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Data assimilation for identification of cardiovascular network characteristics

Rajnesh Lal, Bijan Mohammadi, and Franck Nicoud

IMAG, Universite de Montpellier, CC051, 34095 Montpellier, France

Abstract

A method to estimate the hemodynamics parameters of a network of vessels using

an Ensemble Kalman filter is presented. The elastic moduli (Young’s modulus) of

blood vessels and the terminal boundary parameters are estimated as the solution of

an inverse problem. Two synthetic test cases and a configuration where experimental

data is available are presented. The sensitivity analysis confirms that the proposed

method is quite robust even with a few numbers of observations. The simulations

with the estimated parameters recovers target pressure or flow rate waveforms at

given specific locations, improving the state of the art predictions available in the

literature. This shows the effectiveness and the efficiency of both the parameters

estimation algorithm and the blood flow model.

Keywords: Ensemble Kalman filter, 1D blood flow, parameter estimation, inverse

problem.

1. Introduction

An increase in arterial stiffness has been shown to be linked with age including

other health problems or risk factors such as diabetes and hypertension [1]. The

stiffness of arteries can be measured using different techniques such as by measuring

the pulse wave velocity (PWV) or with the analysis of local variations in local

pressure and volume [2]. PWV is directly related to the arterial wall elasticity and

to the Young’s modulus of the arteries [2].
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“Assimilation is the process of finding the model representation which is most

consistent with the observations” [3]. The use of inaccurate parameters in the model

equations can give rise to model errors [4]. The parameter estimation problem

tends to improve initial estimates of the model parameters so that the difference

between the measurements and the model solution are minimised. In parameter

estimation problem, it is assumed that the uncertainties in the model parameters

are the sources of errors for the model errors [5]. According to [6], it is important

to tune the parameters to gain a better confidence in the predictions of the state

values. Generally, we have observable data for the state, but no direct observable

data for the parameters.

In recent years, parameter estimation has been carried out using a similar frame-

work as for the state estimation. The state vectors can be augmented by the poorly

known parameters for estimating by having a Kalman filter for the state-parameter

augmented model [5, 7, 8, 9]. In state-parameter augmentation, parameters are

considered as part of the model, which are updated in the analysis step of the data

assimilation algorithm together with the model variables [6]. An evolution model for

model parameters is required for the state-parameter augmented model [10]. The

common evolution model includes the random walk model [11, 12] and the persis-

tence model [9, 13]. Combining the model variables and model parameters during

the analysis step can also introduce problems such as parameter collapse and filter

divergence [14]. In [14, 15], parameter estimation using an Ensemble Kalman Filter

(EnKF) is presented using augmentation method, but without updating the model

states during the assimilation step.
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Some recent works on inverse problems in hemodynamics include the work of Lom-

bardi [16], Moireau et al. [17], Pant et al. [18], Bertoglio et al. [19], Chabiniok et al.

[20], Martin et al. [21], Spilker et al. [22] and Lassila et al. [23]. In [16], a sequential

approach based on the reduced order unscented Kalman filter (ROUKF) is presented

for the identification of arterial stiffness parameters in 1D haemodynamics. In [17],

ROUKF is used to identifiy the boundary condition parameters in a fluid structure

vascular model utilising patient image data. In [18], a sequential estimation tech-

nique using the unscented Kalman filter (UKF) is presented to estimate lumped

model parameters from clinical measurements. In [19], parameter estimation using

ROUKF for fluid-structure interaction problems is presented. In [20], the use of se-

quential joint state-parameter data assimilation to a biomechanical heart model with

actual cardiac Cine-MRI data are presented. In [21], a variational method (adjoint

state approach) is presented to identify the parameters of one-dimensional models

for blood flow in arteries. In [22], a quasi-Newton method is used to adjust the

parameters of the outlet boundary conditions of blood flow models to achieve target

profiles of flow and pressure waveforms. In [23], the solution of inverse problems in

hemodynamics is proposed using deterministic and Bayesian approaches.

Recent works on inverse problems in hemodynamics are either based on joint state

augmented model (e.g. [20]) or ROUKF (e.g. [16, 17, 18, 19]). We use Ensemble

Kalman filters (EnKF) to identify the Young’s modulus and the terminal boundary

parameters as the solution of inverse problems. Our aim is to show that this can

be achieved with only a few number of observations and without using the joint

state formulation hence reducing a modification of the state equations. We think

this is important in order to minimize the coupling between the assimilation tool
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and the state equations solver. Also, one originality is to ensure positivity for the

solutions of the inversion introducing an adequate reformulation of the problem

through logarithmic variable changes. Finally, one important result of the paper is

to show that joint use of data assimilation and flow solution by a CFD code greatly

improves available results in the literature for a realistic human arterial model with

available experimental references [24].

In this paper, first, we present a review of the data assimilation method using an

Ensemble Kalman filter (EnKF) and propose a method for hemodynamics parameter

estimation as the solution to an inverse problem. In the second section, a blood flow

model of the cardiovascular network is presented. In section three, test cases are

presented where we show the applicability of an Ensemble Kalman filter to 1D blood

flow model in parameter estimation. The first two test cases use synthetic data and

the final test case involves the use of an experiments data [24]. The test cases are

limited to the estimation of Young’s modulus, the boundary condition parameter,

i.e. reflection coefficient and the viscoelastic coefficient.

2. Ensemble Kalman Filter

First introduced by Geir Evenson [25], an Ensemble Kalman Filter (EnKF) solves

the Fokker-Plank equation using a Monte Carlo or ensemble integrations [26]. It is a

sub-optimal estimator for problems involving high-order non-linear models. The er-

ror statistics are predicted using the ensemble of states. Different versions of EnKF

are available in the literature: Deterministic Ensemble Kalman filter (DEnKF) [27],

Monte Carlo EnKF [25, 28], EnKF [29, 30], Hybrid EnKF [31], Ensemble Transform
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Kalman filter (ETKF) [32], Ensemble Adjustment Kalman filter (EAKF) [7], En-

semble Square Root filters (EnSRF) [33] and Local Ensemble Kalman filter (LEKF)

[34].

2.1. Derivation of Ensemble Kalman Filter. In EnKF, the forecast error co-

variance matrix is evaluated using an ensemble of forecasts. In this section, we follow

and describe the different steps employed in the formulation of EnKF as presented

in [30, 35, 36, 37, 38].

We will assume that the discrete nonlinear system is described by

(1) xk+1 = f(xk) +wk, yk = h(xk) + vk.

The model state at time tk is xk ∈ IRn, while the observed state is yk ∈

Rp. n is the dimension of the model state vector and p is the number of observations.

wk ∈

Rn and vk ∈

Rp are assumed uncorrelated Gaussian model errors with wk ∼ N (0,Qk) and vk ∼

N (0,Rk) where Qk and Rk are the covariance matrices. h is the function describing

the relationship between the measurement and the states.

At time tk, it is assumed that an ensemble of q forecast state estimates (prior

ensembles), Xf
k = (xf1

k , . . . ,x
fq
k ) ∈

Rn×q is available. fi represents the i-th forecast member of the ensemble. The mean

of the ensemble of forecast state is xf
k ∈
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Rn and is given by

(2) xf
k =

1

q

q∑
i=1

xfi
k .

The forecast covariance matrix, Pf
k ∈

Rn×n is defined by

(3) Pf
k =

1

q − 1

q∑
i=1

(
xfi
k − xf

k

) (
xfi
k − xf

k

)T
.

