . . .} in the random environment
ω = (Ak, k ≥ 0) which are i.i.d. copies of A under P, with transition probability according to (7);
that is, 

p(i, i+ 1) = Ai+1

1/Ai+Ai+1
i ≥ 0

p(i, i− 1) = 1/Ai
1/Ai+Ai+1

i ≥ 0

p(−1, 0) = 1

Similarly we denote P̃ ω
i , P̃i, Ẽω

i , Ẽi respectively the quenched and annealed probability/expectation
for such process starting from i, and for any n ∈ H, define the following stopping times

τ̃n = inf{k ≥ 0, η̃k = n}, τ̃ ∗n = inf{k ≥ 1, η̃k = n}.
Let F1, F2 > 0 be two expressions which can depend on any variable, but in particular on n. If there
exists f : N → R+ with limn→∞

1
n

log f(n) = 0 such that F1f(n) ≥ F2, then we denote F1 & F2

(F1 greater than F2 up to polynomial constant). If F1 & F2 and F1 . F2, then we write F1 ' F2.
Recall that A is Inverse Gaussian distributed with parameter (1, c2), define the rate function

associated to logA by
I(x) = sup

t∈R
{tx− logE(At)}, (9)

also define
t∗ = sup{t ∈ R, E(At)q1 ≤ 1}. (10)
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Lemma 2. For any z > 0 and 0 < z1 < 1, we have, for any 0 < a < 1

P̃0(τ̃n ∧ τ̃−1 > m|A0 ∈ [a,
1

a
]) & exp{−n

(
z1I(

z

2z1

) + (1− z1)I(
−z

2(1− z1)
)

)
}

where m ∈ N is such that n = b logm
z
c.

Lemma 3. Denote

L′ = sup
z>0, 0<z1<1

{ log q1

z
− z1

z
I(

z

2z1

)− 1− z1

z
I(

−z
2(1− z1)

)},

we have L′ = −t∗ + 1
2
.

Lemma 4. Define, for i ∈ H and any stopping time τ , G̃τ (i, i) = Ẽω
i (
∑τ

k=0 1η̃k=i). Let 0 ≤ Y1 <
Y2 < y < Y3 be points on the half line, we have, for any 0 ≤ λ ≤ 1,

P̃ ω
Y1

(τ̃y < τ̃Y1−1)G̃τ̃Y1
∧τ̃Y3 (y, y) ≤ Ẽω

Y1
[τ̃Y1−1 ∧ τ̃Y3 ]. (11)

Ẽω
Y1

[τ̃Y1−1 ∧ τ̃Y3 ]λ ≤ Sλ,[[Y1,Y2]]

(
1 + AλY2+1

(
1 + Ẽω

Y2+1[τ̃Y2 ∧ τ̃Y3 ]λ
))

. (12)

where
Sλ,[[Y1,Y2]] := 1 + 2AλY1

∑
Y1<z≤Y2

∏
Y1<u<z

A2λ
u A

λ
z + AλY1

∏
Y1<u≤Y2

A2λ
u .

Lemma 5. If 0 ≤ λ < (t∗− 1
2
)∧ 1, then there exists sufficiently small δ > 0 such that for all n1 > 0

E
(

(1 +
1

Aλn1

)(1 +
1

An
)A0Ẽ

ω
0 [τ̃−1 ∧ τ̃n]λ

)
. (q1 + δ)−n.

4.3 Null speed regime

In this section we prove (2) of Theorem 2.

Proposition 1. Recall the definition of t∗ in (10), if q1E(A−1/2) > 1, then 1 < t∗ < 3
2

and

lim sup
n

log |ηn|
log n

≤ t∗ − 1

2
.

In particular, if q1E(A−1/2) > 1, then P-a.s., v(η) = 0; in fact,

|ηn| = n(t∗−1/2)+o(1) = o(n), n→∞.

Remarks 3. Similar arguments can be carried out for the continuous time process (Zt), i.e. if
q1E(A−1/2) > 1, then

lim sup
t

log |Zt|
log t

≤ t∗ − 1

2
. (13)

Let us state an estimate on the tail distribution of the regeneration time Γ1 under S(·):

Lemma 6.
S(Γ1 > n) & n−t

∗+ 1
2 (14)

9



1
2

E(At) logE(At)

t

t

Figure 1: The function t 7→ E(At) and t 7→ logE(At) for c = 1.

With the help of the above lemma, we prove Proposition 1.

Proof of Proposition 1. Note that t 7→ E(At) is a convex function, and it is symmetric w.r.t. the line
t = 1

2
, where it takes the minimum, in particular E(A−1/2) = E(A3/2). As we have assumed that

q1E(A−1/2) > 1, it follows that t∗ < 3
2
. On the other hand, since E(A) = 1, obviously t∗ > 1. For

any λ ∈ (t∗ − 1/2, 1), by Lemma 6, there exists ε > 0 such that

P( max
2≤k≤n

(Γk − Γk−1) ≤ n1/λ) = S(Γ1 ≤ n1/λ)n−1

≤ (1− n−1+ε)n−1 . exp(−nε).

Therefore, ∑
n≥2

P( max
2≤k≤n

(Γk − Γk−1) ≤ n1/λ) <∞.

By Borel-Cantelli lemma, P-a.s., for all n large enough,

Γn ≥ max
2≤k≤n

(Γk − Γk−1) ≥ n1/λ.

It follows that P-a.s., lim infn
log Γn
logn

≥ 1
λ

. As lim infn
log τn
logn

≥ lim infn
log Γn
logn

(see (3.1) in [1]), we
have

lim sup
n

log |ηn|
log n

≤ λ −−−−−→
decreasing

t∗ − 1

2
< 1,P-a.s.

It remains to prove Lemma 6. In fact, when q1 is large, it is more likely that there will be some
long branch constituting vertices of degree two on the GW tree, especially starting from the root.
These branches will slow down the process and entail zero velocity. The following lemma gives a
comparison between the tail distribution of the regeneration time Γ1 and the probability that the
process wanders on these branches (which is a one dimensional random walk in random environment,
that is, (η̃n)).

Lemma 7. For any m ≥ 1, 0 < a < 1, we have

S(Γ1 > m) ≥ c5

∞∑
n=1

qn1 P̃0(τ̃−1 ∧ τ̃n > m|A0 ∈ [a,
1

a
]).

Now we prove Lemma 6 with the help of Lemma 7 and some results on the one dimensional RWRE.

10



Proof of Lemma 6. By Lemma 2, one sees that for z > 0, 0 < z1 < 1 and m such that n = b logm
z
c,

P̃0(τ̃n ∧ τ̃−1 > m|A0 ∈ [a,
1

a
]) & exp(−n

(
z1I(

z

2z1

) + (1− z1)I(
−z

2(1− z1)
)

)
)

where we recall that I(x) = supt∈R{tx− logE(At)}. For large m, by Lemma 7, then Lemma 2,

S(Γ1 > m) ≥ c5 max
n:n=b logm

z
c
qn1 P̃0(τ̃n ∧ τ̃−1 > m|A0 ∈ [a,

1

a
])

& max
n:n=b logm

z
c
qn1 exp(−n

(
z1I(

z

2z1

) + (1− z1)I(
−z

2(1− z1)
)

)
)

& sup
z>0,z1∈(0,1)

exp{− logm

z

(
z1I(

z

2z1

) + (1− z1)I(
−z

2(1− z1)
)− log q1

)
}.

It follows from Lemma 3 that
S(Γ1 > m) & m−t

∗+1/2.

It remains to prove the comparison Lemma 7. We define, for x 6= ←
ρ ,

τx = inf{n ≥ 0; ηn = x}, τ ∗x = inf{n > 0; ηn = x}, β(x) = Pw,T
x (T←

x
=∞)

Note that for any x ∈ T , β(x) depends only on the sub-tree Tx rooted at x and the environment
{Ay(ω); y ∈ Tx}, let us denote β a generic r.v. distributed as β(ρ), by transient assumption, β > 0
a.s. and E(β) > 0.

Moreover, by Markov property,

β(x) =
∑
y:
←
y=x

p(x, y)[P ω,T
y (τx =∞) + P ω,T

y (τx <∞)β(x)]

=
∑
y:
←
y=x

p(x, y)[β(y) + (1− β(y))β(x)].

Note that β(x) > 0, P-a.s. hence,

1

β(x)
= 1 +

1

Ax
∑

y:
←
y=x

Ayβ(y)
. (15)

In particular, β(x) is increasing as a function of Ax.

Proof of Lemma 7. For any vertex x, let h(x) be the first descendant of x such that d(h(x)) ≥ 3.

Let k0 = inf{k ≥ 2 : qk > 0}. According to the definition of Γ1, one observes that when η1 6=
←
ρ ,

Γ1 ≥ τ ∗ρ ∧ τh(X1).

In fact, we are going to consider the following events

E0 = {d(ρ) = k0 + 1, Aρ ≥ a, Aρi ∈ [a,
1

a
],∀1 ≤ i ≤ k0} where ρi are children of ρ,

E1 = E0 ∩ {η1 6=
←
ρ,m < τ ∗ρ < τh(η1), ητ∗ρ+1 /∈ {

←
ρ, η1}} ∩ {ηn 6= ρ;∀n ≥ τ ∗ρ + 1},

E2 = E0 ∩ {η1 6=
←
ρ,m < τh(η1) < τ ∗ρ} ∩ {ηn 6=

←
h(η1),∀n ≥ τh(η1) + 1}.

11



As Γ1 ≥ τ ∗ρ ∧ τh(η1), we have E1 ∪ E2 ⊂ E0 ∩ {D(ρ) =∞,Γ1 > m} and E1 ∩ E2 = ∅. So,

P(E0 ∩ {D(ρ) =∞,Γ1 > m}) ≥ P(E1) + P(E2).

