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Abstract

Each year, the BAAC (Bulletin d’Analyse des Accidents Corporels) data set includes
traffic accidents on French public roads involving one or two light vehicles and injuring at
least one of the passengers. Each light vehicle is associated with its “generational class”
(GC), which gives a raw description of the vehicle. Two light vehicles with two different
GCs do not necessarily offer the same level of passive safety to their passengers in different
contexts of traffic accident. The objective of this study is to assess to which extent more
recent generations of light vehicles are safer than older ones based on the BAAC data set.

In [8], we elaborated an algorithm for the contextual ranking of GCs. In the present
study, our objective is to develop an algorithm for the global (as opposed to contextual)
ranking of GCs. Like in [8], we rely on “scoring”: we look for a score function that asso-
ciates any GC with a real number; the smaller is this number, the safer is the GC across all
contexts of accident. Causal arguments help to formalize our objective in statistical terms.
We rely on cross-validation to select the best score function among a collection of candidate
score functions which are built based on the algorithm for the contextual ranking of GCs
and a collection of working models. We implement the resulting algorithm, apply it, and
show some results.

Keywords: car safety, causal analysis, cross-validation, scoring.

1 Introduction

The title is a reference to that of a first article that we have devoted to the ranking by passive
safety of generational classes (GCs) of light vehicles in any context of traffic accident [8]. Our
objective here is to integrate out the context of traffic accident from the ranking, therefore
yielding a global (as opposed to local/contextual) ranking by passive safety of GCs of light
vehicles.

Our previous study relied on “scoring”: we looked for a score function that associates any
context of traffic accident and any GC with a real number in such a way that the smaller is
this number, the safer is the GC in the given context. A better score function was learned
from real-life traffic accidents data by cross-validation, under the form of an optimal convex
combination of score functions produced by a library of ranking algorithms by scoring. In this
light, we now look for a score function that associates any GC with a real number in such a
way that the smaller is this number, the safer is the GC across all contexts (or rather, across a
distribution of contexts).
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1.1 Background

In 2016, preventing traffic accidents (we will simply write accidents in the rest of the article)
and limiting their often tragic aftermaths is a worldwide priority for all the actors involved in
road safety. Enhancing road safety notably requires to apprehend vehicles from the angle of
accidentology, the study and analysis of the causes and effects of accidents. Considerable efforts
are made when designing new models of vehicles based, notably, on the analysis of real-life
accidents to evaluate the extent to which new systems provide better safety.

We focus on the passive safety, as opposed to the active safety. Passive safety refers to
the protection of occupants during a crash (by means of components of the vehicle such as the
airbags, seatbelts and, generally, the physical structure of the vehicle) whereas active safety
refers to the prevention of accidents (by means of driving assistance systems). When not stated
otherwise, safety will now stand for passive safety.

For twenty years, safety ratings have been an influential tool for the assessment and improve-
ment of aspects of the safety of vehicles and their crash protective equipment [5]. Typically,
safety ratings are either predictive or retrospective. Predictive safety ratings assess the safety
of vehicles based on crash tests [6]. Retrospective safety ratings assess the safety of vehicles
based on real-life accidents from police and insurance claim data. In Europe, the two major
predictive and retrospective safety ratings are, respectively, the European New Car Assessment
Programme and Folksam Car Safety Rating System. It has been shown that there is a strong
correlation between the two [7, and references therein].

The safety rating for GC of light vehicles (we will simply write vehicles in the rest of the
article) that we elaborated in [8] is both retrospective and predictive. Retrospective because
its construction exploits real-life accidents data. Predictive, in the usual statistical sense: it is
possible to extrapolate a safety ranking for a synthetic GC of vehicles even in the absence of
data relative to it. Moreover, it is also contextual: the safety ranking is conditioned on the
occurrence of an accident in any given context. As we explained, our objective is to average out
the context from the the safety ranking in order to provide a global ranking by (passive) safety.

1.2 BAAC* data set

As in [8], we use the French national file of personal accidents called BAAC data set. BAAC
is an acronym for a French expression translating to form for the analysis of bodily injury
resulting from an accident. Every accident occurring on French public roads and implying the
hospitalization or death of one of the persons involved in the accident should be described using
such forms by the police forces. Once filled in, a BAAC form describes the conditions of the
accident. It tells us when, where, and how the accident occurred. It gives anonymous, partial
description(s) of who was the driver (or were the drivers, in case more than one vehicle are
involved) and, if applicable, who were the passengers. It reports what was the severity of injury
incurred by each occupant. An example of blank BAAC form is given in [8, Figure 4].

It is suggested in the previous paragraph that the BAAC data set is plagued by under-
reporting (see the “should”). The pattern of under-reporting is analyzed in [1, 2, 3, 4]. See [8,
Section 1.2] and these references for details. We do not try to correct the bias. Put in other
words, we investigate safety rankings from the angle of accidents in the BAAC data set and not
from that of accidents on French public roads.

In addition to these national data, fleet data should allow to associate a GC with every vehicle
from the BAAC data set. However, one third of the vehicles cannot be found in the fleet data.
Usually caused by wrongly copying a long alpha-numerical code, this censoring is fortunately
uninformative. A GC consists of seven variables: date of design, date of entry into service, size
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class (five categories, based on interior passenger and cargo volumes and architecture), and four
additional variables (either categorical or numerical). It gives a raw technical description of the
vehicle.

In the rest of the article, we focus on accidents involving one or two light vehicles. When
possible, the BAAC data are associated with the GC data. We call BAAC* data set the resulting
collection of observations.