After the computation of the Kalman gain Kk, all operations on the ensemble mem-

bers are independent in the EnKF analysis step and the ensemble members are

updated using:

(4) xai
k = xfi

k +Kk

[
yi
k − h

(
xfi
k

)]
, i = 1, . . . , q,

where ai represents the i-th updated or analysed member of the ensemble. Without

adding perturbations to the original observation vector, an updated ensemble with

a low variance can be obtained [39]. Hence, to maintain the correct forecast error

covariance, a suitable spread of the ensemble members is required. This is achieved

by using an ensemble of perturbed observations [39]. An ensemble of the same size

q consisting of observations is also generated by adding small perturbations to the

observation set yk. Perturbations are generated to have the same distribution as the

measurement error and the perturbed observations yi
k are defined by

(5) yi
k = yk + eik, i = 1, . . . , q
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where eik ∈

Rp is a Gaussian random vector with zero mean and a specified variance. The

measurement error covariance matrix, Rk, is diagonal following the assumption of

independent observations [33] and is defined as

(6) Rk = diag

[
1

q − 1
EET

]
, E =

[
e1k, . . . , e

q
k

]
.

For a linear measurement function, h, and if the noise is additive, that is

(7) yk = Hxk + vk,

the Kalman gain is defined by [36]

(8) Kk = Pf
kH

T
(
HPf

kH
T +Rk

)−1
.

In Eq. (8), the observation operator, H ∈

Rp×n is linear or linearized. To circumvent the linearization of a nonlinear measure-

ment function which might be difficult to linearize, Houtekamer and Mitchell [40]

re-wrote the two terms Pf
kH

T and HPf
kH

T which appear in the Kalman gain Eq.

(8) as

Pf
kH

T ≡ 1

q − 1

q∑
i=1

[
xfi
k − xf

k

] [
h
(
xfi
k

)
− h

(
xf
k

)]T
,(9)

HPf
kH

T ≡ 1

q − 1

q∑
i=1

[
h
(
xfi
k

)
− h

(
xf
k

)] [
h
(
xfi
k

)
− h

(
xf
k

)]T
,(10)
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where h
(
xf
k

)
= 1

q

∑q
i=1 h

(
xfi
k

)
. It has been argued by Tang and Ambadan [41] that

Eqs. (9) and (10) approximately hold if the following are true :

h
(
xf
k

)
= h

(
xf
k

)
,(11)

norm
(
xfi
k − xf

k

)
is small for i = 1, 2, . . . q.(12)

Equations (9) and (10) linearize the nonlinear function h to H under the conditions

of Eqs. (11) and (12) [37]. For the nonlinear model with a nonlinear measurement

function, a general equation for the Kalman gain can be stated as [37]:

(13) Kk = Pf
xyk

(
Pf

yyk

)-1

,

where the error covariance matrices Pf
xyk

and Pf
yyk

are defined as follows:

Pf
xyk

=
1

q − 1

q∑
i=1

[
xfi
k − xf

k

] [
h
(
xfi
k

)
− h

(
xf
k

)]T
,(14)

Pf
yyk

=
1

q − 1

q∑
i=1

[
h
(
xfi
k

)
− h

(
xf
k

)] [
h
(
xfi
k

)
− h

(
xf
k

)]T
.(15)

We define the true state (or parameter) as the target of an ideal assimilation. The

best forecast state estimate is given by the ensemble mean xf
k. The error between

xf
k and the true state is given by the standard deviation of the ensemble members

around xf
k. The final step is the forecast step and involves an ensemble of q forecast

states for time t = k + 1 as,

(16) xfi
k+1 = f(xai

k ) +wi
k, i = 1, 2, . . . q.
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2.2. Summary of Ensemble Kalman Filter Algorithm. We now summarize

the forecast and the analysis steps of EnKF presented in section 2.1. A schematic

description of the EnKF algorithm is shown in Fig. 1. To start the EnKF, we need

to generate an ensemble of q forecast estimates of state associated with their random

errors. At t = k − 1, it is assumed that xfi
k−1 for i = 1, . . . , q are available. We let p

denote the number of observations. At time t = k, we generate a set of realizations

of the state vector Xk = (x1
k, . . . ,x

q
k) and denote the corresponding measurements

as Yk = (y1k, . . . , y
q
k) ∈

Rq×p. Q and R correspond to the model and observation error covariance matrices,

respectively. We write the equations for the EnKF as:

xfi
k = f(xai

k−1) +wi
k−1, i = 1, . . . , q,

wi
k ∼ N (0,Qk),

Pf
xyk

=
1

q − 1

q∑
i=1

[
xfi
k − xf

k

] [
h
(
xfi
k

)
− h

(
xf
k

)]T
,

Pf
yyk

=
1

q − 1

q∑
i=1

[
h
(
xfi
k

)
− h

(
xf
k

)] [
h
(
xfi
k

)
− h

(
xf
k

)]T
+Rk,

Kk = Pf
xyk

(
Pf

yyk

)-1

,

yi
k = yk + eik, i = 1, . . . , q,

xai
k = xfi

k +Kk

[
yi
k − h

(
xfi
k

)]
, i = 1, . . . , q.

In the above steps, the superscripts ‘f’ and ‘a’ denotes the forecast and the analysis

steps respectively. EnKF algorithm yields an ensemble of analyses at time t = k,

which can be cycled in time.
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t = kt = k − 1 t = k + 1

x
fi
k−1

xai

k−1 xai

k
xai

k+1x
fi
k

x
fi
k+1

Ensemble
of forecast
states

Observations yk−1 yk yk+1

yik−1
= yk−1 + vik−1 yik = yk + vik yik+1

= yk+1 + vik+1

Perturbed
observations

Ensemble
of

assimilated
(updated)
states

EnKF EnKF

EnKF

Figure 1. A schematic description of the Ensemble Kalman Filter.

UKF differs from EnKF by the choice of the sampling. UKF uses a minimal set

of deterministically chosen points (sigma points) and propagates this set through

the actual non-linear function [18]. In contrast, EnKF uses a Monte-Carlo-based

choice of many points (members of the ensemble) for forward propagation. UKF

should be preferred if the output of the system deviates from a Gaussian distribution.

Except with the computation of the Kalman gain, all the operations on the ensemble

members are independent. This implies that their parallelization can be trivially

carried out. This is one of the reasons for the success and popularity of the EnKF

and UKF.

3. Parameter Estimation Using Ensemble Kalman Filter

In the current work, the EnKF algorithm is used to estimate only the model

parameters. The parameters are thus considered as special state variables (the

state vector contains only the model parameters). The evolution of parameters

is characterized by a random walk model [11, 12] and is defined as xi
k+1 = xi

k + τ ik.

τk ∼ N (0,Tk) is a small random perturbation with predefined variance T. Numer-

ical simulators can be regarded as nonlinear functions that take parameter vector
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xi as an input and produces an output vector yi = H(xi) [42]. H is the nonlinear

measurement function defined by the numerical simulator. The information from

observations are used by the Kalman filter during the analysis step and the Kalman

gain Eq. (4) is applied to update the ensemble members. The use of Eq. (4) assumes

that the parameters follow a Gaussian distribution [42]. The parameter estimation

procedure using the EnKF is stated in Algorithm 1 [42]. The algorithm can be

stopped when some finite convergence criterion is achieved. A flowchart for param-

eter estimation using EnKF is shown in Fig. 2 Positivity issues are physically

Algorithm 1: Parameter estimation using EnKF

Input: Ensemble size (q), maximum number of EnKF iteration (jmax),
variance matrix T, number of observations (nobs), initial guess of the
parameters (mean x̃0 and covariance P0).