For E1, by strong Markov property at τ ∗ρ and weak Markov property at time 1,

P ω,T
ρ (E1) = 1E0P

ω,T
ρ ({η1 6=

←
ρ,m < τ ∗ρ < τh(η1), ητ∗ρ+1 /∈ {

←
ρ, η1}} ∩ {ηn 6= ρ;∀n ≥ τ ∗ρ + 1})

= 1E0

k0∑
i=1

p(ρ, ρi)P
ω,T
ρi

(m− 1 < τρ < τh(ρi))
∑
j 6=i

p(ρ, ρj)β(ρj).

Given E0, p(ρ, ρi) ≥ a2

k0+1
=: c6. So,

P ω,T
ρ (E1) ≥ c61E0

k0∑
i=1

P ω,T
ρi

(m− 1 < τρ < τh(ρi))
∑
j 6=i

p(ρ, ρj)β(ρj),

Conditionally on {d(ρ), Aρ, Aρi , 1 ≤ i ≤ d(ρ)−1}, the independence of the environment implies that

P
(
E1

∣∣∣d(ρ), Aρ, Aρi , 1 ≤ i ≤ d(ρ)− 1
)

≥ c61E0

k0∑
i=1

Pρi(m− 1 < τρ < τh(ρi))
∑
j 6=i

p(ρ, ρj)EQ[β(ρj)|Aρj ],

where, for each j 6= i, p(ρ, ρj) and EQ[β(ρj)|Aρj ] are increasing functions of Aρj . By FKG inequality,

and the fact that E(β(ρ)) > 0 and
∑

j 6=i p(ρ, ρj) ≥ a2(k0−1)
1+k0

> 0 on E0,

P(E1) ≥ c6E
(
1E0

k0∑
i=1

P ω,T
ρi

(m− 1 < τρ < τh(ρi))
∑
j 6=i

p(ρ, ρj)
)
× E(β(ρ))

≥ c7E
(
1E0

k0∑
i=1

P ω,T
ρi

(m− 1 < τρ < τh(ρi))
)
. (16)

Similarly for E2, by Markov property,

P ω,T
ρ (E2) = 1E0P

ω,T
ρ ({η1 6=

←
ρ,m < τh(η1) < τ ∗ρ} ∩ {ηn 6=

←
h(η1);∀n ≥ τh(η1) + 1})

= 1E0

k0∑
i=1

p(ρ, ρi)P
ω,T
ρi

(m− 1 < τh(ρi) < τρ)β(h(ρi))

≥ c61E0

k0∑
i=1

P ω,T
ρi

(m− 1 < τh(ρi) < τρ)β(h(ρi)).

Again P ω,T
ρi

(m− 1 < τh(ρi) < τρ) and β(h(ρj)) are both increasing on Ah(ρi). FKG inequality entails

P(E2) ≥ c6E
(
1E0

k0∑
i=1

P ω,T
ρi

(m− 1 < τh(ρi) < τρ)
)
× E(β(ρ))

= c8E(1E0

k0∑
i=1

P ω,T
ρi

(m− 1 < τh(ρi) < τρ)), (17)

12



with c8 := c6E(β(ρ)) > 0. Combining (16) with (17) yields that

P(E1) + P(E2) ≥ c9E
(
1E0

k0∑
i=1

P ω,T
ρi

(τρ ∧ τh(ρi) > m− 1)
)

≥ c9K0Q(E0)P
(
τ←
ρ
∧ τh(ρ) > m− 1|Aρ ∈ [a,

1

a
]
)

≥ c10P
(
τ←
ρ
∧ τh(ρ) > m− 1|Aρ ∈ [a,

1

a
]
)
. (18)

Let us go back to S(Γ1 > m). As P(d(ρ) ≥ 3, D(ρ) =∞) > 0, recall that

S(Γ1 > m) = P(Γ1 > m|d(ρ) ≥ 3, D(ρ) =∞)

≥ P(E0 ∩ {D(ρ) =∞,Γ1 > m})
≥ P(E1) + P(E2).

by (18), taking c5 = c10, we have

S(Γ1 > m) ≥ c5P
(
τ←
ρ
∧ τh(ρ) > m− 1|Aρ ∈ [a,

1

a
]
)

= c5

∞∑
n=1

qn1 P̃0(τ̃−1 ∧ τ̃n > m− 1|A0 ∈ [a,
1

a
]).

4.4 Positive speed on big tree and asymptotic of |Zt| on small tree

This subsection is devoted to the proof of the following propositions, firstly when the tree is big (i.e.
q1 small), the RWRE has positive speed; when the tree is small (q1 large), we can compute exactly
the asymptotic behavior of |ηn| and |Zt|.

Proposition 2. If q1E(A−1/2) < 1, then

v(η) > 0 and v(Z) > 0. (19)

As a consequence, also v(Y ) > 0.

Proposition 3. Assume that q1E(A−1/2) > 1, we have P-a.s.

lim
n→∞

log |ηn|
log n

= lim
t→∞

log |Zt|
log t

= t∗ − 1/2 ∈ (1/2, 1) (20)

where t∗ = sup{t ∈ R, E(At)q1 ≤ 1}.

Let us give some definitions and heuristics before proving these propositions, write, for n ≥ 0,

τn(η) = inf{k ≥ 0; |ηk| = n} and τn(Z) = inf{t ≥ 0; |Zt| = n}

the hitting times of the n-th generation for η and Z respectively. As a consequence of the law of
large numbers, P-a.s.,

lim
n→∞

τn(η)

n
=

1

v(η)
and lim

n→∞

τn(Z)

n
=

1

v(Z)
.

13



The study of the speed is reduced to the study of τn(η) and τn(Z). For any x ∈ T , n ≥ −1, let Nx

and Nn denote the time spent by the walk η at x and at the n-th generation respectively:

N(x) =
∑
k≥0

1ηk=x, Nn =
∑
|x|=n

N(x),

observe that

τn(η) ≤
n∑

k=−1

Nk, Eω,T [τn(Z)|η] ≤
∑

x:−1≤|x|≤n

Nx
Ax

1 + AxBx

,

where Bx :=
∑

y:
←
y=x

Ay.

In what follows, we actually study Nn for large n to show that lim infn
∑n
k=−1Nk
n

< ∞, P-a.s.
The heuristics is the following. Fix some n0, K0 (to choose later), pick some vertex y at the n-th
generation, if y roughly lies in a subtree of height n0 with more than K0 leaves, then the random
walk will immediately go down, thus E(Ny) will be small c.f. Figure 2 left. Otherwise, we seek a
down going path ŷ, . . . , y, . . . , y̌ such that every vertex in this path does not branch much except
for the two ends, and we need these two ends have more than K0 descendants after n0 generations.
In such configuration, we can compare the random walk to the one dimensional one, and once the
walker reaches one of the ends, it immediately leaves our path ŷ, . . . , y̌ c.f. Figure 2 right.

y

ŷ

y̌

n0

n0

yn0

ρ

y0

n

Figure 2: Two cases to bound E(Ny).

If the root have more than K0 descendants after n0 generations, then we can always find ŷ.
Otherwise, we need to take n large and use the Galton Watson structure. To handle this issue, let
us introduce the following notations. For the GW tree T , let ZT

n be the number of vertices at the
n-th generation. By Lemma 4.1 of [1], we have for any K0 ≥ 1,

EGW(ZT
n 1ZTn≤K0

) ≤ K0n
K0qn−K0

1 .

Let r ∈ (q1, 1) be some real we choose later, let

n0 = n0(K0, r) := inf{n ≥ 1, EGW(ZT
n 1ZTn≤K0

) ≤ rn},
which is thus a finite integer. In fact, K0 will be chosen according to Corollary 3. Define

ZT (u, n) = |{x ∈ T ; u < x, |x| = |u|+ n}|.
Let Tn0 be a tree induced from T in the following way: starting from the root ρ, y is a child of x in
Tn0 if x < y and |y| = |x|+ n0. Define a subtree W of Tn0 by

W = {x ∈ Tn0 : ∀u ∈ Tn0 , u < x⇒ ZT (u, n0) ≤ K0}.

14



ρ ρ ρ

T Tn0 W

Figure 3: An example in the case K0 = n0 = 2.

Let Wk be the population of the k-th generation of W , W is a sub critical Galton Watson tree
of mean offspring EGW(ZT

n0
1ZTn0

≤K0
) ≤ rn0 ; in particular, for any k ≥ 0, EGW(Wk) ≤ rkn0 .

For any y ∈ T , let y0 be the youngest ancestor of y in Tn0 . For n ≥ n0, let j = b n
n0
c ≥ 1 so that

jn0 ≤ n < (j + 1)n0. Define

Nn,1 =
∑
|y|=n

N(y)1ZT (y0,n0)>K0
, N∗n,1 =

∑
|y|=n

N(y)
Ay

1 + AyBy

1ZT (y0,n0)>K0
(21)

Nn,2 =
∑
|y|=n

N(y)1ZT (y0,n0)≤K0, y0 /∈W , N∗n,2 =
∑
|y|=n

N(y)
Ay

1 + AyBy

1ZT (y0,n0)≤K0, y0 /∈W (22)

Lemma 8. There exist r ∈ (q1, 1) and K0 > 0, such that, with the definitions of n0, Nn,1, N
∗
n,1

above, for some constant L > 0, for any n ≥ n0

E(Nn,1) ≤ L, E(N∗n,1) ≤ L. (23)

Lemma 9. With the same assumption as in Lemma 8, if 0 < λ < 1 ∧ (t∗ − 1/2) where t∗ is define
in (10), then

E(Nλ
n,2) ≤ L, E((N∗n,2)λ) ≤ L. (24)

We are prepared to prove Proposition 2 and Proposition 3.

Proof of Proposition 2. Since q1E(A−1/2) < 1, t∗ > 3/2. We choose λ = 1. As W is finite a.s., if
χ = (height(W) + 1)n0 (where for a finite tree T , height(T ) := maxx∈T |x|), then

for all n ≥ χ, Nn ≤ Nn,1 +Nn,2.

By Lemma 8, 9, for any n ≥ n0,
E(Nn, n ≥ χ) ≤ 2L.

