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Abstract

Dominance solvability is one of the most straightforward solution concepts in game theory. It

is based on two principles: dominance (according to which players always use their dominant

strategy) and iterated dominance (according to which players always act as if others apply

the principle of dominance). However, existing experimental evidence questions the empirical

accuracy of dominance solvability. In this study, we study the relationships between the

key facets of dominance solvability and two cognitive skills, cognitive re�ection and �uid

intelligence. We provide evidence that the behaviors in accordance with dominance and one-

step iterated dominance are both predicted by one's �uid intelligence rather than cognitive

re�ection. Individual cognitive skills, however, only explain a small fraction of the observed

failure of dominance solvability. The accuracy of theoretical predictions on strategic decision

making thus not only depends on individual cognitive characteristics, but also, perhaps more

importantly, on the decision making environment itself.
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JEL Classi�cation: C72; D83.

1 Introduction

Consider a game in which every decision maker is faced with a �nite set of choices such that one

speci�c choice always brings him higher monetary payo� than other choices, irrespective of the

choices made by other players. In this situation, the individual choice boils down to going for

either a higher or a lower monetary payo�. The straightforward response of a decision maker who

cares about his monetary payo� is to disregard dominated actions � i.e. actions that may only

deteriorate payo� relative to other actions. This dominance principle is the most basic solution

concept of game theory (Camerer, 2003). It becomes very powerful when embedded in a strategic

reasoning as a stepwise process. In each step, the dominance principle implies that dominated

strategies should be eliminated from an agent's strategy space. In an important class of games �

known as dominance-solvable games � this iterated elimination of dominated strategies leads to a

unique solution.

Strikingly, the data collected from numerous experiments on dominance-solvable games raise

important questions about the empirical accuracy of predictions derived from this principle. Sub-

jects tend to display less strategic sophistication than is needed to justify many applications of

iterated dominance (and related re�nements) to model human decision making in strategic en-

vironments (Crawford, 2004). The beauty contest game is one of the textbook examples of this

issue.1 A given set of players is asked to choose a number in the range [0, 100]. To win the game, a

player should choose a number that is the closest to p = 2/3 of the average of all chosen numbers.

Any number above 2/3× 100 ≈ 66.7 violates �rst-order dominance, because the average has to be

lower than 100. Knowing this, players should all choose numbers no greater than 66.7, meaning

that their average may not exceed 2/3 × 66.7 ≈ 44.5. This reasoning lowers the target as the

number of iterations increases, eventually leading to the unique Nash equilibrium in which all

players choose 0. In many experimental studies of this game, the numbers chosen by players are

used as a proxy of the depth of iterated reasoning.2 A well replicated stylized fact is to observe

1/3 of subjects choosing a number higher than 67, and at least 1/3 � a number between 44 and

67.

This paper focuses on one of the earliest and simplest example of such an empirical inaccuracy of

dominance solvability, adapted from a 2× 2 game discussed in Rosenthal (1981) and �rst brought

1This class of games has been �rst introduced by Moulin (1986) as the p−beauty contest games, where p (often

equal 2/3) stands for the target fraction of all numbers' average.
2See Nagel (1995) and Ho, Camerer, and Weigelt (1998) for early evidence from the laboratory, Costa-Gomes

and Crawford (2006) for a laboratory experiment supporting a behavioral model of bounded rationality, and Bosch-

Domenech, Montalvo, Nagel, and Satorra (2002) for related evidence from the �eld.
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Table 1: Generic form of the normal representation of Rosenthal (1981) dominance solvable game

Player B

Player A

l r

L (S ; s) (S ; s)

R (L ; m) (H ; h)

to the laboratory by Beard and Beil (1994).3 The normal-form representation of this game is

given in Table 1. With L < S < H, m < h, and s < h, the game is one-step dominance solvable:

the elimination of player B's weakly dominated strategy l immediately leads to the Pareto-Nash

equilibrium (R, r).4

In line with observed behavior in other dominance solvable games, numerous studies (sum-

marized in Table 2) �nd frequent failures to achieve the Pareto-Nash equilibrium. In spite of

variations in the design (described in the table), deviations from the standard theoretical predic-

tions are systematic and sizable. First, dominance is frequently violated by player Bs. Depending

on the exact experimental setup, up to 27% column players choose a strictly dominated action.

Second, player As violate iterated dominance, even in those cases in which player Bs commonly

obey dominance. As an example, while only 6% of player Bs violate dominance in Jacquemet

and Zylbersztejn (2014)-ET2 and BT2, 26% of row players still contradict the predictions of domi-

nance solvability by choosing L (and this �gure may even attain 86% in other instances, see Beard,

Beil � Tr. 5 in Table 2). As shown in the three middle columns of the table, both the absolute

and the relative size of the stakes vary a great deal from one study to the other. Several lessons

emerge from this accumulated evidence. First, both players react to their own monetary incen-

tives. Second, in some cases player As also adjust their behavior to player Bs' incentives. Finally,

as shown by Jacquemet and Zylbersztejn (2014), players' ine�cient behavior does not fade away

with repetition and cannot be explained by inequality aversion (as framed by Fehr and Schmidt,

1999).