1 Initialization:
2 Initialize randomly q states into special state matrix X
3 for j = 1 to jmax do
4 -Perturb the ensemble using random walk model

5 xfi = xai + τ i, τ i ∼ N (0,T) ∀i = 1, . . . , q
6 -Propagate the ensemble

7 yfi = H(xfi) ∀i = 1, . . . , q
8 -Perturb the observations for each ensemble
9 yi = y + ei, ∀i = 1, . . . , q

10 -Update the ensemble
11 Estimate R using Eq. (6) and Kalman gain, K, using Eq. (13, 14 and 15)

12 xai = xfi +K
[
yi − yfi

]
∀i = 1, . . . , q.

important but often difficult to enforce in assimilation processes. In this study the

parameters (e.g. the Young’s modulus) need to remain positive. To avoid negative

values of the Young’s modulus during the assimilation procedure, we introduce a

change of variable. More precisely, in the sequel all the parameters are redefined as

x = xref2
θ. x is the real parameter (e.g the Young’s modulus), θ is the parameter

used for estimation in EnKF and xref is a reference value (initial mean value for the

Young’s modulus). With this change of variable, the values of estimated parameters
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Initialise
Input ensemble size (q) and the mean and variance of initial
estimate of the parameters (x̃0, P0), maximum number of

EnKF iterations (jmax), parameter random walk
perturbation variance (T ), number of observations (nobs)

Initial ensemble of parameters, xfi

(i = 1......, . . . , q)

Blood flow model, F

Forecast measurements,

yfi using measurement

operator H

EnKF Analysis

Observations

Perturbed observations

converged

STOP: The mean of
the ensemble is taken
as the best estimate of

the parameters

random walk model

y

yi = y + vi

yfi = H(xfi)

xfi = xai + τ i

where τ is a small
random perturbation
with 0 mean and
variance T , i.e
τ i ∼ N (0,T)

xai = xfi +K
[

yi
− yfi

]

(xfi)

(xai)

(xfi)

Yes

model states

F (xfi)

xai and xfi are the
assimilated and forecast

parameters respectively and
K is the Kalman gain.

where vi is a random
vector from a normal

distribution with mean 0
and variance V , i.e

vi ∼ N (0, V )

No

(xai)

E(xai −xfi) <
tolerance

copy

Figure 2. Parameter estimation flowchart using the ensemble
Kalman filter.

remain positive [18]. The EnKF implementation uses an ensemble of θ such that

θ ∼ N (0, 1).

4. The Blood Flow Model

We first recall the one-dimensional (1D) governing equations for the blood flows in

variables u (cross section averaged blood velocity), A (cross section area) and p (cross

section averaged static pressure), which have been widely used in hemodynamics

applications [24, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. 1D modelling of arterial

networks being computationally cheap is a common method adopted to perform
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numerical simulations of the hemodynamics in arterial vessels [47, 53]. The model

assumes that blood is a Newtonian fluid in large vessels and can be considered

incompressible with constant density ρ and constant dynamic viscosity µ [50].

4.1. Governing Equations. For an incompressible and Newtonian fluid in an elas-

tic tube, the system of equations that represents continuity of mass and momentum

can be stated as [43]:

(17)

∂A

∂t
+

∂q

∂x
= 0,

∂q

∂t
+

∂

∂x

(
α
q2

A

)
+

A

ρ

∂p

∂x
= −kr

q

A
,

where x is the axial direction, A = A(x, t) is the cross section area at time t,

q = q(x, t) is the flow rate across a section, ρ is the constant density of the blood, p

is the cross section average static internal pressure and u(x, t) = q(x,t)
A(x,t)

denotes the

cross section averaged blood velocity. The term α is the momentum-flux correction

coefficient. For a flat velocity profile it is assumed that α = 1 [43]. kr denotes the

viscous resistance of the flow per unit length of the tube. A, q and p are the un-

knowns in the system (17). The system is closed by explicitly providing a differential

constitutive pressure-area relationship [43]. A nonlinear model for pressure law is

adopted according to Kelvin-Voigt model [24]:

(18) p = pext +
β

A0

[(√
A−

√
A0

)
+ ϵp

(√
A−

√
A0

)2
]
+

γ

A0

∂
√
A

∂t
,

where pext denotes the constant external pressure, A0 = A0(x), denotes the vessel

sectional area at equilibrium state and ϵp is the non linearity coefficient. The term

γ is hη
√
π, where h is the thickness of the tube and η is the viscoelastic coefficient.
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The coefficient β, which is related to the arterial stiffness is defined as:

(19) β =

√
πhE

(1− σ2)
,

where E = E(x) is the Young’s modulus and σ = 0.5 is the Poisson ratio [43].

With a specified inflow boundary condition, the 1D governing equations for the

blood flow are solved using the terminal models for the outflow boundary conditions

[47].

4.2. Characteristic variables. The 1D model (17) can be rewritten in a conser-

vative form,

(20)
∂U

∂t
+

∂F(U)

∂x
= S(U),

where U = [A, q]T denotes the vector of conserved variables, F(U) are the fluxes

and S(U) are the source terms defined by:

(21)

F(U) =

 q

α q2

A
+ β

3ρA0
A

3
2 + βϵp

ρA0

(
1
2
A2 − 2

3

√
A0A

3
2

)
 ,

S(U) =

 0

−kr
q
A
+ γ

√
A

2ρA0

(
∂2q
∂x2 − 1

2A
∂A
∂x

∂q
∂x

)
 .

The highly coupled system of non-linear equations (20) is decoupled to implement

the numerical solution with the prescribed boundary conditions [46]. The character-

istic system is derived by expressing the system of equations (20) in a quasi-linear
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form which can be expressed as [46]:

(22)
∂U

∂t
+ J

∂U

∂x
= S,

where the Jacobian reads:

(23) J(U) =
∂F

∂U
=

 0 1

−α q2

A2 +
β

2ρA0
A

1
2 + βϵp

ρA0

(
A−

√
A0

√
A
)

2α q
A

 .

By considering the non-linear coefficient (ϵp) and visco elasticity (η) as source terms,

the characteristic analysis shows that for all allowable U (that is for A > 0), the

system is hyperbolic and the two real eigenvalues of J are [48, 49]:

(24)

λ1 =
αq

A
+

√
β

2ρA0

A
1
2 + α(α− 1)

q2

A2
> 0,

λ2 =
αq

A
−

√
β

2ρA0

A
1
2 + α(α− 1)

q2

A2
< 0.

When α = 1, the associated characteristic variables have the following expressions:

(25)

W1 =
q

A
+ 4(c− c0),

W2 =
q

A
− 4(c− c0),

where c =
√

β
2ρA0

A
1
4 and c0 =

√
β

2ρA0
A

1
4
0 . The characteristic system can be expressed

as the decoupled system of equations:

(26)

∂w1

∂t
+ λ1

∂w1

∂x
= 0,

∂w2

∂t
+ λ2

∂w2

∂x
= 0.
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The wave velocity which arises from the blood wall coupling may take values as low

as 5m/s in large arteries (e.g. aorta), increasing to values around 20-35m/s in less

distensible peripheral arteries [50]. However, peak flow velocities u are much smaller

and usually remain less than around 1m/s.