Thus,

lim inf
n→∞

E
[∑n

i=χNn

n

]
≤ 2L.

By Fatou’s lemma, a.s.

lim inf
n→∞

∑n
k=−1Nk

n
= lim inf

n→∞

∑n
k=χNk

n
<∞.
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Therefore,

1

v(η)
= lim inf

n→∞

τn
n
≤ lim inf

n→∞

∑n
k=−1Nk

n
<∞.

This implies that v(η) > 0.
The case for Zt can be treated in a similar manner with N∗n instead of Nn. Finally, to prove

v(Y ) > 0, it is enough to recall ZD(t) = Yt where D(t) =
∑

x(lx(t)
2 + 2clx(t)) and note that

D(t)

t
=

∑
x(lx(t)

2 + 2clx(t))∑
x lx(t)

≥ 2c > 0.

It follows that

v(Y ) = lim
t→∞

|Yt|
t

= lim
t→∞

|ZD(t)|
t
≥ v(Z) lim inf

t→∞

D(t)

t
≥ 2cv(Z).

Proof of Proposition 3. If q1E(A−1/2) ≥ 1, λ < t∗ − 1/2 ≤ 1. Let Ni(Z) be the time spent at the
i-th generation by (Zt). Let Γk(Z) be the regenerative times corresponding to (Zt)t≥0. Let u(n) be
the unique integer such that Γu(n) ≤ τn(Z) < Γu(n)+1. Then,

Γu(n)(Z)λ

n
≤
∑

k≤u(n)(Γk(Z)− Γk−1(Z))λ

n
=

∑
k≤u(n)(

∑i=|ZΓk(Z)|−1

i=|ZΓk−1(Z)|
Ni(Z))λ

n

≤
∑

i≤nNi(Z)λ

n
.

Taking limit yields that

lim inf
n→∞

Γu(n)(Z)λ

n
≤ lim inf

n→∞

∑
k≤u(n)(Γk(Z)− Γk−1(Z))λ

n
≤ lim inf

n→∞

∑n
i=χNi(Z)λ

n
.

Applying Jensen’s inequality then Lemma 9 implies that

E[Nn(Z)λ;n ≥ χ] ≤ E[E[Nn(Z);n ≥ χ|η]λ] ≤ E[(N∗n)λ, n ≥ χ] ≤ 2L.

It follows from Fatou’s lemma that

lim inf
n→∞

Γu(n)(Z)λ

n
≤ lim inf

n→∞

∑
k≤u(n)(Γk(Z)− Γk−1(Z))λ

n
<∞.

By law of large numbers,

lim
n→∞

n

u(n)
= ES[|ZΓ1(Z)|] <∞, and lim

n→∞

∑
k≤n(Γk(Z)− Γk−1(Z))λ

n
= ES[Γ1(Z)λ].

Therefore there exists a constant C ∈ (0,∞) such that

lim inf
n→∞

Γn(Z)λ

n
< C.

Note that |Zt| ≥ #{k : Γk(Z) < t}. So we get |Zt| ≥ tλ/C for all sufficiently large t. We hence
deduce that

lim inf
t→∞

log |Zt|
log t

≥ λ.
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Letting λ ↑ t∗ − 1/2 yields

lim inf
n→∞

log |Zt|
log t

≥ t∗ − 1/2. (25)

The result follows by Remark 3. Similar arguments can be applied to limn→∞
log |ηn|
logn

.

It remains to show the main Lemmas 8,9. Let us first state some preliminary results. As the
walk is transient, the support of the random walk should be slim. This is formulated in the following
lemma:

Lemma 10. There exists a constant c11 > 0 such that for any n ≥ 1, E(
∑
|x|=n

1τx<∞) ≤ c11.

The following lemma shows that, the escape probability is relatively large. In fact, we cannot show
that E( 1

β(ρ)
) <∞ for all q1 > 0, since the GW tree branches anyway, there will be a large copies of

independent sub-trees, we show E( 1∑K
i=1 βi

) <∞ instead.

Lemma 11. Consider i.i.d. copies of GW trees T (i) rooted at ρ(i) with independent environment ω(i),

for each T (i), define βi = P ω(i),T (i)

ρ(i) (τ ←
ρ(i)

=∞). There exists an integer K = K(q1, c) ≥ 1 such that

E(
1∑K
i=1 βi

) ≤ c12 <∞ and E(
1∑K

i=1Aρ(i)βi
) < c12 <∞.

Moreover, if q1ξ2 < 1, then E(
1

β(ρ)
) ≤ c12 <∞ and E( 1

Aρβ(ρ)
) < c12 <∞.

Remarks 4. In fact, if q1E(A−2) < 1, a proof similar to Proposition 2.3 of [1] shows that η has
positive speed, in particular, the VRJP on any regular tree (except Z) admits positive speed.

Corollary 3. There exists K0 ≥ K, such that

E(
1∑K0

1 A2
ρ(i)β

2
i

) < c13 <∞.

The proof of Lemma 10, 11 and Corollary 3 will be postponed to the Appendix B, let us state the
consequence of these preliminary results. Recall that ZT

n is the population at generation n, and that
for any x ∈ T , τx is the first hitting time, τ ∗x the first return time to x. For u, v ∈ T write u < v if
u is an ancestor of v and define

p1(u, v) = P ω,T
u (τ←

u
=∞, τ ∗u =∞, τv =∞)

Lemma 12. For any n ≥ 2 and k ∈ {1, 2}, consider K0 as in Corollary 3, we have

E
(
1ZTn>K0

∑
|u|=n

1

p1(ρ, u)k

)
< cn14 <∞.

In addition,

E
(
1ZTn>K0

∑
|u|=n

1

p1(ρ, u)k

∣∣∣Aρ) < cn14(1 +
1

Aρ
). (26)
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Proof of Lemma 12. Fix n ≥ 2, let Υ0 := inf{l ≥ 1; Zl > K0}, then {ZT
n > K0} = {Υ0 ≤ n}. For

any u ∈ T such that |u| ≥ Υ0, let U be its ancestor at the Υ0-th generation. By Markov property,

p1(ρ, u) ≥
∑

|y|=Υ0−1

P ω,T
ρ (τy < τ ∗ρ )P ω,T

y (τ←
y

=∞, τU =∞)

≥
∑

|y|=Υ0−1

Υ0−2∏
i=0

p(yi, yi+1)P ω,T
y (τ←

y
=∞, τU =∞)

(27)

where {y0(= ρ), y1, . . . , yΥ0−1(= y)} is the unique path connecting ρ and y. Note that if
←
U = y,

then

P ω,T
y (τ←

y
=∞, τU =∞) =

∑
z:
←
z=y,z 6=U

p(y, z)β(z) +
∑

z:
←
z=y,z 6=U

p(y, z)(1− β(z))P ω,T
y (τ←

y
=∞, τU =∞).

Otherwise

P ω,T
y (τ←

y
=∞, τU =∞) =

∑
z:
←
z=y

p(y, z)β(z) +
∑
z:
←
z=y

p(y, z)(1− β(z))P ω,T
y (τ←

y
=∞, τU =∞)

It follows that in both cases,

P ω,T
y (τ←

y
=∞, τU =∞) =

∑
z:
←
z=y

1z 6=Up(y, z)β(z)

p(y,
←
y ) + p(y, U) +

∑
z:
←
z=y

1z 6=Up(y, z)β(z)

≥
∑

z:
←
z=y

1z 6=UAyAzβ(z)

1 + AyAU +
∑

z:
←
z=y

1z 6=UAyAzβ(z)

≥ Ay
1 + Ay

1

1 + AU

∑
z:
←
z=y

1z 6=UAzβ(z)

1 +
∑

z:
←
z=y

1z 6=UAzβ(z)

Plugging it into (27) yields that

p1(ρ, u) ≥
∑

|y|=Υ0−1

Υ0−2∏
i=0

p(yi, yi+1)
Ay

1 + Ay

1

1 + AU

∑
z:
←
z=y

1z 6=UAzβ(z)

1 +
∑

z:
←
z=y

1z 6=UAzβ(z)

≥ 1

1 + AU
min

|y|=Υ0−1

(
Υ0−2∏
i=0

p(yi, yi+1)
Ay

1 + Ay

)
·
∑

z:|z|=Υ0,z 6=U Azβ(z)

1 +
∑

z:|z|=Υ0,z 6=U Azβ(z)

Thus, for k ∈ {1, 2},
1

p1(ρ, u)k
≤ (1 + AU)k

1

min|y|=Υ0−1

(∏Υ0−2
i=0 p(yi, yi+1) Ay

1+Ay

)k(1 +
1∑

z:|z|=Υ0,z 6=U Azβ(z)

)k
.

Given the tree T , by integrating w.r.t. P(dω), we have

1n≥Υ0

∑
|u|=n

ET
( 1

p1(ρ, u)k

)
≤ ET

 1

min|y|=Υ0−1

(∏Υ0−2
i=0 p(yi, yi+1) Ay

1+Ay

)k


×
∑
|U |=Υ0

ZT (U, n−Υ0)ET [(1 + AU)k]ET
((

1 +
1∑

z:|z|=Υ0,z 6=U Azβ(z)

)k)
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It follows from Lemma 11 for k = 1 or Corollary 3 for k = 2 that

EQ

1n≥Υ0

∑
|u|=n

1

p1(ρ, u)k

∣∣∣∣Υ0, Zl; 0 ≤ l ≤ Υ0


≤c151n≥Υ0ET

 1

min|y|=Υ0−1

(∏Υ0−2
i=0 p(yi, yi+1) Ay

1+Ay

)k
× ∑

|U |=Υ0

E[(1 + A)k]bn−Υ0

≤c161n≥Υ0

∑
|y|=Υ0−1

ET
(Υ0−2∏

i=0

(1 + Ayi)(1 +Byi)

AyiAyi+1

1 + Ay
Ay

)k
 ∑
|U |=Υ0

bn−Υ0 .