The aim of the present paper is to explore whether this empirical puzzle is related to players'

cognitive skills. In this sense, our investigation belongs to a recent and growing body of experimen-

tal studies in both psychology and economics which investigate the relationship between strategic

3Both Camerer (2003) and Crawford (2004) consider this game as a basic example of a dominance-solvable game,

and a glaring case of a mismatch between theoretical predictions and actual behavior.
4If the game is played sequentially (so that player A moves �rst), the same solution can be obtained through

backward induction. Note that if s > h, the solution does not change (since l remains player B's weakly dominated

strategy), but the outcomes are no longer Pareto-rankable. Beard and Beil (1994), Schotter, Weigelt, and Wilson

(1994) and Goeree and Holt (2001) �nd that this environment also generates important violations of standard

theoretical predictions.
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Table 2: Overview of existing experimental evidence

Experiment Form Payo� Outcomes (%)

(L) (R, r) (R, l) L R, r R, l r|R r

Beard, Beil�Tr.1 Seq (9.75; 3.0) (10; 5.0) (3; 4.75) 66 29 6 83 �

Beard, Beil�Tr.2 Seq (9.00; 3.0) (10; 5.0) (3; 4.75) 65 35 0 100 �

Beard, Beil�Tr.3 Seq (7.00; 3.0) (10; 5.0) (3; 4.75) 20 80 0 100 �

Beard, Beil�Tr.4 Seq (9.75; 3.0) (10; 5.0) (3; 3.00) 47 53 0 100 �

Beard, Beil�Tr.5 Seq (9.75; 6.0) (10; 5.0) (3; 3.00) 86 14 0 100 �

Beard, Beil�Tr.7 Seq (58.50; 18.0) (18.0; 28.50) (60; 30.0) 67 33 0 100 �

Beard et al.�Tr.1 Seq (1450; 450) (1500; 750) (450; 700) 79 18 3 83 �

Beard et al.�Tr.2 Seq (1050; 450) (1500; 750) (450; 700) 50 32 18 64 �

Goeree, Holt�Tr.1 Ext (80; 50) (90; 70) (20; 10) 16 84 0 100 �

Goeree, Holt�Tr.2 Ext (80; 50) (90; 70) (20; 68) 52 36 12 75 �

Goeree, Holt�Tr.3 Ext (400; 250) (450; 350) (100; 348) 80 16 4 80 �

Cooper, Van Huyck�Tr.9 Str (4; 1) (6; 5) (2; 4) 27 � � � 86

Cooper, Van Huyck�Tr.9 Ext (4; 1) (6; 5) (2; 4) 21 � � � 84

JZ, 2014�BT1 Str (9.75; 3.0) (3.0; 4.75) (10; 5.0) 51 41 8 84 81

JZ, 2014�ET1 Str (9.75; 5.0) (5.0; 9.75) (10; 10.0) 54 33 13 72 73

JZ, 2014�ET3 Str (9.75; 5.5) (5.5; 8.50) (10; 10.0) 39 48 13 79 76

JZ, 2014�ET4 Str (8.50; 5.5) (5.5; 8.50) (10; 10.0) 25 61 14 82 82

JZ, 2014�ET2 Str (8.50; 8.5) (6.5; 8.50) (10; 10.0) 26 70 4 94 94

JZ, 2014�BT2 Str (8.50; 7.0) (6.5; 7.00) (10; 8.5) 26 70 4 94 94

Note. For each implementation in row, the �rst column describes the actual design of the experiment: simultaneous-
move strategic-form game (Str), simultaneous-move extensive-form game (Ext), sequential-move game (Seq). The monetary
payo�sof each outcome, displayed in columns 2-4, are in USD in Beard and Beil (1994) and Cooper and Van Huyck (2003),
in cents of USD in Goeree and Holt (2001), in Yens in Beard, Beil, and Mataga (2001), and in Euros in Jacquemet and
Zylbersztejn (2014). The game is repeated ten times in changing pairs in Jacquemet and Zylbersztejn (2014), and one-shot
in all other instances.

behavior and cognitive skills.5 The main conclusion that can be drawn from these studies is that

high cognitive skills predict strategic sophistication and e�cient decision making. First, people

with high cognitive skills make more accurate predictions about other people's intentions. Recent

evidence from psychological research reveals the relationship between cognitive skills and the the-

ory of mind. Using the �Reading the Mind in the Eyes� test (RMET, Baron-Cohen, Wheelwright,

Hill, Raste, and Plumb, 2001) to measure one's theory of mind, Ibanez, Huepe, Gempp, Gutiérrez,

Rivera-Rei, and Toledo (2013) �nd that people with higher cognitive skills are better at infering

the internal emotional states of others.6 Relatedly, the results of a neuroeconomic experiment on

5Cognitive skills are often measured using (amongst others) the Cognitive Re�ection Test (CRT, Frederick,

2005), the Raven's progressive matrices test (Raven, 2008), or both (like in this study). The details of these two

measures are presented in Section 2.
6RMET consists of a series of photos of the area of the face involving the eyes. Subjects are asked to choose one

of the four words that best describes what the person in the photo is thinking or feeling.
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the p-beauty contest game by Coricelli and Nagel (2009) suggest that strategic thinking about

other players' thoughts and behavior is implemented by medial prefrontal cortex (mPFC) � one

of the brain areas commonly associated with theory of mind.7 An economic experiment by Car-

penter, Graham, and Wolf (2013) also shows that people with higher cognitive ability make more

accurate predictions of others' choices in a 20-player beauty contest game. Second, people with

higher cognitive skills apply more sophisticated reasoning and are more apt in strategic adaptation.