4.3. Numerical approximation. Several methods have been used, e.g. in [43,

44, 45, 52, 54], for the numerical approximation of the 1D system of conservation

laws (17). In this section, we follow [45, 54] where equations of the 1D model

are discretized in their conservative form (20) by employing a second order Taylor

Galerkin scheme. We denote △t = tn+1 − tn the time step and express the Taylor

expansion truncated to the second order at time tn, giving

(27) Un+1 = Un +△t
∂U

∂t

∣∣∣∣n + △t2

2

∂2U

∂t2

∣∣∣∣n.
We define the matrix

(28) K =
∂S

∂U
=

 0 0

kr
q
A2 +

γ
4ρA0

1√
A

(
∂2q
∂x2 +

1
2A

∂A
∂x

∂q
∂x

)
−kr

A

 ,

and rewrite (20) as

(29)
∂U

∂t
= S− ∂F

∂x
.
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Using the matrices (23) and (28), we obtain

∂2U

∂t2
=

∂S

∂U

∂U

∂t
− ∂

∂x

(
∂F

∂U

∂U

∂t

)
= K

∂U

∂t
− ∂

∂x

(
J
∂U

∂t

)
= K

(
S− ∂F

∂x

)
− ∂(JS)

∂x
+

∂

∂x

(
J
∂F

∂x

)
.(30)

At time tn = n△t, the vector of unknowns Un satisfies the following time marching

scheme:

Un+1 = Un +△t

(
Sn − ∂Fn

∂x

)
+

△t2

2

(
Kn

(
Sn − ∂Fn

∂x

)
− ∂(JnSn)

∂x
+

∂

∂x

(
Jn∂F

n

∂x

))
.(31)

The spatial discretization uses linear finite elements. The domain Ω is subdivided

into Nel finite elements Ωe of size he. We let Vh be the set of continuous vector

functions in Ω, linear on each element and V 0
h the subspace of Vh whose functions

are zero at the endpoints [45]. The solution of (31) requires, for n ≥ 0, to determine

Un+1 in Vh such that ∀ϕh ∈ V 0
h ,

(
Un+1, ϕh

)
= (Un, ϕh) +△t (Sn, ϕh) +△t

(
Fn,

∂ϕh

∂x

)
+

△t2

2

(
Kn

(
Sn − ∂Fn

∂x

)
, ϕh

)
+

△t2

2

(
Jn

(
Sn − ∂Fn

∂x

)
,
∂ϕh

∂x

)
,(32)

where (U, ϕ) =
∫ L

0
U.ϕdx.
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For the stability of the numerical method, we follow [54] and impose the following

limitation for the time step:

(33) △t ≤ CFL× min
0≤i≤Nel

[
hi

max(λ1,iλ1,i+1)

]

where λ1,i is the value of λ1 at mesh node xi and the maximum CFL number is
√
3
3

[54].

4.4. Initial and boundary conditions. The initial conditions for (31) are given

by:

(34) A(x, 0) = A0(x), q(x, 0) = 0, p(x, 0) = p0(x),

where A0(x) and p0(x) are the prescribed functions. The hyperbolic nature of the

system permits to impose the flow rate q or area A at the inlet [43]. At the inlet

usually, the flow rate is specified [55],

(35) q(0, t) = qin(t).

Information from the outside and inside of the domain are carried by the incoming

characteristic (W1) and the outgoing characteristics (W2) respectively [44].

At each end of the tube, a single boundary condition is implemented. This is

due to the characteristic analysis and using the fact that the flow is subcritical (the

eigenvalues (λ1and λ2) in (24) have opposite signs) under physiological conditions

[43, 51]. At the inlet at x = 0, Un is assumed to be known and λ2 in (26) is linearised

by taking its value at time tn. It can be shown that at the time tn+1, the solution
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corresponding to this linearised problem yields [43, 46]

(36) W n+1
2 (0) = W n

2 (−λn
2 (0)△ t).

Equation (36) is a first order extrapolation of W2 from the previous time step.

Similar treatment at the outlet x = L, leads to:

(37) W n+1
1 (L) = W n

1 (L− λn
1 (L)△ t).

4.5. Terminal vessels. To reduce the complexity of the blood flow simulation,

smaller arteries, which are downstream of the truncation points are not explicitly

accounted for but their effect is represented by proper outflow boundary conditions

[56]. The two most common models used are the constant resistance model [24, 44,

46, 56, 57] and the Windkessel model [52, 56, 57], that can be obtained using an

analogy based on electric circuit components.

The constant resistance (CR) model (see Fig. 3) is represented by a resistor Rt

[56] where it is assumed that the blood pressure, p(t) − p0, is proportional to the

blood flow rate q(t). The relation between the blood pressure and the flow is given

by p(t) − p0 = Rtq(t), where Rt represents the terminal reflection coefficient. The

terminal reflection coefficient for a wavefront travelling in the +x direction can be

defined in terms of the incoming and outgoing characteristics as [44, 46]

(38) Rt = −△W2

△W1

= −W n+1
2 −W 0

2

W n+1
1 −W 0

1

.
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The values for W n+1
1 are determined using Eq. (37), whereas W 0

1 and W 0
2 are the

initial values [46]. The unknownW n+1
2 is determined by rearranging Eq. (38), giving

(39) W n+1
2 = W 0

2 −Rt(W
n+1
1 −W 0

1 ).

A reflection coefficient of Rt = 0 represents a non-reflecting boundary condition.

q(t)
Rt

pop(t)

Figure 3. A constant resistance (CR) model representing an outflow
boundary condition.

4.6. Treatment of bifurcations. At bifurcation of a blood vessel, we assume that

pressure losses are negligible. We follow [44] and enforce the following conditions:

(40)

3∑
i=1

qi = 0,

1

2
ρ

(
q1
A1

)2

+ p1 −
1

2
ρ

(
qi
Ai

)2

− pi = 0, i = 1, 2

representing the conservation of flow rate and total pressure continuity equations

respectively.

5. Application of EnKF to 1D blood flow model

In this section, we present the use of the EnKF algorithm to solve the parameter

estimation problem in a series of test cases. The first two tests are purely in silico,

i.e. we use only synthetic data (observations) which are obtained from a forward

simulation where the model parameters are set to some known or target values.

From these observations, the parameter estimation problem then starts with an

initial estimate for the parameters that differs significantly from the target values.
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With synthetic data, an inverse problem is always admissible when the objective is

to recover the target parameters. By admissible we mean that because the target

is generated with the model, the solution of the inversion targeting this results

obviously exists, but still there is no guarantee of uniqueness. Indeed, regardless

of existence of solution which is guaranteed in this case, several distributions of

the parameters could achieve the target. The final test case uses data from the

experiment performed by Saito et al. [24]. In this latter case, unlike with the

synthetic data, there is no guarantee that the solution to the inverse problem actually

exists.

In [24], a simple human arterial network was designed using polymer tubes to

validate the applicability of the 1D blood flow model. The network was made with

four bifurcations and consisted of the main artery, a left carotid artery, femoral ar-

teries (left and right), and subclavian-radial arteries (left and right). The schematic

of this simple human arterial model is shown in Fig. 4 and the geometry of the

arteries (length, diameter and the thickness) in Table 1 [24]. An appropriate length

of blood vessels was defined according to the vessel data of an average adult man.

The diameter and thickness were defined to achieve a negligible reflection coefficient

at bifurcation point [24]. For all test cases, we use the simple arterial model as in

Fig. 4. We limit our parameters of interest to Young’s modulus and terminal model

parameters (reflection coefficient), which are within a physiological range.

5.1. Two test cases with synthetic data. One of the important parameters for

EnKF is q, the ensemble size. It is expected that the EnKF parameter estimation

procedure would improve as the ensemble size increases. The increase in an ensemble

size will also increase the computational cost associated with it. In our test cases,
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Figure 4. Schematic of a simple human arterial model with nine
vessels and four bifurcations. Artery numbers corresponds to those in
Table 1. Figure adapted from [24].

Table 1. Geometrical data (L= length, D=diameter and
h=thickness) of a simple human arterial model (Fig. 4) [24].

Name L D h

(mm) (mm) (mm)
i Aorta arch

A
35 12 2

ii R.subclavian
radial
artery

800 6 1.5

iii Aorta arch
B

20 11 2

iv L.carotid
artery

675 6 1.5

v Aorta arch
C

40 10 2

vi L.Subclavian
radial
artery

710 6 1.5

vii Aorta 470 8 1.5

viii R.femoral
artery

365 6 1.5

ix L.femoral
artery

365 6 1.5
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we assume that the blood flow model errors and uncertainties arise from the errors

in the parameters and thus an ensemble is generated with perturbed parameters.

As detailed in what follows, we therefore performed a parametric study to select a

proper ensemble size.