By independence of Ax, x ∈ T , we see that

ET
(Υ0−2∏

i=0

(1 + Ayi)(1 +Byi)

AyiAyi+1

1 + Ay
Ay

)k
 ≤ cΥ0−1

17 ,

with c17 ∈ (1,∞). Consequently,

EQ

1n≥Υ0

∑
|u|=n

1

p1(ρ, u)k

 ≤ EQ

(
c161n≥Υ0

∑
|y|=Υ0−1

cΥ0−1
15

∑
|U |=Υ0

bn−Υ0

)
≤c16K0EQ

(
1n≥Υ0c

n−1
15 ZT

n

)
≤c18(c17b)

n <∞.

(26) follows in the same way.

Proof of Lemma 8. We only bound E(Nn,1), the argument for E(N∗n,1) is similar. For any y ∈ T
at the n-th generation such that ZT (y0, n0) > K0, let Y be the youngest ancestor of y such that
ZT (Y, n0) > K0. Clearly, y0 ≤ Y ≤ y. So,

Nn,1 =
∑
|y|=n

N(y)1ZT (y0,n0)>K0
≤
∑
|y|=n

N(y)1y0≤Y≤y.

Taking expectation w.r.t. Eω,T
ρ implies that

Eω,T (Nn,1) ≤
∑
|y|=n

Eω,T (N(y))1y0≤Y≤y =
∑
|y|=n

P ω,T (τy <∞)Eω,T
y (N(y))1y0≤Y≤y.

Applying the Markov property at τY to Eω,T
y (N(y)), we have

Eω,T
y (N(y)) = GτY (y, y) + P ω,T

y (τY <∞)P ω,T
Y (τy <∞)Eω,T

y (N(y))

where (write {(τY ∧∞) > τ ∗y } = {τ ∗y <∞ and τ ∗y < τY } for short)

GτY (y, y) = Eω,T
y (

τY∑
k=0

1ηk=y) =
1

1− P ω,T
y ((τY ∧∞) > τ ∗y )

.
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Hence

Eω,T
y (N(y)) =

GτY (y, y)

1− P ω,T
Y (τy <∞)P ω,T

y (τY <∞)

≤ GτY (y, y)

1− P ω,T
Y (τ ∗Y <∞)

=
GτY (y, y)

P ω,T
Y (τ ∗Y =∞)

.

We bound GτY (y, y) first. As P ω,T
y ((τY ∧∞) > τ ∗y ) ≤∑

z:
←
z=y

p(y, z)+p(y,
←
y )P ω,T

←
y

(τy < (τY ∧∞)),

1− P ω,T
y ((τY ∧∞) > τ ∗y ) ≥ p(y,

←
y )
(

1− P ω,T
←
y

(τy < τY )
)
.

By Lemma 4.4 of [1] and (38), the right hand side of the above inequality is larger than

p(y,
←
y )
(

1− P̃ ω,T
←
y

(τ̃y < τ̃Y )
)

=
1

1 + AyBy

1

1 + Ay
∑

Y <z<y Az
∏

z<u<y A
2
u

.

where we identify P̃ ω,T
←
y

to the probability of (η̃n) on the segment [[Y, y]]. Therefore,

GτY (y, y) ≤
(

1 + Ay
∑

Y <z<y

Az
∏

z<u<y

A2
u

)
(1 + AyBy) =: Vy,Y .

Consequently,

Eω,T (N(y))1ZT (y0,n0)>K0
≤ P ω,T (τY <∞)

Vy,Y

P ω,T
Y (τ ∗Y =∞)

1ZT (Y,n0)>K0, y0≤Y≤y.

Summing over all possibilities of Y yields that (recall that j = b n
n0
c)

Eω,T (Nn,1) ≤
n∑

l=jn0

∑
|Y |=l

P ω,T (τY <∞)

∑
|y|=n,Y≤y Vy,Y

P ω,T
Y (τ ∗Y =∞)

1ZT (Y,n0)>K0

≤
n∑

l=jn0

∑
|Y |=l

P ω,T (τ←
Y
<∞)

∑
|y|=n,Y≤y Vy,Y

P ω,T
Y (τ ∗Y =∞, τ←

Y
=∞)

1ZT (Y,n0)>K0
,

where the last inequality holds because P ω,T (τY < ∞) ≤ P ω,T (τ←
Y
< ∞) and P ω,T

Y (τ ∗Y = ∞) ≥
P ω,T
Y (τ ∗Y =∞, τ←

Y
=∞). Summing over the value of

←
Y yields that

Eω,T (Nn,1) ≤
n−1∑

l=jn0−1

∑
|x|=l

P ω,T (τx <∞)
∑
Y :
←
Y =x

∑
|y|=n,Y≤y Vy,Y

PY (τ ∗Y =∞, τ←
Y

=∞)
1ZT (Y,n0)>K0

.

As conditionally on T , P ω,T (τx <∞) and
∑

Y :
←
Y =x

∑
|y|=n,Y≤y Vy,Y

PY (τ∗Y =∞,τ←
Y

=∞)
1d(Y,n0)>K0 are independent,

E(Nn,1) ≤ E

 n−1∑
l=jn0−1

∑
|x|=l

ET (P ω,T (τx <∞))ET
( ∑
Y :
←
Y =x

∑
|y|=n,Y≤y Vy,Y

P ω,T
Y (τ ∗Y =∞, τ←

Y
=∞)

1ZT (Y,n0)>K0

)
=

n−1∑
l=jn0−1

E(
∑
|x|=l

1τx<∞)E
( ∑
|Y |=1

∑
|y|=n−l,Y≤y Vy,Y

P ω,T
Y (τ ∗Y =∞, τ←

Y
=∞)

1ZT (Y,n0)>K0

)
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Note that for any |Y | = 1,
∑
|y|=n−l,Y≤y Vy,Y

Pω,TY (τ∗Y =∞,τ←
Y

=∞)
1ZT (Y,n0)>K0

are i.i.d. By Lemma 10,

E(Nn,1) ≤ bc11

n−1∑
l=jn0−1

An−l (28)

where

An−l = E
( ∑

|y|=n−l−1 Vy,ρ

P ω,T (τ ∗ρ =∞, τ←
ρ

=∞)
1ZT (ρ,n0)>K0

)
.

By Cauchy-Schwartz inequality,

An−l ≤ E
[( ∑
|y|=n−l−1

Vy,ρ

)2
]
E
[ 1ZT (ρ,n0)>K0

P ω,T (τ ∗ρ =∞, τ←
ρ

=∞)2

]
Recall that ZT

n denote the number of vertices at the n-th generation of the tree T , using Lemma 12

then Applying again Cauchy-Schwartz inequality to
(∑

|y|=n−l−1 Vy,ρ

)2

implies that

An−l ≤ cn0
14E
(
ZT
n−l−1

∑
|y|=n−l−1

V 2
y,ρ

)
≤ c19EGW [cn−l−1

20

(
ZT
n−l−1

)2

],

where the second inequality follows from ET [Vy,ρ] ≤ c
|y|
20 . Plugging it into (28) implies that

E(Nn,1) ≤ bc11c19

n−1∑
l=jn0−1

EGW [cn−l−1
20

(
ZT
n−l−1

)2

] ≤ c21

n0∑
k=0

ck20EGW

[
(ZT

k )2
]
≤ c22,

since EGW [(ZT
1 )2] <∞. Analoguesly, for N∗n,1 we get that

Eω,T (N∗n,1) ≤
n−1∑

l=jn0−1

∑
|x|=l

P ω,T (τx <∞)
∑
Y :
←
Y =x

∑
|y|=n,Y≤y Vy,Y

Ay
1+AyBy

P ω,T
Y (τ ∗Y =∞, τ←

Y
=∞)

1ZT (Y,n0)>K0
.

And recounting on the same arguments gives a finite upper bound for E[N∗n,1].

Proof of Lemma 9. Again we only give the proof for E(Nλ
n,2). For y ∈ T , as ZT (y0, n0) ≤ K0 and

y0 /∈ W , we can find the youngest ancestor Y1 of y in Tn0 such that ZT (Y1, n0) > K0, automatically
Y1 < y0. Let Y2 be the youngest descendant of Y1 in Tn0 such that it is an ancestor of y. Let Y3 be
the youngest descendant of y in Tn0 such that ZT (Y3, n0) > K0.
For any 0 < λ ≤ 1,

Eω.T [Nλ
n,2] ≤ Eω,T

[ ∑
|y|=n

N(y)λ1ZT (y0,n0)≤K0, y0 /∈W

]
≤
∑
|y|=n

1ZT (y0,n0)≤K0, y0 /∈WP
ω,T (τy <∞)

(
Eω,T
y [N(y)]

)λ
. (29)

In what follows, we identify P̃ ω with the distribution of a one-dimensional random walk η̃ on the

path [[
←
Y1, Y3]]. Let us state the following lemmas which will be used in (29).
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Y1

Y2

y0

Y3

y

Figure 4: An example of Y1, Y2, Y3.

Lemma 13. For any y ∈ T such that Y1 < Y2 < y < Y3, let y∗ be the unique child of y which is
also ancestor of Y3. Then,(

Eω,T
y [N(y)]

)λ
≤
( 1 + AyBy

1 + AyAy∗

)λ
G̃τ̃Y1

∧τ̃Y3 (y, y)λ
2

p1(Y1, Y2)P ω,T
Y3

(τ ∗Y3
=∞, τ←

Y3
=∞)

. (30)

where G̃τ̃Y1
∧τ̃Y3 (y, y) = Ẽω

y

(∑τ̃Y1
∧τ̃Y3

k=0 1η̃k=y

)
is the Green function associated with (η̃n).

Lemma 14.