Burks, Carpenter, Goette, and Rustichini (2009) report that subjects with higher cognitive skills

more accurately predict others' behavior in a sequential prisoners' dilemma game, and adapt their

own behavior more strongly. In the context of the p-beauty contest game, subjects with higher

cognitive skills are not only found to carry out more steps of reasoning on the equilibrium path

(Burnham, Cesarini, Johannesson, Lichtenstein, and Wallace, 2009; Brañas-Garza, García-Muñoz,

and Hernán González, 2012), but also to adapt their behavior to their opponents' cognitive skills

(Gill and Prowse, 2015) as well as to their beliefs about their opponents' cognitive skills (Fehr and

Huck, 2015). Third, cognitive skills may be associated with the economic e�ciency of outcomes

of both individual and group activities. Corgnet, Hernán Gonzalez, and Mateo (2015) �nd that

higher cognitive skills predict better performance and less shirking in an experimental labor task

(summing up tables of 36 numbers without using a pen). Jones (2008), Al-Ubaydli, Jones, and

Weel (2015) and Proto, Rustichini, and So�anos (2014) report that groups with higher cognitive

skills attain higher cooperation rates in repeated prisoner's dilemma games. On the other hand,

Al-Ubaydli, Jones, and Weel (2013) do not �nd a relationship between group members' average

cognitive skills and the e�ciency of outcomes in a stag hunt coordination.8

Our contribution is twofold. First, we provide new evidence on the relationship between

strategic behavior and cognitive skills. We show that systematic mismatches between theoretical

predictions and actual behavior in a classic 2×2 dominance-solvable game have cognitive underpin-

nings. Subjects with higher cognitive skills are found to be more likely to play dominant strategy

and to best respond to other's strategy. Furthermore, cognitive skills predict strategic sophistica-

tion: only those players with su�ciently high cognitive ability are found to display sensitivity to

the presence of uncertainty about others' behavior. Our second contribution lies in experimental

methodology. We extend the recent body of laboratory experiments comparing the performance of

di�erent measures of cognitive skills in predicting economic behavior. Notwithstanding the previ-

ous results (see, e.g., Brañas-Garza, García-Muñoz, and Hernán González, 2012; Corgnet, Espín,

and Hernáan-González, 2015), we report that the Raven's test score is a more general predictor

of strategic behavior than the Cognitive Re�ection Test score.

7See Hampton, Bossaerts, and O'Doherty (2008) for related evidence.
8Al-Ubaydli, Jones, and Weel (2013, 2015) also report that individual cognitive skills do not predict individual

willingness to reach e�cient outcomes in these two game.
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Table 3: The experimental games

B

A

l r

L (8.50 ; 3.00) ( 8.50 ; 3.00)

R (6.50 ; 4.75) (10.00 ; 5.00)

B

A

l r

L (9.75 ; 8.50) ( 9.75 ; 8.50)

R (3.00 ; 8.50) (10.00 ; 10.00)

Game 1 Game 2

2 Experimental design

Our experiment is based on a 2×2 factorial design that varies the payo� matrix and the nature of

player B. Each of the four resulting experimental treatments is implemented through a between-

subject procedure � each subject participates in only one experimental condition. This data come

from a large dataset, part of which has been previously used by Hanaki, Jacquemet, Luchini,

and Zylbersztejn (2016). The main focus of that study is player As' behavior under strategic

uncertainty and its relation to monetary incentives and �uid intelligence. Certain elements of

their design (such as the use of Human and Robot conditions and interest in players' cognitive

skills) inevitably needed to be adopted in the present study in order to address a much more

general question of the empirical validity of the solution concept of dominance solvability. More

precisely, we are interested in both players' behavior (so as to measure the use of dominance by

player Bs and the use of iterated dominance by player As under di�erent information structures).

We also make a methodological contribution, since in this paper we associate players' behavior

with multiple facets of cognitive skills: �uid intelligence (measured by Raven's test) and cognitive

re�ection (measured by CRT).

Our �rst treatment variable is the size of the stakes, as represented by Game 1 and Game 2 in

Table 3. Although they have the same strategic properties, these two game matrices di�er in terms

of the saliency of monetary incentives to use (iterated) dominance. In Game 2, player As may earn

a surplus of only 0.25 when moving from L to (R, r) (with payo� going from 9.75 to 10), while

ending up in (R, l) is relatively costly (yielding only 3). In Game 1, the potential gains and losses

from action R relative to L are more balanced: the gain from moving from L to (R, r) increases to

1.5 (with payo� moving from 8.5 to 10), while the outcome (R, l) becomes less costly (now yielding

6.5). The incentives of player Bs, in turn, go in the opposite direction: the gain from using the

dominant strategy r (and conditional on player As' choice R) is lower in Game 1 (with payo�

increasing from 4.75 to 5 between (R, l) and (R, r)) than in Game 2 (where payo� increases from

8.5 to 10). In line with Jacquemet and Zylbersztejn (2014) and Hanaki, Jacquemet, Luchini, and

Zylbersztejn (2016) (who report that both players only react to their own monetary incentives) and
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as discussed in Section 3.1, each of these games generates sizable yet diverse empirical violations of

dominance solvability. These two games together thus provide a wide range of monetary incentives

to use dominance solvability within a common strategic environment.9

Our second treatment variable is related to the nature of player B (the column player) who

may be represented either by a human subject (Human condition) or a pre-programmed computer

(Robot condition). The Human condition enables us to capture two cardinal breaches of domi-

nance solvability: the failure to use the dominant strategy (player Bs' behavior) and the failure

to best respond to others' dominant actions (player As' behavior). However, the latter behavior

occurs under strategic uncertainty and thus might stem from two distinct sources: bounded ra-

tionality and rational behavior under uncertainty. More precisely, player As may simply have a

limited capability of best responding to dominant strategy, but may also intentionally refrain from

best responding when in doubt about player Bs' use of dominant strategy. To separate these two

e�ects, we introduce the Robot condition in which a human subject acting as player A interacts

with a computerized player B who is pre-programmed to always choose r. We clearly inform the

subjects in the Robot condition that they are interacting with a pre-programmed computer: �the

computer chooses r at each round, without exception� (bold in the original instruction

sheet). This is the only di�erence in the rules and procedures between Human and Robot condi-

tions.10 Thus, the key property of the Robot condition as compared to the Human condition is

neutralizing strategic uncertainty player As face, while maintaining space for boundedly rational

behavior.

The design of the experiment is otherwise the same in all four experimental conditions. We

explore whether behavior is sensitive to learning by considering ten uniform, one-shot interactions.