We first simulate the blood flow model using an arbitrary set of parameters

{E,Rt}. The resulting simulated model states are stored as psim ∈

Rn. An ensemble of size q is generated where the ensemble members are
{
E

′
, R

′
t

}
i

for i = 1 . . . , q. For each i, E
′
is a random normal variable with mean E and

standard deviation of 0.1E. Similarly, R
′
t is a random normal variable with mean

Rt and standard deviation of 0.1Rt. The blood flow model is then simulated with

each member of the ensemble and the observed pressure values at the end of the

simulation are stored as pobsi ∈

Rn. To select an ensemble size for the EnKF analysis, we calculated the root mean

square error defined for each member of the ensemble as: RMSEi =
√

1
n

∑n
j=1(p

sim
j − pobsij )2.

Finally, we find the mean RMSE for the ensemble of size q as: RMSE = 1
q

∑q
i=1RMSEi.

The procedure was repeated with different ensemble sizes between q = 2 and q = 60.

From Figure 5 which shows the output of the procedure with different random seeds,

the mean RMSE decreases sharply initially with q increasing. From this figure, the

error does not decrease after q ≈ 20 and this latter value was thus retained in the

present study.

5.1.1. Test case 1: The first test case deals with the estimation of the Young’s mod-

ulus for a single artery. We first describe the procedure for generating the synthetic

data. All arteries except Aorta (number vii in Fig. 4) is assigned a Young’s modulus
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Figure 5. Mean RMSE as a function of ensemble size. Five sets of
RMSE are calculated with different random seeds.

of 0.2MPa and to Aorta (number vii), we assigned 0.25MPa assuming some pathol-

ogy there locally increasing its stiffness. A CR model is applied to the terminal

vessels. A reflection coefficient of Rt = 0.6 is assigned to the terminal vessels ii, iv

and vi and for terminal vessels vii and ix, Rt = 0.65. Figure 6 shows the periodic

inlet flow rate boundary condition qin(t) (with a period of 0.8 s and an average inlet

flow of 5.625ml/s) imposed at the aorta arch A of the simple arterial model. The

density of the fluid is taken as 1.0 kg/m3, the viscosity of 1× 10−3 Pa.s and the Pois-

son coefficient is taken as 0.5. The viscoelastic coefficient η and the non-linearity

coefficient ϵp of the vessel are set to 0 for the forward simulation. The time step

for the forward simulation is 0.1ms, corresponding to CFL = 0.05. Synthetic pres-

sure observations are taken at every 0.01 s. The first objective is to determine the

minimum number of observations (nobs), needed for a proper parameter estimation.

nobs refers to the number of locations where a time series of pressure is available.

Other time series can be considered and we will present also simulations with flow

rate time series in section 5.1.2. Algorithm 1 is executed initially with nobs = 6;

nobs is then decreased in steps of one to a minimum of 1. These observations are
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Figure 6. Periodic inlet flow rate qin(t) imposed at the aorta arch A.

assumed to be available from the left and right subclavian radial arteries (artery # ii

and vi) and the left carotid artery (artery # iv). The locations of these observations

are shown in Table 2.

Table 2. Location of observations on right subclavian radial artery
(ii), left carotid artery (iv) and left subclavian artery (vi) for synthetic
test cases. L is the length of the artery.

Artery # nobs = 1 nobs = 2 nobs = 3 nobs = 4 nobs = 5 nobs = 6
ii 0.25L 0.25L 0.25L 0.25L, 0.75L 0.25L, 0.75L
iv 0.2L 0.2L 0.2L 0.2L, 0.8L 0.2L 0.2L, 0.8L
vi 0.33L 0.33L 0.33L, 0.67L 0.33L, 0.67L

For the estimation problem, the Young’s modulus is sought for the stiffest aorta,

denoted by vii in Fig. 4. An ensemble of q =20 members is considered in all the

cases. For each member of the ensemble, the observations are perturbed by a random

vector drawn from the zero mean Gaussian distribution with a standard deviation at

5% of the observation value. We compute the measurement error covariance matrix

R using Eq. (6). The initial guess for the Young’s modulus assumes an error of

100%, i.e. initial mean value for E = 0.5MPa.

The parameter estimation using Algorithm 1 is then performed with different

numbers of observations, nobs. The EnKF assimilation is executed for 10 s and the

evolution of the estimated Young’s modulus are shown in Fig. 7a. It appears that
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convergence only takes place after some time. This kind of trend is often observed

in optimization, especially with methods involving a learning feature. Indeed, there

is no guarantee that the first search iterations are performed in a direction (in pa-

rameter space) pointing towards a minimum of the error. This behaviour also comes

from the fact that the method is by nature explicit, as in a gradient based methods.

Table 3 shows the value of estimated Youngs’s modulus with errors (percentage de-

viation from target value) using different number of observations. The percentage

deviations from target E were all less than 5%. For this test case, a minimum of

1 observation was enough to recover the Young’s modulus requested in the given

interval of time. In Fig 7b, the pressure solutions obtained by using the estimated

Young’s modulus at the first observation point on left carotid are compared with

the target and the initial guessed pressure profiles. The comparison is shown for

Young’s modulus estimated using nobs = 2. Even though the solution in the vessel

whose Young’s modulus is sought for is not directly observed, the simulated pressure

waveforms are similar in shape to the target pressure waveform with an error of less

than 0.2% in the maximum pressure.

Table 3. Test case1: Estimated Youngs’s modulus and correspond-
ing errors (percentage deviation from target value) using different
number of observations

nobs = 1 nobs = 2 nobs = 3 nobs = 4 nobs = 5 nobs = 6
Estimated E (MPa) 0.239 0.245 0.243 0.245 0.241 0.246

% deviation from target E -4.49 -1.95 -2.64 -1.82 -3.52 -1.79

5.1.2. Sensitivity Analysis: In this section, we look at the sensitivity of the parame-

ter estimation algorithm for test case 1 with respect to the following items: (i) initial
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Figure 7. (7a) shows the evolution of the estimated Young’s modu-
lus using EnKF for test case 1 using a different number of observations.
The initial value is 0.5MPa and the target is 0.25MPa. (7b) shows
the comparison between target pressure solution, the initial pressure
profile and the one obtained by using the estimated Young’s modulus
with nobs = 2 at 0.2L of the left carotid artery.

estimate of the parameter, (ii) level of observation perturbation, (iii) the effect of

introducing bias in the known parameter values and (iv) the observation type.

(i) Initial guess: we study the performance of EnKF by considering different

initial values of the Youngs’s modulus for the parameter estimation problem. Two
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more initial values of E = 0.15MPa (-40% error) and 0.35MPa (+40% error) were

taken as the mean values of the initial ensembles. All other parameters and settings

were same as in section 5.1.1. Using nobs = 2, the EnKF assimilation is executed for

10 s and the evolution of estimated Youngs modulus with their uncertainty (stan-

dard deviations) is shown in Fig. 8a for three different initial values, including for

E = 0.5MPa (+100% error). The algorithm allows retrieving the target value in-

dependently on the initial guess. Table 4 compares the initial and final estimates of

the Youngs’s modulus with their associated uncertainties.

Table 4. Sensitivity with different initial values: final estimates of
Youngs’s modulus with their associated uncertainties. All values are
in MPa

Initial guess of E Final estimate of E Uncertainty (± standard deviation)
0.15 0.2367 0.0228
0.35 0.2370 0.0250
0.50 0.2450 0.0245

(ii) The level of observation perturbation: As in section 2.1, the observa-

tions are perturbed by Gaussian noises. The noises represents possible errors in

the measurement. For unbiased observations, perturbed observations are created

by adding noise (∼ (N (0, σ2)), to the observation values; σ represents the standard

deviation. In test case 1, σ equals 5% of observation values and for the analysis,

we chose two more levels of observation perturbations with σ being 1% and 10% of

observations values respectively. Using nobs = 2, we perform the estimation pro-

cedure for 10 s. The estimated Young’s modulus with their uncertainty (standard

deviations) are shown in Fig. 8b for the three different levels of observation pertur-

bations. With different values of σ, the estimated E’s converge to the target value,

but with a slightly different rate. With a lower σ (at 1% of observation values),

the convergence rate is a little slower compared to the other two σ’s, which was
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not anticipated. Table 5 compares the initial and final estimates of the Youngs’s

modulus with their uncertainties for the different level of perturbations used.