P ω,T (τy <∞) ≤ P ω,T (τY1 <∞)P̃ ω
Y1

(τ̃y < τ̃Y1−1)λ
1

p1(Y1, Y2)
. (31)

The proofs of Lemmas 13 and 14 can be found in section 5.2 of [1] with slight modifications, so
we feel free to omit them (see (5.10) and (5.11) therein). Now plugging (30) and (31) into (29)
yields that

Eω,T (Nλ
n,2) ≤

∑
|y|=n

2P ω,T (τY1 <∞)

p1(Y1, Y2)2P ω,T
Y3

(τ ∗Y3
=∞, τ←

Y3
=∞)

(
1 + AyBy

1 + AyAy∗
P̃ ω
Y1

(τ̃y < τ̃Y1−1)G̃τ̃Y1
∧τ̃Y3 (y, y)

)λ
.

By Lemma 4, one sees that

Eω,T (Nλ
n,2) ≤

∑
|y|=n

2P ω,T (τY1 <∞)

p1(Y1, Y2)2P ω,T
Y3

(τ ∗Y3
=∞, τ←

Y3
=∞)

(
1 + AyBy

1 + AyAy∗
Ẽω
Y1

[τ̃←
Y1
∧ τ̃Y3 ]

)λ
≤
∑
|y|=n

2P ω,T (τY1 <∞)

p1(Y1, Y2)2P ω,T
Y3

(τ ∗Y3
=∞, τ←

Y3
=∞)

( 1 + AyBy

1 + AyAy∗

)λ
Sλ,[[Y1,Y2]]

(
1 + AλY ∗2

(
1 + Ẽω

Y ∗2
[τ̃Y2 ∧ τ̃Y3 ]λ

))

where Y ∗2 is the children of Y2 along [[Y2, Y3]]. Decompose the sum over |y| = n by

∑
|y|=n

=
∑

y:|y|=n,Y1=ρ

+

(j−1)∑
l=1

∑
|x|=ln0−1

∑
y:
←
Y1=x,|y|=n

.
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We get that

Eω,T (Nλ
n,2) ≤

∑
|y|=n,Y1=ρ

2Sλ,[[ρ,Y2]]

p1(ρ, Y2)2P ω,T
Y3

(τ ∗Y3
=∞, τ←

Y3
=∞)

Θλ(Y2, y, Y3)

+

j−1∑
l=1

∑
|x|=ln0−1

∑
|y|=n,

←
Y1=x

2P ω,T (τY1 <∞)Sλ,[[Y1,Y2]]

p1(Y1, Y2)2P ω,T
Y3

(τ ∗Y3
=∞, τ←

Y3
=∞)

Θλ(Y2, y, Y3),

where

Θλ(Y2, y, Y3) :=

(
1 + AyBy

1 + AyAy∗

)λ(
1 + AλY ∗2

(
1 + Ẽω

Y ∗2
[τ̃Y2 ∧ τ̃Y3 ]λ

))
.

Given the GW tree T , note that Sλ,[[Y1,Y2]] ∈ σ{Az;Y1 ≤ z ≤ Y2}, p1(ρ, Y2) ∈ σ{Au : u ∈ (T \
TY2)∪{Y2}}, P ω,T

Y3
(τ ∗Y3

=∞, τ←
Y3

=∞) ∈ σ{Au;u ∈ TY3} and Θλ(Y2, y, Y3) ∈ σ{Au;Y2 < u ≤ Y3}.
Therefore,

ET [Nλ
n,2] ≤

∑
|y|=n,Y1=ρ

ET
[ 2Sλ,[[ρ,Y2]]

p1(ρ, Y2)2

]
ET
[Θλ(Y2, y, Y3)1ZT (Y3,n0)>K0

P ω,T
Y3

(τ ∗Y3
=∞, τ←

Y3
=∞)

]

+

j−1∑
l=1

∑
|x|=ln0−1

∑
|y|=n,

←
Y1=x

ET
[2P ω,T (τY1 <∞)Sλ,[[Y1,Y2]]

p1(Y1, Y2)2

]
ET
[Θλ(Y2, y, Y3)1ZT (Y3,n0)>K0

P ω,T
Y3

(τ ∗Y3
=∞, τ←

Y3
=∞)

]
. (32)

Observe that

P ω,T
Y3

(τ ∗Y3
=∞, τ←

Y3
=∞) ≥ p1(Y3, u)1Y3<u,|u|=|Y3|+n0 .

ET
[Θλ(Y2, y, Y3)1ZT (Y3,n0)>K0

P ω,T
Y3

(τ ∗Y3
=∞, τ←

Y3
=∞)

∣∣∣Au, Y2 < u ≤ Y3

]
= Θλ(Y2, y, Y3)E

[
1ZT (Y3,n0)>K0

P ω,T
Y3

(τ ∗Y3
=∞, τ←

Y3
=∞)

∣∣∣AY3

]
≤ Θλ(Y2, y, Y3)E

[
1ZT (Y3,n0)>K0

∑
u:Y3<u,|u|=|Y3|+n0

1

p1(Y3, u)

∣∣∣AY3

]
.

Applying Lemma 12 to the subtree rooted at Y3 implies that

ET
[Θλ(Y2, y, Y3)1ZT (Y3,n0)>K0

P ω,T
Y3

(τ ∗Y3
=∞, τ←

Y3
=∞)

]
≤ c23ET

[
(1 +

1

AY3

)Θλ(Y2, y, Y3)
]
.

Plugging it into (32) implies that

ET [Nλ
n,2] ≤ ∆1(n) + ∆2(n),

where

∆1(n) :=2c23

∑
|y|=n,Y1=ρ

ET
[ Sλ,[[ρ,Y2]]

p1(ρ, Y2)2

]
ET
[
(1 +

1

AY3

)Θλ(Y2, y, Y3)
]

(33)

∆2(n) :=2c23

j−1∑
l=1

∑
|x|=ln0−1

∑
|y|=n,

←
Y1=x

ET
[P ω,T (τY1 <∞)Sλ,[[Y1,Y2]]

p1(Y1, Y2)2

]
ET
[
(1 +

1

AY3

)Θλ(Y2, y, Y3)
]
.

(34)
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So,
E[Nλ

n,2] ≤ EQ[∆1(n) + ∆2(n)]. (35)

We firstly bound ∆1(n), note that (since λ ≤ 1)

( 1 + AyBy

1 + AyAy∗

)λ
≤
(

1 +

∑
z:
←
z=y,z 6=y∗ Az

Ay∗

)λ
≤ 1 +

∑
z:
←
z=y,z 6=y∗ A

λ
z

Aλy∗
,

with
∑

z:
←
z=y,z 6=y∗ 1 ≤ K0. If |Y2| = mn0 < n, |Y3| = (m + k)n0 > n, by Markov property and the

fact that {Az,
←
z = y, z 6= y∗} is independent of {Az, z ∈ [[Y2, Y3]] := [[−1, kn0 − 1]]},

ET
[
(1 +

1

AY3

)Θλ(Y2, y, Y3)
]

≤ ET
[

(1 +
1

Akn0−1

)(1 +

∑
z:
←
z=y,z 6=y∗ A

λ
z

Aλn−mn0

)(1 + Aλ0(1 + Ẽω
0 (τ̃−1 ∧ τ̃kn0−1)λ))

]
≤ c24 + c24E

(
(1 +

1

Akn0−1

)(1 +
1

Aλn−mn0

)Aλ0Ẽ
ω
0 [τ̃−1 ∧ τ̃kn0−1]λ

)
.

Now apply Lemma 5, we have

ET
[
(1 +

1

AY3

)Θλ(Y2, y, Y3)
]
≤ c25(q1 + δ)−|Y3|+|Y2|+1. (36)

Applying Cauchy-Schwartz inequality to ET
[
Sλ,[[ρ,Y2]]

p1(ρ,Y2)2

]
yields

∆1(n) ≤ c23

∑
|y|=n,Y1=ρ

2

(√
ET
[
S2
λ,[[ρ,Y2]]

]
ET
[ 1

p1(ρ, Y2)4

])
ET
[
(1 +

1

AY3

)Θλ(Y2, y, Y3)
]

≤ c26

∑
|y|=n,Y1=ρ

√
ET
[ 1

p1(ρ, Y2)4

]
ET
[
(1 +

1

AY3

)Θλ(Y2, y, Y3)
]
,

where the last inequality holds because ET
[
S2
λ,[[ρ,Y2]]

]
≤ c27(n0) <∞. By (36),

∆1(n) ≤ c28

∑
|y|=n,Y1=ρ

ET
[ 1

p1(ρ, Y2)4

]
(q1 + δ)−|Y3|+|Y2|+1

= c28ET
[ ∑
|u|=n0

1ZTn0
>K0

1

p1(ρ, u)4

] ∑
y:|y|=n,Y2=u

(q1 + δ)−|Y3|+n0+1

Observe that ∑
y:|y|=n,Y2=u

(q1 + δ)−|Y3|+n0+1 ≤
∑

z:|z|>n,z∈W(Tu)

(q1 + δ)−|z|+n0+1.

Hence,

∆1(n) ≤ c28ET
[ ∑
|u|=n0

1ZTn0
>K0

1

p1(ρ, u)4

] ∑
z:|z|>n,z∈W(Tu)

(q1 + δ)−|z|+n0+1.
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Taking expectation under GW (dT ) implies that

EQ[∆1(n)] ≤ c28E
[ ∑
|u|=n0

1ZTn0
>K0

1

p1(ρ, u)4

]
EQ

[ ∑
z:|z|>n−n0,z∈W

(q1 + δ)−|z|+1
]
,

which by Lemma 12 is bounded by

c29EQ

[ ∑
z:|z|>n−n0,z∈W

(q1 + δ)−|z|+1
]

= c29

∑
l>n/n0−1

EQ

[ ∑
|z|=ln0,z∈W

(q1 + δ)−|z|+1
]
.