In order to homogenize incentives across rounds, the following rules are implemented: all games

are played in strict anonymity, roles are �xed, and subjects' payo�s are computed based one

randomly drawn round. In the Human condition, players are matched into pairs using a perfect

stranger, round-robin scheme, which guarantees that subjects are involved in a series of one-shot

interactions despite the repetition of the game.11

Our control variables also include two measures of cognitive skills. Both of them are introduced

as part of a post-experimental supplementary task. Subjects' participation is rewarded with extra

5 Euros; otherwise, their answers are not incentivized.12 The supplementary task starts with a

9Herein, we restrict our design to these two game matrices and do not seek to further investigate the e�ects of

monetary incentives on both players' behavior. These e�ects are analyzed in detail in Jacquemet and Zylbersztejn

(2014) and Hanaki, Jacquemet, Luchini, and Zylbersztejn (2016).
10An English translation of the original instructions in French is provided as supplementary material in Section ??.
11See Jacquemet and Zylbersztejn (2013) for a detailed motivation and description of this design.
12Absence of monetary incentives for providing corrects answers is a standard procedure for both CRT and Raven's

tests. Recent evidence on both tests suggests that monetary incentives do not per se a�ect people's performance.

See Brañas Garza, Kujal, and Lenkei (2015) for a metastudy on the determinants of CRT scores and Eckartz,

Kirchkamp, and Schunk (2012) and Dessi and Rustichini (2015) for experimental evidence on the role of monetary
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debrie�ng question, where subjects are asked to �report any information they �nd relevant about

how their decisions has been made�. Then, we implement the following measures of cognitive skills.

The �rst task is the standard Cognitive Re�ection Test based on Frederick (2005) which �mea-

sures cognitive re�ectiveness or impulsiveness, respondents' automatic response versus more elabo-

rate and deliberative thought� (Brañas-Garza, García-Muñoz, and Hernán González, 2012, p.255).

It contains three questions:

1. A notebook and a pencil cost 1.10 Euros in total. The notebook costs 1 Euro more than the

pencil. How much does the pencil cost?

2. If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to

make 100 widgets?

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48

days for the patch to cover the entire lake, how long would it take for the patch to cover half

of the lake?

Subjects are informed that this set of three questions should be answered within 30 seconds

(although we allow them to provide answers even after this time has elapsed). In this way, subjects

can be classi�ed according to their overall score (that is, the total number of correct answers) which

can range from 0 to 3.

The second task is Raven's progressive matrix test (often called Raven's test), a picture based,

non-verbal measure of �uid intelligence, that is �the capacity to think logically, analyze and solve

novel problems, independent of background knowledge� (Mullainathan and Sha�r, 2013, p.48). It

is widely used by, e.g., psychologists, educators and the military (Raven, 2000). It consists of a

series of tasks to be solved within a �xed amount of time. In each task, a subject should pick a

single element (among 8 options) that best �ts a set of 8 pictures. The level of di�culty increases

from one question to the other.13 In our experiment, each participant is given a series of 16 tasks

to be solved within 10 minutes. Individual scores in Raven' test are computed as the number of

correct answers to the 16 items of the test.

2.1 Experimental procedures

For each game matrix, we run three Human sessions (involving 20 subjects per session: 10 player

As interacting with 10 player Bs), and two Robot sessions (involving 20 player As per session in-

teracting with automated player Bs). Subjects are given a �xed fee equal to 5 euros to compensate

participation to the experiment.

incentives in Raven's test.
13See Raven (2008) for an overview.
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Upon arrival to the laboratory, participants are randomly assigned to their computers and

asked to �ll in a short administrative questionnaire containing basic questions about their age,

gender, education, etc. Experimental instructions are then read aloud: subjects are informed

that they will play multiple rounds of the same game, each round with a di�erent partner, and

that their own role will remain unchanged throughout the experiment. Finally, subjects are asked

to answer a short comprehension quiz. Once the quiz and any questions from participants are

answered, the experiment begins. After each of the ten rounds of the game, subjects are only

informed of their own payo�s. Information about past choices and payo�s is updated after each

round and displayed at the bottom of the screen. Take-home earnings correspond to the outcome

of a single round that is randomly drawn at the end of each experimental session.

In addition, the experimental game is followed by supplementary tasks. An additional 5 euros

fee is paid to each subject for completing this part. Immediately after the end of the experimental

game, participants are provided with a brief round-by-round summary of their decisions and

outcomes, and are asked to provide in a blank space on their computer screens any relevant

comments in particular about what might have a�ected their decisions during the experiment.

Subjects are also asked to solve the CRT test and a reduced-form Raven's test described above.

All the sessions were conducted in February and March 2014. Out of the 200 participants (94

males), 155 were students with various �elds of specialization. The majority of subjects (65%)

had already taken part in economic experiments. Participants' average age was 25.6 (st. dev. is

7.5). All sessions took place at the Laboratoire d'Economie Experimentale de Paris (LEEP) at

Paris School of Economics. Subjects were recruited via an on-line registration system based on

Orsee (Greiner, 2015) and the experiment was computerized through software developed under

Regate (Zeiliger, 2000) and z-Tree (Fischbacher, 2007). Sessions lasted about 45-60 minutes,

with an average payo� of roughly 18.83 euros (including a 5 euros show-up fee and 5 euros for

completing the post-experimental tasks).

3 Results

Our main experimental results can be summarized as follows. First, in line with the existing

literature, we observe systematic and sizable deviations from standard predictions based on the

principle of dominance solvability. This phenomenon persists across game matrices and despite

repetition. Second, we associate strategic behavior with cognitive skills. We �nd that Raven's test

score is a more reliable predictor of strategic behavior than CRT score: whenever the latter predicts

behavior, the former does too, but not vice versa. Subjects with higher Raven's test scores are

more likely to use the dominant strategy and to best respond to other player's dominant strategy.