Table 5. Sensitivity with different level of observation perturbation:
The initial guess of E = 0.5MPa and the final estimates of Youngs’s
modulus with their associated uncertainties are shown below. Per-
turbed observations are created by adding noise (∼ (N (0, σ2)), to the
observation values. All values of E and standard deviation are in MPa.

σ Final estimate of E Uncertainty (± standard deviation)
1% of observation values 0.2556 0.0122
5% of observation values 0.2450 0.0245
10% of observation values 0.2441 0.0398

(iii) Bias in the known parameter values: In test case 1, we estimated the

Young’s modulus for artery #vii assuming that we know the values of E for all other

arteries. We also assumed that all reflection coefficients were known. The perfor-

mance of the estimation algorithm was tested by introducing biases in the known

values of E and Rt. Three different test were carried out as follows: (i) we randomly

perturbed the values of reflection coefficients, Rt, with Gaussian noises having mean

zero and a standard deviation at 5% of the values of Rt, (ii) the known values of

Young’s modulus, E are randomly perturbed with Gaussian noises having mean zero

and a standard deviation at 10% of the values of E and (iii) known values of both

reflection coefficients and Young’s modulus are randomly perturbed with Gaussian

noises having mean zero and a standard deviation at 5% of the values of Rt and

10% of the values of E. Pressure values in space were used as observations with the

level of observation perturbation set at 5% of observation values and the estimation

procedure is executed for 10 s. For all tests, the initial value of E assumes an error

of 100%. The evolution of the estimated Young’s modulus with their uncertainties

for three different tests is shown in Fig. 8c together with the evolution of estimated

E when known Young’s modulus and reflection coefficients are unbiased. For all the
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cases, the estimated values converge, but they slightly deviate from the target value

as reported in Table 6 which also gives indications of the level of uncertainties in

these inversions.

Table 6. Sensitivity test: bias in the known parameter values. The
initial guess of E = 0.5MPa and the final estimates of Youngs’s mod-
ulus with their associated uncertainties are shown. All values of E
and standard deviation are in MPa.

Random perturbation of known
values of parameters by adding
noise (∼ (N (0, σ2)).

Final estimate of E Uncertainty (± standard deviation)

unperturbed known parameters
values

0.2450 0.0245

σ is 5% of Rt values 0.2580 0.0132
σ is 10% of E values 0.2752 0.0129
σ is 5% of Rt values and 10% of
E values

0.2480 0.0161

(iii) Observation type: In inverse hemodynamics problems, observations such

as blood pressure, cross section blood flow rates, artery wall movements or cross-

section flow velocity can be made available. In test case 1, the observations are

pressure values histories at some specific locations in space. The behaviour of the es-

timation algorithm with different kinds of observations. To this end, we consider the

flow rate in space as observations instead of the pressure. We perform the estimation

procedure for 10 s using nobs = 2 with the level of observation perturbation set at 5%

of the observed values. We compare these results to those obtained with the pres-

sure as observation. The evolution of estimated Youngs modulus with the associated

uncertainties is shown in Fig. 8d. With both types of observations, the estimated

Young’s modulus converges to the target value with relatively small errors (-1.95%

and +2.24% with pressure and flow rate as observations respectively). However,

when the observations are based on the flow rates, the convergence is slightly faster,
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at least in this particular case. The final estimates of E are 0.2450±0.0245MPa with

pressure as observations and 0.2556±0.0059MPa with flow rate as observations.

5.1.3. Test case 2: The second test case deals with the estimation of the Young’s

modulus of all the arteries (i-ix) and the reflection coefficient at all the outlet bound-

aries (ii,iv,vi,vii,ix). All arteries are assumed to have the identical stiffness and thus,

a Young’s modulus of E = 0.2MPa is assigned to all. A reflection coefficient of Rt =

0.6, is assigned at all terminal vessels. The viscoelastic coefficient η and the non-

linearity coefficient ϵp of the vessels are set to 0.115 kPa.s and 0 respectively for the

forward simulation. The rest of the parameters are as in section 5.1.1. For the es-

timation problem, the Young’s modulus of the arteries and the reflection coefficient

at terminal arteries are sought using various numbers of observations. The ensemble

size q and the error covariance matrix R are as in section 5.1.1. The mean values

for the initial guess of the Young’s modulus and the reflection coefficient are set to

E = 0.4MPa and Rt = 0.8. The EnKF assimilation is executed for 12 s, and the

evolution of estimated E and Rt is shown in Figs. 9a and 9b respectively, for the

different numbers of observations. The estimation procedure was able to identify the

parameters with different nobs, though the convergence rate was much slower with

nobs = 1. From these evolutions, we see that even if nobs = 1 is enough to recover

the values of E and Rt, one should attempt to at least have two observations for

faster convergence. The Young’s modulus also appears to be simpler to identify than

the reflection coefficient. This is possibly because the time required to propagate

the information contained in any boundary condition throughout the whole domain

is of order L/c where L is the size of the network and c the wave speed. Instead,

the Youngs’s modulus directly impacts the wave speed so that it requires only Ls/c
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to feel any change in E, where Ls < L is the distance between two consecutive

observation location. Table 7 shows the value of estimated Youngs’s modulus and

the reflection coefficients with errors (percentage deviation from target value) using

different number of observations. In Fig. 9c, the pressure solution obtained with the

estimated parameters using nobs = 2, at the first observation point on left carotid is

compared with the target and initial pressure profiles. The simulated and the target

pressure waveforms have very similar shape with an error of less than 0.2% in the

maximum pressure.

The next configuration involves a more realistic situation with available experi-

mental data.

Table 7. Test case2: Estimated Youngs’s modulus and reflection
coefficients with errors (percentage deviation from target values) using
different numbers of observations

Estimated E (MPa) Estimated Rt % deviation from target E % from targetRt

nobs = 1 0.2064 0.5995 3.20 -0.08
nobs = 2 0.1993 0.6013 -0.35 0.22
nobs = 3 0.1988 0.6030 -0.60 0.50
nobs = 4 0.2006 0.5973 0.30 -0.45
nobs = 5 0.1992 0.5994 -0.40 -0.10
nobs = 6 0.2003 0.5994 0.15 -0.10

5.2. A test case with experimental data. The efficiency of parameter estimation

using the EnKF is presented where experimental data is used as the observations.

We refer to the experiment in [24], where a simple human arterial network (see Fig.

4) with four bifurcations was designed using polymer tubes (E = 0.185MPa) to

validate the applicability of the blood flow model as presented in [24]. The tubes

are filled with water, and to realize the reflection coefficients of approximately 0.5,

silicone tubes are connected at the end of the tubes to act as virtual peripheral sites.

A pulse flow with the profile of half a cycle of a sinusoidal wave is used as input from
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the pump. The period of the pulse is 0.3 s with the total flow volume of 4.5ml. The

pressure waves propagating in the viscoelastic tubes were experimentally measured

using a pressure sensor at 150mm from the second bifurcation, which in an actual

human body roughly corresponds to the carotid artery of the neck [24].

For this test case, we do not know if the solution of the inverse problem exists

as the target has not been generated with the blood flow code. The aim is then

to determine the best estimate of the Young’s modulus (E), reflection coefficient

(Rt) and viscoelastic coefficient (η) from the values of the experimentally measured

pressure, which are taken as observations for the inverse problem. It is assumed

that E and η are identical for all tubes and Rt is same at each terminal tube. The

ensemble size q = 20 and the error covariance matrix R are defined as in section

5.1.1. The pressure measurements are only available at one point on the carotid

artery. The frequency of data assimilation is 0.01 s.