Recall that W is a GW tree of mean E[Zn0 ;Zn0 ≤ K0] ≤ rn0 . We can choose r to be q1 + δ/2 so
that ∑

l≥1

EQ

[ ∑
|z|=ln0,z∈W

(q1 + δ)−|z|+1
]
≤
∑
l≥1

(q1 + δ)−ln0+1rln0 < c30γ
l0 ,

where γ := ( q1+δ/2
q1+δ

)n0 < 1 and l0 := d n
n0
e − 1 = j − 1. As a result, for any n > n0,

EQ[∆1(n)] ≤ c31γ
l0 <∞. (37)

Turn to ∆2(n). As P ω,T (τY1 <∞) ≤ P ω,T (τ←
Y1
<∞), one sees that

∆2(n) ≤2c23

j−1∑
l=1

∑
|x|=ln0−1

∑
|y|=n,

←
Y1=x

ET
[P ω,T (τx <∞)Sλ,[[Y1,Y2]]

p1(Y1, Y2)2

]
ET
[
(1 +

1

AY3

)Θλ(Y2, y, Y3)
]
,

which equals to

j−1∑
l=1

∑
|x|=ln0−1

∑
z:
←
z=x

PT (τx <∞)2c23

∑
|y|=n,Y1=z

ET
[ Sλ,[[Y1,Y2]]

p1(Y1, Y2)2

]
ET
[
(1 +

1

AY3

)Θλ(Y2, y, Y3)
]
,

as P ω,T (τx <∞) and
Sλ,[[Y1,Y2]]

p1(Y1,Y2)2 are independent under PT .

Note that for all z ∈ T , 2c23

∑
|y|=n,Y1=z ET

[
Sλ,[[Y1,Y2]]

p1(Y1,Y2)2

]
ET
[
(1+ 1

AY3
)Θλ(Y2, y, Y3)

]
are i.i.d. copies

of ∆1(n− |z|). Taking expectation yields that

EQ[∆2(n)] ≤
j−1∑
l=1

E
[ ∑
|x|=ln0−1

1τx<∞(d(x)− 1)
]
EQ[∆1(n− ln0)]

≤ bc31

j−1∑
l=1

E
[ ∑
|x|=ln0−1

1τx<∞

]
γj−l−1,

where the last inequality follows from (37). By Lemma 10, for any j ≥ 2,

EQ[∆2(n)] ≤ c32

j−1∑
l=1

γj−1−l ≤ c33 <∞.

Plugging the above inequality and (37) into (35) implies that

E[Nλ
n,2] ≤ EQ[∆1(n)] + EQ[∆2(n)] <∞.

The estimate of E[(N∗n,2)λ] follows from similar arguments. We feel free to omit it.
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A Proofs of one dimensional results

Proof of Lemma 2. For any i ≥ 1, let Si = −∑i
j=1 log(AjAj−1) and define S0 = 0. As i 7→

P̃ ω
i (τ̃−1 > τ̃n) is the solution to the Dirichlet problem{

ϕ(−1) = 0, ϕ(n) = 1

Ẽω
i (ϕ(η̃1)) = ϕ(i) i ∈ [[0, n− 1]].

It follows that

P̃ ω
i (τ̃−1 > τ̃n) =

∑i
j=0 exp(Sj)∑n
j=0 exp(Sj)

. (38)

As a consequence, for any 0 ≤ l ≤ n,

P̃ ω
0 (τ̃l < τ̃−1) =

1∑l
j=0 exp(Sj)

≥ exp(−max0≤j≤l Sj)

l + 1

P̃ ω
l+1(τ̃n < τ̃l) =

exp(Sl+1)∑n
j=l+1 exp(Sj)

≤ exp(− max
l+1≤j≤n

(Sj − Sl+1))

P̃ ω
l−1(τ̃−1 < τ̃l) =

exp(Sl)∑l
j=0 exp(Sj)

≤ exp(− max
0≤j≤l

(Sj − Sl)).

We only need to consider n large, take l = bz1nc, note that

P̃ ω
l (τ̃ ∗l > τ̃−1 ∧ τ̃n) = p(l, l + 1)P̃ ω

l+1(τ̃n < τ̃l) + p(l, l − 1)P̃ ω
l−1(τ̃−1 < τ̃l)

≤ max(P̃ ω
l+1(τ̃n < τ̃l), P̃

ω
l−1(τ̃−1 < τ̃l)).

Therefore,

P̃ ω
0 (τ̃n ∧ τ̃−1 > m) ≥ P̃ ω

0 (τ̃l < τ̃−1)P̃ ω
l (τ̃ ∗l < τ̃−1 ∧ τ̃n)m

≥ exp(−max0≤j≤l Sj)

l + 1

(
1− P̃ ω

l (τ̃ ∗l ≥ τ̃−1 ∧ τ̃n)
)m

≥ exp(−max0≤j≤l Sj)

l + 1

(
1− exp(− max

l+1≤k≤n
(Sk − Sl+1) ∧ max

0≤k≤l
(Sk − Sl))

)m
≥ 1max0≤k≤l Sk≤0

l + 1
(1− e−zn)m1maxl+1≤k≤n(Sk−Sl+1)≥zn1max0≤k≤l(Sk−Sl)≥zn.

As m ≈ ezn, we have (1− e−zn)m = O(1), taking expectation under P(·|A0 ∈ [a, 1
a
]) yields

P̃0(τ̃n ∧ τ̃−1 > m|A0 ∈ [a,
1

a
])

≥ c

n
P(max

0≤k≤l
Sk ≤ 0, max

0≤k≤l
(Sk − Sl) ≥ zn|A0 ∈ [a,

1

a
])P( max

l+1≤k≤n
(Sk − Sl+1) ≥ zn)

≥ c

n
P(max

0≤k≤l
Sk ≤ 0, Sl ≤ −zn|A0 ∈ [a,

1

a
])P((Sn − Sl+1) ≥ zn).

For k ≥ 1, write Sk = −∑k
i=1 logAi, then as Sk = − logA0 + Sk−1 + Sk,

P(max
0≤k≤l

Sk ≤ 0, Sl ≤ −zn|A0 ∈ [a,
1

a
])

≥ P(A0 ≥ 1, Al ≥ 1, max
1≤k≤l−1

Sk ≤ 0, Sl−1 ≤ −
zn

2
|A0 ∈ [a,

1

a
])

= P(A0 ≥ 1|A0 ∈ [a,
1

a
])P(Al ≥ 1)P( max

1≤k≤l−1
Sk ≤ 0, Sl−1 ≤ −

zn

2
)
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note that

P( max
1≤k≤l−1

Sk ≤ 0, Sl−1 ≤ −
zn

2
) ≥ 1

l
P(Sl−1 ≤ −

zn

2
)

and

Sn − Sl+1 = − logAl+1 − logAn − 2
n−1∑
k=l+2

logAk.

Therefore,

P̃0(τ̃n ∧ τ̃−1 > m|A0 ∈ [a,
1

a
]) ≥ c

n2
P(Sl−1 ≤ −

zn

2
)P(Sn − Sl+1 ≥ zn)

≥ c

n2
P(Sl−1 ≤ −

zn

2
)P(Al+1 ≤ 1)P(An ≤ 1)P(−

n−1∑
k=l+2

logAk ≥
zn

2
)

≥ c

n2
P(Sl−1 ≤ −

zn

2
)P(−

n−1∑
k=l+2

logAk ≥
zn

2
)

≥ c

n2
P(

l−1∑
k=1

logAk ≥
zn

2
)P(

n−1∑
k=l+2

logAk ≤ −
zn

2
)

Applying Cramér’s theorem to sums of i.i.d. random variables logAk, we have

P̃0(τ̃n ∧ τ̃−1 > m|A0 ∈ [a,
1

a
]) & exp(−n

(
z1I(

z

2z1

) + (1− z1)I(
−z

2(1− z1)
)

)
)

where I(x) = supt∈R{tx− logE(At)} is the associated rate function.

Proof of Lemma 3. Replace I( −z
2(1−z1)

) using

I(−x) = sup
t∈R
{−tx− logE(At)} = sup

t∈R
{−tx− logE(A1−t)}

= sup
s∈R
{−(1− s)x− logE(As)} = I(x)− x.

For fixed z, by convexity of the rate function I, the supremum of −z1I( z
2z1

)− (1− z1)I( z
2(1−z1)

) is

obtained when z1 = 1
2
, we are left to compute

sup
0<z
{ log q1 − I(z)

z
+

1

2
},

clearly, log q1−I(z)
z

≤ −t∗, when z is such that (t 7→ logE(At))′(t∗) = z > 0, the maximum is
obtained.

Proof of Lemma 4 . Observe that

P̃ ω
Y1

(τ̃y < τ̃←−
Y1

)G̃τ̃Y1
∧τ̃Y3 (y, y) = P̃ ω

Y1
(τ̃y < τ̃←−

Y1
∧ τ̃Y3)Ẽω

y

[ τ̃Y1
∧τ̃Y3∑
k=0

1{η̃k=y}

]

≤P̃ ω
Y1

(τ̃y < τ̃←−
Y1
∧ τ̃Y3)Ẽω

y

[ τ̃←−Y1
∧τ̃Y3∑
k=0

1{η̃k=y}

]
= Ẽω

Y1

[ τ̃←−Y1
∧τ̃Y3∑
k=0

1{η̃k=y}

]
.
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Obviously,

Ẽω
Y1

[ τ̃←−Y1
∧τ̃Y3∑
k=0

1{η̃k=y}

]
≤ Ẽω

Y1
[τ̃←−
Y1
∧ τ̃Y3 ].

This gives us (11).
Moreover, to get (12), we only need to show that for any 0 ≤ p < m, we have

Ẽω
p [τ̃p−1 ∧ τ̃m] ≤ 1 + ApAp+1 + ApAp+1Ẽ

ω
p+1[τ̃p ∧ τ̃m]. (39)

In fact, since 0 ≤ λ ≤ 1, (39) implies that

Ẽω
p [τ̃p−1 ∧ τ̃m]λ ≤ 1 + (ApAp+1)λ + (ApAp+1)λẼω

p+1[τ̃p ∧ τ̃m]λ.

applying this inequality a few times along the interval [[Y1, Y3]], we obtain (12). It remains to
show (39). Observe that

Ẽω
p [τ̃p−1 ∧ τ̃m] = ω̃(p, p− 1) + ω̃(p, p+ 1)(1 + Ẽω

p+1[τ̃p−1 ∧ τ̃m])

= 1 + ω̃(p, p+ 1)Ẽω
p+1[τ̃p−1 ∧ τ̃m]

= 1 + ω̃(p, p+ 1)
(
Ẽω
p+1[τ̃m; τ̃m < τ̃p] + Ẽω

p+1[τ̃p; τ̃p < τ̃m] + P̃ ω
p+1(τ̃p < τ̃m)Ẽω

p [τ̃p−1 ∧ τ̃m]
)
.