Unlike those with low Raven's test score, they also react to the presence of strategic uncertainty.
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Table 4: Aggregate results

Round Overall

1 2 3 4 5 6 7 8 9 10

Pr(R, r) in the Human condition

Game 1 0.333 0.600 0.667 0.700 0.567 0.600 0.433 0.633 0.567 0.700 0.580

Game 2 0.200 0.333 0.400 0.400 0.433 0.500 0.500 0.433 0.467 0.533 0.420

Pr(r) by player B in the Human condition

Game 1 0.767 0.800 0.867 0.900 0.800 0.800 0.700 0.833 0.867 0.800 0.813

Game 2 0.833 0.933 0.900 0.933 1.000 0.933 0.933 0.900 0.900 0.933 0.920

Pr(R) by player A in the Human condition

Game 1 0.500 0.733 0.700 0.767 0.767 0.800 0.700 0.767 0.700 0.867 0.730

Game 2 0.300 0.333 0.400 0.400 0.433 0.533 0.533 0.500 0.500 0.533 0.447

Pr(R) by player A in the Robot condition

Game 1 0.700 0.750 0.750 0.725 0.800 0.800 0.800 0.825 0.800 0.775 0.773

Game 2 0.500 0.575 0.725 0.575 0.800 0.700 0.700 0.775 0.775 0.775 0.690

Note. Columns 1-10 summarize the frequencies of outcomes (de�ned in rows) as % of all outcomes observed in each round
of a given experimental treatment. The last column provides overall results.

3.1 Aggregate behavior in experimental games

Table 4 outlines the main patterns of behavior in our experimental games. The statistical signi�-

cance of the changes observed in this table is tested by Models 1-3 in Table 5. We �rst focus on the

aggregate frequency of Pareto-Nash equilibrium (R, r) � the sole outcome that survives the iterated

elimination of (weakly) dominated strategies � found in the Human condition. In both games,

we observe substantial deviations from the predictions of this solution concept: overall, players

attain the (R, r) outcome 58% of times in Game 1 and 43% in Game 2 (Model 1, H0 : β1 = 0,

p = 0.318). We also observe that e�ciency increases over time: in both games, we observe the

lowest frequency of (R, r) in the initial round (0.333 in Game 1 and 0.200 in Game 2), whereas

the highest frequency of (R, r) occurs in the �nal round (0.700 in Game 1 and 0.533 in Game 2).

To further explore the roots of these deviations, we turn to the aggregate patterns of both

players' behavior in Human and Robot conditions. We focus on three behavioral dimensions

of dominance solvability: the use of dominant strategy (captured by player Bs' behavior in the

Human condition) and the ability to best respond to other player's dominant action with and

without bearing the uncertainty about the latter (which is captured by player As' behavior in the

Human and Robot conditions, respectively).

Ine�ciency is caused by both players, although their roles di�er from one game to another: the

scope of ine�cient behavior is similar for both players in Game 1, and highly asymmetric in Game

2. Overall, player As select action R with probability 0.730 in Game 1 and 0.447 in Game 2 (Model

3, H0 : β1 = 0, p = 0.047). However, player As' behavior happens to be misaligned with player
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Table 5: Aggregate results: statistical support

Model 1 Model 2 Model 3

Pr(R, r) Pr(r) Pr(R)

Constant (β0) 0.580*** 0.813*** 0.730***

(0.144) (0.032) (0.084)

1[Game 2] (β1) -0.160 0.107* -0.283**

(0.103) (0.044) (0.140)

1[Robot] (β2) 0.043

(0.103)

1[Robot]× 1[Game 2] (β3) 0.201

(0.161)

N 600 600 1400

R2 0.026 0.025 0.066

Note. Estimates of linear probability models on outcome (R, r) (Model 1), decision r by player B
(Model 2) and decision R by player A (Model 3). Standard errors (in parentheses) are clustered at
the session level in Human treatments (3 clusters per game matrix, 6 in total) and individual level
in the Robot condition (40 clusters per game matrix, 80 in total) and computed using the delete-one
jackknife procedure. All models contain a dummy variable set to 1 for game matrix 2 (and 0 for game
matrix 1). In Model 3, we also introduce an additional dummy variable set to 1 for Robot condition
(and 0 for Human condition) and well as the interaction between these two variables. */**/***
indicate signi�cance at the 10%/5%/1% level.

Bs' actual decisions which follow the opposite trend: the total frequency of action r increases from

0.813 in Game 1 to 0.920 in Game 2 (Model 2, H0 : β1 = 0, p = 0.060). Importantly, the data

from Robot sessions suggest that the uncertainty about player Bs' behavior is not the only driver

of player As' choices. Player As frequently and systematically fail to best respond to player Bs'

dominant action even when the latter comes with certainty in the Robot condition, although their

willingness to select action R increases in both games as compared to the Human condition (to

0.773 in Game 1 and 0.690 in Game 2).14 The fact that ine�cient actions from player As prevail

in the absence of strategic uncertainty may suggest that at least some of them are boundedly

rational decision makers.

In the next section, we analyze how these three behavioral components of dominance solvability

vary as a function of players' cognitive skills.

3.2 Cognitive skills and strategic behavior

The average score in Raven's test (CRT) is 8.679 out of 16 with SD 3.117 (0.479 out of 3 with

SD 0.852). Our experimental sample is properly randomized across treatments regarding both

14Model 3 suggests that these two proportions are not signi�cantly di�erent: testing H0 : β1 + β3 = 0 yields

p = 0.303. The increase in the proportion of decisions R between Human and Robot conditions is insigni�cant for

Game 1 (H0 : β2 = 0, p = 0.679) and signi�cant for Game 2 (H0 : β2 + β3 = 0, p = 0.054).
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Figure 1: CRT score and aggregate behavior across rounds and treatments
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measures. We do not reject the null hypothesis that Raven's test scores have the same distributions

in all treatments (p = 0.275, Kruskal-Wallis test). A Kruskal-Wallis test applied to the CRT scores

leads to the same conclusion (p = 0.502).