To test the sensitivity to initial parameter values, we investigate the performance

of the EnKF parameter estimation algorithm using three different sets of initial guess

for the three parameters (E,Rt and η). The mean values for the initial guess of the

parameters were: (E(MPa), Rt, η(KPa · s)) ∈ {(0.2, 0.6, 0.3) , (0.6, 0.3, 0.4)} , (0.4, 0.8, 0.5).

The estimated parameter values do not change significantly after 16 s of EnKF as-

similation as shown in Fig. 10. From Fig 10, we see that the different guesses for

initial mean values of the parameters seem not to have a significant impact on the

converged assimilated result. The initial guess of the parameters and their best es-

timates obtained with their associated uncertainty (standard deviation) with three

different initial guesses using the EnKF are shown in Table 8.
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Table 8. Sensitivity to initial parameter values for the test with ex-
perimental data. The initial guess of the parameters and their best
EnKF estimates with their associated uncertainty (standard devia-
tion).

Parameter Initial guess EnKF estimate Error (± standard deviation)

E (MPa)
0.2 0.1111 0.0024
0.6 0.1226 0.0025
0.4 0.1150 0.0028

Rt

0.6 0.5199 0.0033
0.3 0.5146 0.0075
0.8 0.5290 0.0048

η (KPa·s)
0.3 0.3710 0.0124
0.4 0.3760 0.0104
0.5 0.3810 0.0157

The blood flow model is then used with the estimated parameters to obtain the

pressure profile at the observation point. Figure 11 shows the comparison between

the pressure profile obtained with the three sets of estimated parameters, the numer-

ical pressure profiles from the 1D blood flow model as reported in [24], the measured

pressure waves obtained from the experiment and the pressure profile obtained from

the three different sets of initial parameters. The simulated waveforms are simi-

lar to the target pressure waveform. We compare the systolic (maximum) pressure

between the target (experimental pressure waveform) and the simulated pressures

obtained from different sets of estimated parameters. The difference is shown in

Table 9. In all the cases, the error is less than 2%. The results demonstrate that

even with nobs = 1, the Young’s modulus, reflection coefficient, and the viscoelastic

coefficient can be estimated with good accuracy using the proposed method.
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Table 9. Test case3: Comparison of the systolic (maximum) pressure
between the target (experimental pressure waveform) and the simu-
lated pressures obtained from different sets of estimated parameters.
The target systolic pressure is 4.02MPa

Estimated parameter set {E (MPa), Rt, η (kPa.s)} maximum pressure (MPa) % error
set 1 (0.1111, 0.5199, 0.371) 4.01 -0.24
set 2 (0.1226, 0.5146, 0.376) 4.08 1.50
set 3 (0.1150, 0.529, 0.381) 4.04 0.51

6. Discussions

In this paper, we have demonstrated the applicability of EnKF to estimate the

Young’s modulus, reflection coefficient, and viscoelastic coefficient. A similar ap-

proach can also be used to estimate other hemodynamics parameters such as resis-

tance and compliance in a Windkessel model. The EnKF and thus the estimation

algorithm provides the estimates of poorly known parameter values with their un-

certainties. Sensitivity analysis with respect to the initial guess of parameters, the

level of observation perturbation, the effect of bias in known parameter values and

the type of observations is carried out. Further analysis can be done on the efficiency

of the estimation algorithm with respect to the locations of available observations.

We need to make sure the size of the ensemble is correctly chosen. One also sees

that very few spatial observation are necessary as the approach performs even with

solely one spatial observation point. We also discussed the robustness of the in-

version for different types of target observations (pressure or flow rate). We have

shown a method of choosing an ensemble size using RMSE, but the efficiency of the

EnKF parameter estimation algorithm may depend on other factors such as level of

observation perturbation, the location of the observations, their types and also on

the type of parameters to be estimated. The approach needs to be seen as a help

to diagnosis tool and not a definite opinion. We mentioned that one issue is that
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uniqueness is not guaranteed. This might, therefore, impact clinical applications.

Indeed, an incorrect Youngs modulus might be obtained still providing a nice model

fit and obviously, this might mislead the clinician. The approach, therefore, needs to

be adopted in a Bayesian procedure with a priori information on the admissibility of

the outcome by the clinicians and the outcome should definitely not been considered

as a final opinion.

We aim at having an approach with moderate complexity to describe the physics

of the problem and which is usable in practice. This is why any forward model based

on a multi-dimensional flow model is out of the table. Other works, for instance,

present data assimilation together with three-dimensional flow models based on fully

3D Navier-Stokes [18], which require heavy computational effort in addition to an

increase in the complexity of the inverse problem. These approaches also require

good know-how by the user and substantial learning efforts. We use a reduction

in dimension to bring the cost of one state evaluation to the order of a minute on

standard computers available in clinics. Then natural parallelism in EnKF makes a

time to solution of the order of the number of EnKF iterations in minutes, which in

the present case leads to approximately two hours. Still this can be considered too

costly and our current effort is to reduce complexity even further.

7. Study Limitations

The first limitation of our current study is concerned with the size of the arterial

network being adopted. We used a network consisting of 9 vessels, and the efficiency

of the proposed estimation algorithm has to be tested for a larger arterial network,

including complex network such as the circle of Willis in the cerebral vasculature.
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Secondly, an ensemble size of 20 is taken as an optimal size for the parameter estima-

tion in the current study. An effect of taking a larger sample size on the estimation

procedure can also be studied. The efficiency and convergence rate also depends

on the level of observation perturbation, and another limitation is to identify the

optimal level. It is also important to investigate the maximum number of param-

eters that can be estimated for a given arterial network with a given number of

measurements available. In the current study, we adopted 1D blood flow model

with a constant resistance boundary condition. As discussed before, there is no real

limitation regarding the boundary description and thus, the estimation algorithm

can be applied to a blood flow model coupled to a Windkessel model.

8. Conclusion

A parameter estimation technique to compute the uncertain elastic and the ter-

minal properties of networks of 1D blood vessels using the Ensemble Kalman filter

has been studied. The tests have been limited to the estimation of elastic moduli

(Young’s modulus) of the network, the reflection coefficient at the terminal vessels

and the viscoelastic coefficient. The results confirm that the method is quite robust

and permits to recover the arteries stiffness in a reasonable amount of time consis-

tent with patient observation time at the hospital. Except with the computation

of the Kalman gain, all the operations on the ensemble members are independent.

This implies that their parallelization can be trivially carried out, thus decreasing

the computational time needed to solve the inverse hemodynamics problem. The

time to solution for this simulation is about 30 minutes on a parallel computer with

20 cores, which is basically one node of current standard distributions. The model
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simulations performed with the estimated parameter values produced accurate pres-

sure profiles, which followed closely with the target profiles showing the effectiveness

and the efficiency of both the estimation algorithm and the blood flow model. Also

it has been shown that the approach is effective with only a few observations, well

suited to real clinical applications.
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[18] Pant S, Fabrèges B, Gerbeau JF, Vignon-Clementel I. A methodological par-

adigm for patient-specific multi-scale cfd simulations: from clinical measure-

ments to parameter estimates for individual analysis. International journal for

numerical methods in biomedical engineering 2014; 30(12):1614–1648.

[19] Bertoglio C, Moireau P, Gerbeau JF. Sequential parameter estimation for fluid–

structure problems: Application to hemodynamics. International Journal for

Numerical Methods in Biomedical Engineering 2012; 28(4):434–455.

[20] Chabiniok R, Moireau P, Lesault PF, Rahmouni A, Deux JF, Chapelle D. Esti-

mation of tissue contractility from cardiac cine-mri using a biomechanical heart

model. Biomechanics and modeling in mechanobiology 2012; 11(5):609–630.