It follows that

Ẽω
p [τ̃p−1 ∧ τ̃m] =

1 + ω̃(p, p+ 1)Ẽω
p+1[τ̃p ∧ τ̃m]

1− ω̃(p, p+ 1)P̃ ω
p+1(τ̃p < τ̃m)

=
1 + ω̃(p, p+ 1)Ẽω

p+1[τ̃p ∧ τ̃m]

ω̃(p, p− 1) + ω̃(p, p+ 1)P̃ ω
p+1(τ̃m < τ̃p)

≤ 1 + ω̃(p, p+ 1)Ẽω
p+1[τ̃p ∧ τ̃m]

ω̃(p, p− 1)
.

Therefore,
Ẽω
p [τ̃p−1 ∧ τ̃m] ≤ (1 + ApAp+1) + ApAp+1Ẽ

ω
p+1[τ̃p ∧ τ̃m].

Proof of Lemma 5. Recall that E[At] <∞ for any t ∈ R. By Hölder’s inequality, it suffices to show
that there exists some δ′ > 0 such that for all n large enough,

E
[(
Ẽω

0 [τ̃−1 ∧ τ̃n]
)λ(1+δ′)]

≤ (q1 + δ)−n. (40)

It remains to prove (40). In fact, we only need to show that for 1 > λ′ = λ(1 + δ) > 0,

lim sup
n→∞

logE
[(
Ẽω

0 [τ̃−1 ∧ τ̃n]
)λ′]

n
≤ ψ(λ′ + 1/2) (41)

where ψ(t) = logE(At). One therefore sees that if t∗ − 1/2 > λ′, then ψ(λ′ + 1/2) < ψ(t∗) =
− log q1. To show (41), recall that for any 0 ≤ i ≤ n− 1,

G̃τ̃−1∧τ̃n(i, i) = Ẽω
i

[ τ̃−1∧τ̃n∑
k=0

1η=i

]
=

1

1− ω̃(i, i− 1)P̃i−1(τ̃i < τ̃−1)− ω̃(i, i+ 1)P̃i+1(τ̃i < τ̃n)
.
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Then, Ẽω
0 [τ̃−1 ∧ τ̃n] = 1 +

∑n−1
i=0 P̃

ω
0 (τ̃i < τ̃−1)G̃τ̃−1∧τ̃n(i, i) implies that

Ẽω
0 [τ̃−1 ∧ τ̃n] = 1 +

n−1∑
i=0

P̃ ω
0 (τ̃i < τ̃−1)

ω̃(i, i− 1)P̃ ω
i−1(τ̃−1 < τ̃i) + ω̃(i, i+ 1)P̃ ω

i+1(τ̃n < τ̃i)
.

Recall that by (38), if Si :=
∑i

j=1− log(Aj−1Aj) for i ≥ 1 and S0 = 0, then

P̃ ω
0 (τ̃i < τ̃−1) =

1∑i
k=0 e

Sk

P̃ ω
i−1(τ̃−1 < τ̃i) =

eSi∑i
k=0 e

Sk

P̃ ω
i+1(τ̃n < τ̃i) =

1∑n
k=i+1 e

Sk−Si+1

It is immediate that

P̃ ω
0 (τ̃i < τ̃−1)

ω̃(i, i− 1)P̃ ω
i−1(τ̃−1 < τ̃i) + ω̃(i, i+ 1)P̃ ω

i+1(τ̃n < τ̃i)
=

1∑i
k=0 e

Sk

1
1+AiAi+1

eSi∑i
k=0 e

Sk
+ AiAi+1

1+AiAi+1

1∑n
k=i+1 e

Sk−Si+1

≤ 1
1

1+AiAi+1

eSi∑i
k=0 e

Sk
+ AiAi+1

1+AiAi+1

1∑n
k=i+1 e

Sk−Si+1

.

Let Xk = − logAk. For any 0 ≤ i ≤ n, define

Hi(−X) := max
0≤j≤i

(−Xj −Xj+1 − · · · −Xi−1)

Hn−i−1(X) := max
i+2≤j≤n

(Xi+2 + · · ·+Xj)

Note that
Sk − Si ≤ 2Hi(−X) + (−Xi)+,∀0 ≤ k ≤ i,

and that
Sk − Si+1 ≤ 2Hn−i−1(X) + (Xi+1)+,∀i+ 1 ≤ k ≤ n.

Then,

1

1 + AiAi+1

eSi∑i
k=0 e

Sk
≥ 1

1 + AiAi+1

1

(1 + i)e2Hi(−X)+(−Xi)+
≥ 1

n(Ai + 1)(1 + AiAi+1)
e−2Hi(−X).

Similarly,
AiAi+1

1 + AiAi+1

1∑n
k=i+1 e

Sk−Si+1
≥ (Ai+1 ∧ 1)AiAi+1

n(1 + AiAi+1)
e−2Hn−i−1(X).

So,

1

1 + AiAi+1

eSi∑i
k=0 e

Sk
+

AiAi+1

1 + AiAi+1

1∑n
k=i+1 e

Sk−Si+1

≥ 1

n(Ai + 1)(1 + AiAi+1)
e−2Hi(−X) +

(Ai+1 ∧ 1)AiAi+1

n(1 + AiAi+1)
e−2Hn−i−1(X)

≥ 1

n

( 1

(Ai ∨ 1)(1 + AiAi+1)
∧ (Ai+1 ∧ 1)AiAi+1

1 + AiAi+1

)
e−2Hi(−X) ∨ e−2Hn−i−1(X).
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This implies that

P̃ ω
0 (τ̃i < τ̃−1)

ω̃(i, i− 1)P̃ ω
i−1(τ̃−1 < τ̃i) + ω̃(i, i+ 1)P̃ ω

i+1(τ̃n < τ̃i)

≤n
(

(Ai ∨ 1)(1 + AiAi+1) +
1 + AiAi+1

(Ai+1 ∧ 1)AiAi+1

)
e2Hi(−X)∧Hn−i−1(X).

Thus, for any λ ≤ 1, n ≥ 2,

Ẽω
0 [τ̃−1 ∧ τ̃n]λ . n+ n2

n−1∑
i=0

(
(Ai ∨ 1)(1 + AiAi+1) +

1 + AiAi+1

(Ai+1 ∧ 1)AiAi+1

)λ
e2λHi(−X)∧Hn−i−1(X)

By independence,

EẼω
0 [τ̃−1 ∧ τ̃n]λ . n+ n3 max

0≤i≤n−1
E[e2λHi(−X)∧Hn−i−1(X)] (42)

Recall that ψ(λ) = logE[Aλ] and Sk = −∑k
i=1 logAi. Let t > 0, for i ≥ 1, x > 0,

P(Hi(−X) ≥ xi) ≤ P(max
0≤k≤i

[−tSk − ψ(t)k] ≥ xti− ψ(t)i)

≤ P(max
0≤k≤i

e−tSk−ψ(t)k ≥ e(xt−ψ(t))i)

≤ e−(xt−ψ(t))i, (43)

where the last inequality stem from Doob’s maximal inequality and the fact that (e−tSj−ψ(t)j)j is a
martingale. Since x ≥ E(logA), I(x) = supt>0{tx− ψ(t)}, we have

P(Hi(−X) ≥ xi) ≤ e−I(x)i. (44)

Similarly, for any j ≥ 1 and x > E[− logA] .

P(Hj(X) ≥ xj) ≤ P( max
0≤k≤j

[tSk − ψ(−t)k] ≥ xtj − ψ(−t)j)

≤ P( max
0≤k≤j

etSk−ψ(−t)k ≥ e(xt−ψ(−t))j)

≤ e−(xt−ψ(−t))j, (45)

which implies that
P(Hj(X) ≥ xj) ≤ e−I(−x)j. (46)

Further, for 0 < x < E[− logA], one sees that by Cramér’s theorem,

P(Hj(X) ≤ xj) ≤ P(X1 + · · ·+Xj ≤ xj)

= P(−X1 − · · · −Xj ≥ −xj) ≤ e−I(−x)j. (47)

Take η > 0. In (42), we can replace Hi(−X) ∧Hn−i−1(X) by Hi(−X) ∧Hn−i−1(X) ∧Kηn with
some K ≥ 1 large enough. In fact,

E[e2λHi(−X)∧Hn−i−1(X)] ≤ E[e2λHi(−X)∧Hn−i−1(X);Hi(−X) ∨Hn−i−1(X) ≤ Kηn]︸ ︷︷ ︸
Ξ−K(i)

+ E[e2λHi(−X)∧Hn−i−1(X);Hi(−X) ∨Hn−i−1(X) ≥ Kηn]︸ ︷︷ ︸
=:Ξ+

K(i)

.
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Observe that

Ξ+
K(i) ≤ E[e2λHi(−X);Hi(−X) ≥ Kηn] + E[e2λHn−i−1(X);Hn−i−1(X) ≥ Kηn]

=: Ξ1 + Ξ2

Let us bound Ξ1,

Ξ1 =E

∫ Hi(−X)