We also replicate several results from previous studies combining Raven's test and CRT re-

garding the relationship between both scores as well as gender di�erences (Brañas-Garza, García-

Muñoz, and Hernán González, 2012; Corgnet, Espín, and Hernáan-González, 2015). There is

a moderate, yet highly signi�cant correlation between Raven and CRT scores (Spearman's ρ =

0.306, p < 0.001) which suggests that they may have a common source, but do not capture the

same cognitive skills. Furthermore, the average score of males is signi�cantly higher than the

average score of females (Raven's test: 9.382 with SD 0.341 vs 8.014 with SD 0.384, p = 0.009;

CRT: 0.676 with SD 0.111 vs 0.291 with SD 0.087, p = 0.007; two-sided t-tests).15

We also observe that many subjects (70%) of our 200 participants fail to provide at least one

correct answer in our standard CRT. 16% provide exactly one , 8% � two, and 6% � three correct

answers. This stands in line with Brañas-Garza, García-Muñoz, and Hernán González (2012) who

report the respective frequencies of 67%, 23%, 9% and 1% for a similar sample size (N = 191), and

echoes the scores in the least performant sample reported in a seminal study by Frederick (2005):

out of 138 students of the University of Toledo, 64% provide no correct answer, 21% provide one,

10% provide two, and 5% provide three corrects answers.
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Figure 2: Raven's test score and aggregate behavior across rounds and treatments
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3.2.1 Cognitive predictors of strategic behavior: aggregate results

In this part, we study the cognitive correlates of strategic behavior. Figures 1 and 2 present the

aggregate evolution of behavior as a function of cognitive skills, measured either by CRT score or

by Raven's test score across roles (player A or player B) and experimental conditions (Human or

Robot).

In Figure 1, the sample is divided into two subsamples: subjects who provided at least one

correct answer to CRT (referred to as CRT > 0) and those who did not (referred to as CRT =

0). The aggregate patterns of behavior weakly di�er between the two subsamples. Bootstrap

proportion tests fail to reject the null hypothesis that the overall proportions of decision R are the

same for both CRT categories in the Human condition (p = 0.126) and in the Robot condition

(p = 0.235).16 The aggregate proportions of decision r, in turn, are found to be statistically

di�erent (p = 0.037), subjects with a CRT score zero being less likely to play r than subjects who

gave at least one correct answer.

In Figure 2, we split our sample into three subsamples based on Raven's test score (1st tertile:

less than 8 correct answers, 2nd tertile: between 8 and 10 correct answers, 3rd tertile: more than

15See also Frederick (2005) and Bosch-Domènech, Brañas-Garza, and Espín (2014) for related evidence.
16We test the di�erence in proportion of a given outcome between two experimental conditions by carrying out a

bootstrap proportion test that accounts for within-subject correlation, i.e, the fact that the same individual takes

10 decisions. The procedure consists of bootstrapping subjects and their corresponding decisions over all ten rounds

instead of bootstrapping decisions as independent observations (see, e.g., Jacquemet, Joule, Luchini, and Shogren,

2013, for a detailed description of the procedure).
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10 correct answers). Although bootstrap proportion tests suggest that player As' behavior in the

Human condition does not vary signi�cantly between these three subsamples (1st tertile vs. 2nd

tertile: p = 0.255, 2nd vs. 3rd: p = 0.580, 1st vs 3rd: p = 0.565), signi�cant di�erences arise

for both player As in the Robot condition (p = 0.001, p = 0.735, p < 0.001, respectively) and

for player Bs (p = 0.064, p = 0.057, p < 0.001, respectively). Raven's test score seems to have a

more systematic association with players' behavior than CRT score, although both measures fail

to predict behavior under strategic uncertainty.

3.2.2 Cognitive skills and dominance solvability: regression analysis

In what follows, we provide further econometric insights into these preliminary results. Follow-

ing Brañas-Garza, García-Muñoz, and Hernán González (2012); Corgnet, Espín, and Hernáan-

González (2015), we use three individual characteristics discussed in the previous section � gender,

Raven's test score and CRT score (kept as a dummy variable with value 1 if the subject gave at

least one correct asnwer at the CRT test and 0 otherwise) � to explain behavior in our experi-

mental games.17 The econometric speci�cation is based on the linear probability model and the

estimation procedure is outlined in Jacquemet and Zylbersztejn (2014). We also control for payo�

scheme and repetition e�ects by including game matrix and round dummies. We consider three

di�erent outcome variables: player As' behavior in the Human and the Robot treatment, and

player Bs' behavior in the Human treatment. Given the correlation between CRT and Raven's

test scores, including both variables in the model might result in multicollinearity and lead to the

under-rejection of the nullity of respective coe�cients. For each outcome, we �rst include these

two measures separately in Models 1 and 2, while Model 3 includes both variables. This evidence

is summarized in Table 6.

We �rst turn to player Bs' behavior. Models 1 and 2 suggest that both the coe�cient of

CRT > 0 dummy and the coe�cient of Raven's test score are positive and signi�cant (p = 0.067

for CRT > 0 and p = 0.015 for Raven). In Model 3, the coe�cient of Raven's test score remains

highly signi�cant (p = 0.014), while the coe�cient of CRT becomes insigni�cant (p = 0.253). Their

joint signi�cance (p = 0.034) implies that cognitive skills predict the use of dominant strategy.