[21] Martin V, Clément F, Decoene A, Gerbeau JF. Parameter identification for a

one-dimensional blood flow model. ESAIM: Proceedings, vol. 14, EDP Sciences,

2005; 174–200.

[22] Spilker RL, Taylor CA. Tuning multidomain hemodynamic simulations to

match physiological measurements. Annals of biomedical engineering 2010;

38(8):2635–2648.

[23] Lassila T, Manzoni A, Quarteroni A, Rozza G. A reduced computational and

geometrical framework for inverse problems in hemodynamics. International

journal for numerical methods in biomedical engineering 2013; 29(7):741–776.



41

[24] Saito M, Ikenaga Y, Matsukawa M, Watanabe Y, Asada T, Lagrée PY. One-

dimensional model for propagation of a pressure wave in a model of the human

arterial network: Comparison of theoretical and experimental results. Journal

of Biomechanical Engineering 2011; 133(12):121 005.

[25] Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic

model using monte carlo methods to forecast error statistics. Journal of Geo-

physical Research: Oceans (1978–2012) 1994; 99(C5):10 143–10 162.

[26] Thomas SJ, Hacker J, Anderson J. A robust formulation of the ensemble

kalman filter. Quarterly Journal of the Royal Meteorological Society 2009;

135(639):507–521.

[27] Sakov P, Oke PR. A deterministic formulation of the ensemble kalman filter:

an alternative to ensemble square root filters. Tellus A 2008; 60(2):361–371.

[28] Evensen G. The ensemble kalman filter: Theoretical formulation and practical

implementation. Ocean dynamics 2003; 53(4):343–367.

[29] Houtekamer PL, Mitchell HL. Data assimilation using an ensemble kalman filter

technique. Monthly Weather Review 1998; 126(3):796–811.

[30] Houtekamer P, Mitchell HL. Ensemble kalman filtering. Quarterly Journal of

the Royal Meteorological Society 2005; 131(613):3269–3289.

[31] Hamill TM, Snyder C. A hybrid ensemble kalman filter-3d variational analysis

scheme. Monthly Weather Review 2000; 128(8):2905–2919.

[32] Bishop CH, Etherton BJ, Majumdar SJ. Adaptive sampling with the ensemble

transform kalman filter. part i: Theoretical aspects. Monthly weather review

2001; 129(3):420–436.



42

[33] Whitaker JS, Hamill TM. Ensemble data assimilation without perturbed obser-

vations. Monthly Weather Review 2002; 130(7):1913–1924.

[34] Ott E, Hunt BR, Szunyogh I, Zimin AV, Kostelich EJ, Corazza M, Kalnay

E, Patil D, Yorke JA. A local ensemble kalman filter for atmospheric data

assimilation. Tellus A 2004; 56(5):415–428.

[35] Gillijns S, Mendoza OB, Chandrasekar J, De Moor B, Bernstein D, Ridley A.

What is the ensemble kalman filter and how well does it work? American

Control Conference, 2006, IEEE, 2006.

[36] Shen Z, Tang Y. A modified ensemble kalman particle filter for non-gaussian

systems with nonlinear measurement functions. Journal of Advances in Model-

ing Earth Systems 2015; .

[37] Tang Y, Ambandan J, Chen D. Nonlinear measurement function in the ensemble

kalman filter. Advances in Atmospheric Sciences 2014; 31(3):551–558.

[38] Mohammadi B. Ensemble kalman filters and geometric characterization of sen-

sitivity spaces for uncertainty quantification in optimization. Computer Methods

in Applied Mechanics and Engineering 2015; 290:228–249.

[39] Burgers G, Jan van Leeuwen P, Evensen G. Analysis scheme in the ensemble

kalman filter. Monthly weather review 1998; 126(6):1719–1724.

[40] Houtekamer PL, Mitchell HL. A sequential ensemble kalman filter for atmo-

spheric data assimilation. Monthly Weather Review 2001; 129(1):123–137.

[41] Ambadan JT, Tang Y. Sigma-point kalman filter data assimilation methods

for strongly nonlinear systems. Journal of the Atmospheric Sciences 2009;

66(2):261–285.



43

[42] Elsheikh AH, Pain C, Fang F, Gomes J, Navon I. Parameter estimation of sub-

surface flow models using iterative regularized ensemble kalman filter. Stochastic

environmental research and risk assessment 2013; 27(4):877–897.

[43] Sherwin S, Formaggia L, Peiro J, Franke V. Computational modelling of 1d

blood flow with variable mechanical properties and its application to the simu-

lation of wave propagation in the human arterial system. International Journal

for Numerical Methods in Fluids 2003; 43(6-7):673–700.

[44] Wang X, Fullana JM, Lagrée PY. Verification and comparison of four numerical

schemes for a 1d viscoelastic blood flow model. Computer methods in biome-

chanics and biomedical engineering 2015; 18(15):1704–1725.
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Figure 8. Sensitivity analysis for test case 1. In all the figures, the
dashed line represents the target Young’s modulus of 0.25MPa and
the shaded areas represents the standard deviation around the mean
values (solid lines). (8a) shows the evolutions of the estimated Young’s
modulus from three different initial values. (8b) shows the evolution
of estimated Young’s modulus for three different levels of observa-
tion perturbations. (8c) shows the evolution of the estimated Young’s
modulus for different bias in the known parameters: Rt perturbed with
Gaussian noises having mean zero and a standard deviation at 5% of
the values of Rt (in red), E randomly perturbed with Gaussian noises
having mean zero and a standard deviation at 10% of the values of E
(in blue), both E and Rt randomly perturbed with Gaussian noises
having mean zero and a standard deviation at 5% of the values of Rt

and 10% of the values of E (in magenta). The evolution of estimated
E with unbiased known parameters is shown in black. (8d) shows the
evolution of the estimated Young’s modulus with pressure and flow
rates as observation types.
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Figure 9. (9a) shows the evolution of the Young’s modulus using
a different number of observations for case 2. The initial value is
0.4MPa and the target is 0.2MPa. (9b) shows the evolution of the
reflection coefficient using a different number of observations. The
initial value is 0.8 and the target is 0.6. (9c) shows the comparison
between the pressure signal obtained with initially guessed parame-
ters, the target pressure solution and the one obtained by using the
estimated parameters with nobs = 2, at 0.2L of the left carotid artery.
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Figure 10. Sensitivity of EnKF parameter estimation to differ-
ent sets of initial parameter values. 10a-10c show the evolution of
Young’s modulus, reflection coefficient, and viscoelastic coefficient re-
spectively for the test case using the experimental data with differ-
ent sets of initial values. The set of initial guess of the parame-
ters, {E (MPa), Rt, η (kPa.s)} are: in RED {0.2, 0.6, 0.3}, in BLUE
{0.6, 0.3, 0.4}, in BLACK {0.4, 0.8, 0.5}. The shaded areas represent
one standard deviation around the mean values (solid lines).



49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

p
(k

P
a
)

Time (s)

Comparision between estimated and observed pressure

 

 

Experiment (measurement)

Saito et al [16]

Current (estimated with set 1)

Initial estimate (set 1)

Current (estimated with set 2)

Initial estimate (set 2)

Current (estimated with set 3)

Initial estimate (set 3)

Figure 11. Comparison between the pressure profile obtained with
the three sets of estimated parameters, the numerical pressure profiles
from the 1D blood flow model as reported in [24], the measured pres-
sure waves obtained from the experiment and the pressure profile ob-
tained from the three different sets of initial parameters. The dashed
lines are the initial pressure waveforms and the solid lines are the ones
obtained from the estimated parameters. The set of initial guess of
the parameters, {E (MPa), Rt, η (kPa.s)} are: set 1 {0.2, 0.6, 0.3}, set
2 {0.6, 0.3, 0.4} and set 3 {0.4, 0.8, 0.5}.
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