−∞
2λe2λx1Hi(−X)≥Kηndx =

∫
R

2λe2λxP(Hi(−X) ≥ Kηn ∨ x)dx

=

∫ Kηn

−∞
2λe2λxdxP(Hi(−X) ≥ Kηn) +

∫ ∞
Kηn

2λe2λxP(Hi(−X) ≥ x)dx

=e2λKηnP(Hi(−X) ≥ Kηn) +

∫ ∞
K

2ληne2λtηnP(Hi(−X) ≥ tηn)dt

By applying (43), one sees that for any 0 ≤ i ≤ n− 1 and µ = 3 > 2λ,

Ξ1 ≤e2λKηne−µKηn+ψ(µ)i +

∫ ∞
K

2ληne2λtηne−µtηn+ψ(µ)idt

≤e−Kηn+ψ(3)n + 2λeψ(3)n

∫ ∞
K

ηne−tηndt

≤3e−Kηn+ψ(3)n,

which is less than 1 when we choose K large enough. Similarly, we can show that for any i ≤ n− 1,

Ξ2 ≤ 1,

for K large enough. Consequently, (42) becomes that

EẼω
0 [τ̃−1 ∧ τ̃n]λ . 3n3 + n3 max

0≤i≤n−1
Ξ−K(i). (48)

It remains to bound Ξ−K(i). Take sufficiently small ε > 0 and let L = b1
ε
c. For any i such that

l1bεnc ≤ i < (l1 + 1)bεnc and l2bεnc ≤ n− i− 1 < (l2 + 1)bεnc with 0 ≤ l1, l2 ≤ L, we have

Ξ−K(i) ≤
∑

0≤k1,k2≤K

e2λk1∧k2ηn+2ληnP(k1ηn ≤ Hi(−X) < (k1 + 1)ηn)P(k2ηn ≤ Hn−i−1(X) < (k2 + 1)ηn)

≤
∑

0≤k1,k2≤K

e2λk1∧k2ηn+2ληnP(Hi(−X) ≥ k1ηn)P(k2ηn ≤ Hn−i−1(X) < (k2 + 1)ηn).

By (44), we have

P(Hi(−X) ≥ k1ηn) ≤ e−I(x1)i

where x1 is the point in [ k1ηn
(l1+1)bεnc ,

k1ηn
l1bεnc ] where I reaches the minimum in this interval. By large

deviation estimates (46) (47), we have

P(k2ηn ≤ Hn−i−1(X) < (k2 + 1)ηn) ≤ e−I(x2)(n−i)

where x2 is the point in [ k1ηn
(l2+1)bεnc ,

(k2+1)ηn
l2bεnc ] where I reaches the minimum in this interval. Therefore,

Ξ−K(i) ≤
∑

0≤k1,k2≤K

e2λk1∧k2ηn+2ληne−I(x1)l1bεnce−I(−x2)l2bεnc
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Taking maximum over all l1, l2, k1, k2 yields that

EẼω
0 [τ̃−1∧τ̃n]λ . 3n2+n2K2 max

l1,l2,k1,k2

exp{2λk1∧k2ηn+2ληn−I(x1)l1bεnc−I(−x2)l2bεnc}. (49)

Observe that

2λk1 ∧ k2ηn+ 2ληn− I(x1)l1bεnc − I(−x2)l2bεnc
≤2λ(x1l1 ∧ x2l2)bεnc − I(x1)l1bεnc − I(−x2)l2bεnc+ 3ληn.

Define
L(λ) := sup

D
{
(
x1z1 ∧ x2z2

)
λ− I(x1)z1 − I(−x2)z2},

where D := {x1, x2, z1, z2 ≥ 0, z1 + z2 ≤ 1}.
By Lemma 8.1 in [1], one concludes that

lim sup
n→∞

logEẼω
0 [τ̃−1 ∧ τ̃n]λ

n
≤ L(2λ) = ψ(

1 + 2λ

2
).

B Some observations on random walks on random trees

Proof of Lemma 10. As β(x) is identically distributed under P,

Eρ(
∑
|x|=n

1τx<∞)E(β) = E[
∑
|x|=n

P ω,T
ρ (τx <∞)]E(β)

= E

∑
|x|=n

ET (P ω,T
ρ (τx <∞))ET (β(x))

 .

P ω,T
ρ (τx <∞) is an increasing function of Ax since

P ω,T
ρ (τx <∞) = P ω,T

ρ (τ←
x
<∞)

(∑
k≥0

P ω,T
←
x

(τ ∗←
x
< min(τx,∞))k

)
p(
←
x, x)

=
P ω,T
ρ (τ←

x
<∞)

1− P ω,T
←
x

(τ ∗←
x
< min(τx,∞))

A←
x
Ax

1 + A←
x
B←
x

,

recall that β(x) is also an increasing function of Ax, moreover, conditionally on Ax, P ω,T
ρ (τx < ∞)

and β(x) are independent, thus by FKG inequality,

ET (P ω,T
ρ (τx <∞)β(x)) = ET (ET (P ω,T

ρ (τx <∞)β(x)|Ax))
= ET (ET (P ω,T

ρ (τx <∞)|Ax)ET (β(x)|Ax))
≥ ET (P ω,T

ρ (τx <∞))ET (β(x))

Therefore,

E

∑
|x|=n

ET (P ω,T
ρ (τx <∞))ET (β(x))

 ≤ E

∑
|x|=n

ET (P ω,T
ρ (τx <∞)β(x))


= E

∑
|x|=n

P ω,T
ρ (τx <∞)β(x)


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For any GW tree and any trajectory on the tree, there is at most one regeneration time at the n-th
generation, therefore, ∑

|x|=n

1
τx<∞, ηk 6=

←
x ,∀k>τx ≤ 1

By taking expectation w.r.t. Eω,T
ρ and using the Markov property at τx,∑

|x|=n

P ω,T
ρ (τx <∞)β(x) ≤ 1

Whence
E(
∑
|x|=n

1τx<∞)E(β) ≤ 1

By transient assumption it suffices to take c11 = 1
E(β)

<∞.

Proof of Lemma 11 and Corollary 3. Let Ti, i ≥ 1 be independent copies of GW tree with offspring
distribution (q), each endowed with independent environment (ωx, x ∈ Ti). Let ρ(i) be the root of
Ti. In such setting, β(ρ(i)), i ≥ 1 are i.i.d. sequence with common distribution β.

For each Ti, take the left most infinite ray, denoted v
(i)
0 = ρ(i), v

(i)
1 , . . . , v

(i)
n , . . . Let Ω(x) = {y 6=

x;
←
x =

←
y} be the set of all brothers of x. Fix some constant C, define

Ri = inf{n ≥ 1; ∃z ∈ Ω(v(i)
n ),

1

Azβ(z)
≤ C}.

By Equation (15),
1

β(v
(i)
Ri−1

)
≤ 1 +

1

A
v

(i)
Ri−1

Azβ(z)
≤ 1 +

C

A
v

(i)
Ri−1

.

Also Ri and {A
v

(i)
n
, n ≥ 0} are independent under Q. By iteration,

1

β(ρ(i))
≤ 1 +

1

A
v

(i)
0
A
v

(i)
1
β(v

(i)
1 )
≤ 1 +

1

A
v

(i)
0
A
v

(i)
1

(1 +
1

A
v

(i)
1
A
v

(i)
2
β(v

(i)
2 )

)

≤ · · ·

≤ 1 +

Ri−1∑
k=1

1

A
v

(i)
0
A
v

(i)
k

k−1∏
j=1

A−2

v
(i)
j

+
C

A
v

(i)
0

Ri−1∏
l=1

A−2

v
(i)
l

.

For any n ≥ 0, denote

C(n) = 1 +
n∑
k=1

1

A
v

(i)
0
A
v

(i)
k

k−1∏
j=1

A−2

v
(i)
j

+
C

A
v

(i)
0

n∏
l=1

A−2

v
(i)
l

. (50)

Thus
1

β(ρ(i))
≤ C(Ri − 1), note also that, since ξ2 = E(A−2) = 1 + 3

c2
+ 3

c4
, E(C(n)) ≤ c34ξ

n+1
2 .

Therefore, for any K ≥ 1,
1∑K

i=1 β(ρ(i))
≤ C( min

1≤i≤K
Ri − 1).
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Taking expectation under P yields (as Ri i.i.d. let R be a r.v. with the common distribution)

E(
1∑K

i=1 β(ρ(i))
) ≤ E(E(C( min

1≤i≤K
Ri − 1)|Ri; 1 ≤ i ≤ K))

≤ c34E(ξ
min1≤i≤K Ri
2 ) ≤ c34

∞∑
n=0

ξn+1
2 P(R ≥ n+ 1)K

≤ c34

∑
n≥0

ξn+1
2 E(δ

∑n−1
k=0 (d(vk)−2)

C )K

where δC = P( 1
Aρβρ

> C). Let f(s) =
∑

k≥1 qks
k, as f(s)/s ↓ q1 as s ↓ 0, for any ε > 0, we can

take C large enough to ensure f(δC)
δC
≤ q1(1 + ε), thus

E(
1∑K

i=1 β(ρ(i))
) ≤ c34

∑
n≥0

ξn+1
2 (

f(δC)

δC
)nK ≤ c34

∑
n≥0

ξn+1
2 (q1(1 + ε))nK .

Now take ε such that q1(1 + ε) < 1, then take K large enough such that ξ2(q1(1 + ε))K < 1 leads to

E(
1∑K

i=1 β(ρ(i))
) < c12 <∞

Similarly, the following also holds

E(
1∑K

i=1Aρ(i)β(ρ(i))
) < c12 <∞.

In particular, if q1ζ2 < 1, we can take K = 1 and obtained Further, it follows from (50) and
Chauchy-Schwartz inequality that

C(n)2 ≤ (n+ 2)

(
1 +

n∑
k=1

1

A2

v
(i)
0

A2

v
(i)
k

k−1∏
j=1

A−4

v
(i)
j

+
C

A
v

(i)
0

n∏
l=1

A−4

v
(i)
l

)
.

Thus,
E[C2(n)] ≤ c35(n+ 2)ξn+1

4 .

As soon as ζ4 <∞, the previous argument works again to conclude that for K large enough,

E(
1∑K

i=1 β
2(ρ(i))

) + E(
1∑K0

i=1 A
2
ρ(i)β2(ρ(i))

) < c13 <∞.
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