We now turn to player As' behavior in the Human condition. Notwithstanding the previous set

of results, cognitive skills are not found to explain player As' choices. The coe�cient of CRT > 0

dummy is insigni�cant (p = 0.226) in Model 1, and so is the coe�cient of Raven's test score

(p = 0.633) in Model 2. If we account for both, Model 3 reveals that the coe�cients of both

scores are neither individually (p = 0.226 for CRT > 0 and p = 0.550 for Raven's test score)

nor jointly signi�cant (p = 0.503). Finally, the behavior of player As in the Robot condition is

only predicted by Raven's test score: unlike CRT > 0 dummy, its coe�cient remains positive

17Given that most CRT scores in our sample are null and the higher the score, the less frequent it gets, di-

chotomizing the CRT score variable limits the impact of the outliers on the overall results.
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Table 6: Cognitive predictors of strategic behavior: regression analysis

Pr(R) by player A Pr(r) by player B

Human condition Robot condition Human condition

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Const. 0.423*** 0.552** 0.563** 0.573*** 0.242* 0.240* 0.705*** 0.430*** 0.444***

(0.080) (0.176) (0.197) (0.088) (0.135) (0.135) (0.027) (0.103) (0.099)

1[CRT>0] 0.131 0.152 0.062 (0.024) 0.109* 0.046

(0.095) (0.121) (0.102) (0.102) (0.047) (0.036)

Raven 0.013 0.018 0.0426*** 0.0434*** 0.0313** 0.0287**

(0.025) (0.027) (0.013) (0.012) (0.009) (0.008)

1[Game 2] -0.270* 0.263 0.266 0.068 0.054 0.056 0.100 0.132* 0.129*

(0.129) (0.139) (0.136) (0.083) (0.076) (0.079) (0.052) (0.056) (0.056)

1[Male] 0.132 0.187 0.158 0.096 0.072 0.077 0.025 0.024 0.017

(0.126) (0.100) (0.107) (0.090) (0.076) (0.089) (0.046) (0.046) (0.047)

Round:

2 0.133 0.133 0.133 0.063 0.063 0.063 0.067 0.067 0.067

(0.092) (0.092) (0.092) (0.048) (0.048) (0.048) (0.042) (0.042) (0.042)

3 0.150 0.150 0.150 0.138*** 0.138*** 0.138*** 0.083 0.083 0.083

(0.109) (0.109) (0.109) (0.050) (0.050) (0.050) (0.048) (0.048) (0.048)

4 0.183** 0.183** 0.183** 0.050 0.050 0.050 0.117* 0.117* 0.117*

(0.070) (0.070) (0.070) (0.047) (0.047) (0.047) (0.048) (0.048) (0.048)

5 0.200* 0.200* 0.200* 0.200*** 0.200*** 0.200*** 0.100 0.100 0.100

(0.089) (0.089) (0.089) (0.045) (0.045) (0.045) (0.052) (0.052) (0.052)

6 0.267** 0.267** 0.267** 0.150*** 0.150*** 0.150*** 0.067 0.067 0.067

(0.088) (0.088) (0.088) (0.054) (0.054) (0.054) (0.049) (0.049) (0.049)

7 0.217* 0.217* 0.217* 0.150*** 0.150*** 0.150*** 0.017 0.017 0.017

(0.098) (0.098) (0.098) (0.047) (0.047) (0.047) (0.048) (0.048) (0.048)

8 0.233** 0.233** 0.233** 0.200*** 0.200*** 0.200*** 0.067 0.067 0.067

(0.088) (0.088) (0.088) (0.057) (0.057) (0.057) (0.056) (0.056) (0.056)

9 0.200 0.200 0.200 0.188*** 0.188*** 0.188*** 0.083 0.083 0.083

(0.113) (0.113) (0.113) (0.047) (0.047) (0.047) (0.060) (0.060) (0.060)

10 0.300** 0.300** 0.300** 0.175*** 0.175*** 0.175*** 0.067 0.067 0.067

(0.115) (0.115) (0.115) (0.056) (0.056) (0.056) (0.049) (0.049) (0.049)

R2 0.151 0.141 0.160 0.050 0.139 0.140 0.060 0.108 0.111

Note. Estimates of linear probability models explaining the likelihood of decision R by player A and decision r by player
B. Standard errors (in parantheses) are clustered at the session level in the Human condition (3 clusters per game matrix,
6 in total) and individual level in the Robot condition (40 clusters per game matrix, 80 in total) and computed using the
delete-one jackknife procedure. Models 1 and 2 include a single measure of cognitive skills (a dummy set to 1 for a positive
CRT score, or Raven's test score), while Model 3 combines both variables. Other independent variables include gender, game
matrix and round dummies. The number of observations is N = 600 for Human and N = 800 for Robot conditions. */**/***
indicate signi�cance at the 10%/5%/1% level.
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and highly signi�cant across models (p ≤ 0.001). Unsurprisingly, the joint insigni�cance of both

coe�cients in Model 3 is also rejected (p = 0.003).

Altogether, the results presented in Table 6 suggest that cognitive skills predict certain compo-

nents of strategic behavior: the use of dominant strategy (re�ected in player Bs' behavior), as well

as the ability to best respond to other player's dominant strategy (re�ected in player As' behavior

in the Robot condition). Moreover, in both cases Raven's test score is a more reliable predictor

of behavior than CRT score. However, we also observe that Raven's test score fails to predict

player As' behavior once player Bs' behavior becomes uncertain, that is once we move from Robot

to Human condition. This, in turn, points towards an interplay between the degree of strategic

uncertainty, behavior in the experimental games, and individual cognitive skills. Importantly, the

existence of such an interplay is also supported by Figure 2 which shows that the aggregate levels

of e�ciency shift upwards between the Human condition and the Robot condition for the 2nd and

3rd Raven's score tertile, but not the 1st tertile.

In order to formally test this conjecture, we now look at the reaction of player As with di�erent

cognitive skills to the disappearance of strategic uncertainty. Splitting the data according to

Raven's score tertile, for each of the three subsamples we compare player As' behavior in the

Human condition to their behavior in the Robot condition by regressing player As' choice on the

Robot dummy (set to 1 for the Robot and to 0 for the Human condition). We also include the

previous set of independent variables (except for Raven's test score itself).

These results are summarized in Table 7. The coe�cient of the Robot dummy captures the

e�ect of eliminating strategic uncertainty on player As' behavior for each of the three subsamples.

This suggests that only player As with high enough cognitive skills are sensitive to the uncertainty

about player Bs' behavior. The behavior of players with low Raven's test score (1st tertile) is

unresponsive to the degree of strategic uncertainty: the coe�cient of the Robot dummy is close

to zero and insigni�cant (p = 0.822). For players with medium scores (2nd tertile), we �nd a

positive yet weakly signi�cant e�ect (p = 0.087) which becomes ampli�ed and highly signi�cant

for those player As whose Raven's test score belongs to the 3rd tertile of the experimental sample

(p = 0.012).

Finally, it is also worth noting that player As' reaction to the payo� scheme also varies as a

function of Raven's test score. The coe�cient of the Game 2 dummy is close to zero and highly

insigni�cant in the 1st tertile regression (p = 0.890). Then, it becomes negative in 2nd and

3rd tertile models (although it is only statistically signi�cant in the former with p = 0.012 and

p = 0.271, respectively). This, in turn, stands in line with the previous �nding that player As'

willingness to play R increases as the safe choice L becomes less attractive relative to outcome

(R, r). It also seems that the magnitude of this e�ect is mediated by player As' cognitive skills,

although not in a monotone way.
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Table 7: The effect of strategic uncertainty and cognitive skills: evidence from player As'

behavior in Human and Robot conditions

Raven's test score tertile

1st 2nd 3rd

Constant 0.277* 0.592*** 0.330**

(0.147) (0.065) (0.135)

1[Robot] 0.044 0.158* 0.428**

(0.195) (0.090) (0.155)

1[CRT>0] 0.002 0.038 0.016

(0.262) (0.066) (0.188)

1[Male] 0.144 0.033 0.212

(0.145) (0.063) (0.179)

1[Game 2] 0.034 -0.245** -0.176

(0.146) (0.092) (0.155)

Round dummies Yes Yes Yes

N 480 610 310

R2 0.048 0.173 0.298

Note. Estimates of linear probability models on decision R by player A. Standard errors (in paren-
theses) are clustered at the session level in the Human condition (3 clusters per game matrix, 6 in
total) and individual level in the Robot condition (40 clusters per game matrix, 80 in total) and
computed using the delete-one jackknife procedure. Data from Human and Robot conditions are
pooled and split into three subsamples based on Raven's test score tertiles. Other independent vari-
ables include a dummy set to 1 for a positive CRT score, as well as gender, game matrix and round
dummies (omitted from the table). */**/*** indicate signi�cance at the 10%/5%/1% level.

4 Conclusion

This paper studies the relationship between strategic behavior and cognitive skills � cognitive

re�ection and �uid intelligence � in a classic 2 × 2 dominance-solvable game. Our results show

that subjects with higher �uid intelligence (measured by Raven's progressive matrices test) are

more likely to play dominant strategy, and also more likely to best respond to other's strategy.

Furthermore, �uid intelligence predicts strategic sophistication: only those players with su�ciently

high Raven's test score are found to display sensitivity to the presence of uncertainty about others'

behavior. Cognitive re�ection (measured by CRT), in turn, lacks the power to predict behavior

in our experimental setting. We see three main conclusions that stem from these �ndings.

First, these results contribute to the ongoing debate on the relationship between rationality and

intelligence (see Stanovich, 2009, for a critical review). For instance, Stanovich and West (2014)

distinguish between two aspects of rational behavior: instrumental rationality which is understood

as the �ability to take appropriate action given one's goals and beliefs�, and epistemic rationality

which enables agents to hold �beliefs that are commensurate with available evidence�. In the
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strategic environment investigated in this paper, instrumental rationality can be associated with

the ability to solve the game, while epistemic rationality � with the ability to play it with others.

Our experimental data suggest an important relationship between �uid intelligence (rather than

re�ective thinking) and both of these facets of rationality in strategic settings. Both the ability to

use dominance and iterated dominance to e�ciently solve the game, as well as the responsiveness

to the availability of strategic information, is found to be predicted by Raven's test score (but not

by CRT score).

The second contribution is related to the experimental methodology. Despite the fact that CRT

and Raven's test are both commonly used to measure cognitive skills in experimental subject pools,

still very little is known about their relative performance in predicting di�erent types of behavior.

Therefore, the choice of one test over the other may happen to be at least as intuitive as evidence-

based. As mentioned before, to the best of our knowledge only two experiments address this issue.

Brañas-Garza, García-Muñoz, and Hernán González (2012) do so in a strategic environment (p-

beauty contest game), while Corgnet, Espín, and Hernáan-González (2015) � in a non-strategic

one (individual choices on wealth distribution). Both studies �nd that CRT performs better than

Raven's test in predicting subjects' behavior. The result of the present experiment points the

to the opposite conclusion. We believe that this di�erence is driven by the very nature of the

experimental tasks which may involve di�erent types of cognitive e�ort. In our view, this issue

deserves attention in future research.

Finally, although we �nd evidence that behaving in accordance with dominance solvability is

positively correlated with cognitive skills, we also substantiate that most of the variance in individ-

ual decision making cannot be explained by such skills. Thus, exploring factors alongside cognitive

skills that generate strategic behavior remains an open and important empirical question. An in-

teresting avenue is to disentangle individual determinants, e.g., personal characteristics (such as

cognitive skills) that are associated with appropriate behavior, from environmental determinants,

that is, those features of the decision making environment that lead decision makers to take certain

types of actions.
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