1.3 Methodology

We use three main ingredients to build the algorithm for the global ranking of GCs by safety
from the algorithm for the local/contextual ranking of GCs elaborated in [8]. First, a causal
model helps to formalize our statistical objective. Second, working models are used to infer
candidate score functions. Third, the best among the candidate score functions is identified by
cross-validation.

1.4 Organization of the article

Section 2 briefly presents the data and their distribution. Section 3 describes the statistical
objective of this study. It lists four main challenges that we face and how we take them up.
Section 4 summarizes the specifics of the implementation, illustrates the resulting algorithm to
rank GCs globally by passive safety, and validates its use. Section 5 concludes the article with
a discussion.

2 Data and their distribution

2.1 Simplification

We refer the reader to [8, Section 2] for a detailed modelling of the BAAC* data and their
distribution. The modelling is not trivial because a generic accident contributes a complex
data-structure O consisting of one or two (depending on the number of vehicles involved in
the accident) clusters Ok of dependent, individual, smaller data-structures Okj describing the
accident from the point of view of each occupant 1 ≤ j ≤ Jk of each vehicle k. Moreover,
we have to deal with the potential missingness of the components of Ok describing the GC of
vehicle k.

In these sections, we state, comment on and justify four assumptions that allow us to make
inference. Lemma 1 in [8, Section 4] shows how to carry out estimation as if we observed the
individual, smaller data-structures drawn, independently, from the distribution of interest (that
of the accident from the point of view of any of its actors). To alleviate the present exposition,
we will proceed as if we randomly selected one single individual, smaller data-structure Okj
from every complex data-structure O. However, in our application, we will exploit [8, Lemma 1,
Section 4] to use all observations.

2.2 Modelling

We observe a data set of n data-structures O1, . . . , On independently drawn from the distribution
of interest P . We denote Pn the corresponding empirical measure. Set 1 ≤ i ≤ n. The data-
structure Oi decomposes as Oi = (Wi, Xi, Zi) where Zi indicates the severity of injuries incurred
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by the corresponding occupant of the vehicle, Xi is a raw description of the vehicle, and Wi

summarizes the context of accident.

Specifically, Zi equals one if the injury is fatal (occupant dead within 30 days of the accident)
or severe (occupant hospitalized for more than 24 hours), and Zi equals zero if the injury is light
(occupant hospitalized for less than 24 hours) or the occupant is unharmed. The GC Xi consists
of seven variables: date of design, date of entry into service, size class, and four additional
variables (either categorical or numerical). Size class is a five-category variable. Its levels are
“supermini car”, “small family car”, “large family car”, “executive car” and “minivan”. The
context Wi consists of 27 variables. We list them in [8, Section A.1], regrouped in six themes:
general, when and where, what roadway, what collision, which driver, which occupant.

3 Statistical challenge

Our main objective is to learn to rank GCs by safety across all contexts of accident. This
statement is better explained by resorting to causal arguments.

3.1 Causal argumentation

Expressing the objective in a counterfactual world. Let O = (W,X, (Zx)x∈X ) be a
full, counterfactual data-structure describing all the counterfactual outcomes Zx (x ∈ X ) of
an accident involving GC x in context W , and the GC X which is actually involved in the
accident. The observed (as opposed to counterfactual) data-structure O = (W,X,Z = ZX)
is the summary measure derived from O by removing the counterfactual outcomes Zx for all
x 6= X. The distribution P of O is a marginal joint distribution of the counterfactual distribution
P of O.

Let P⊗2 be the joint distribution of (O,O′) drawn in two steps by (i) sampling a context of
accidentW1 from the marginal distribution ofW under P then (ii) sampling independently O and
O′ = (W ′, X ′, (Z ′x)x∈X ) from the distribution derived from P by conditioning on W = W ′ = W1.

If, contrary to facts, we had access to counterfactual observations drawn from P⊗2, then our
objective could be expressed as follows:

(i) learn a mapping ρ : X 2 → {−1, 0, 1} with ρ(x, x′) = 0 if and only if (iff) x = x′ and such
that the probabilities P⊗2((Zx−Z ′x′)ρ(x, x′) > 0) be as small as possible for all (x, x′) ∈ X 2;

(ii) declare that, for any two x, x′ ∈ X with x 6= x′, GC x is safer than GC x′ (across all
contexts of accident) iff ρ(x, x′) = 1.

It is how we intend to use ρ (see (ii)) that justifies our wish to minimize the probabilities
P⊗2((Zx − Z ′x′)ρ(x, x′) > 0) (see (i)). Indeed, for any (x, x′) ∈ X 2 with x 6= x′, Zx, Z

′
x′ ∈ {0, 1}

implies that

P⊗2((Zx − Z ′x′)ρ(x, x′) > 0)

= EP⊗2

[
P⊗2(Zx = 1, Z ′x′ = 0, “x declared safer than x′”

∣∣W )
]

+ EP⊗2

[
P⊗2(Zx = 0, Z ′x′ = 1, “x′ declared safer than x”

∣∣W )
]
. (1)

The above RHS expression allows to interpret the LHS one as a ranking error (obtained by
averaging out the context, see the outer expectations) because, whichever is the context of
accident W , “Zx = 1 and Z ′x′ = 0” means that GC x′ proved safer than GC x in context W .
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Reaching the objective in the counterfactual world. It is easy to derive the optimal ρ0
from (1). Let us introduce the conditional expectation Q characterized by

Q(x,W ) = EP(Zx|W ) (all x ∈ X ). (2)

Note that the tower rule yields

EP[Q(x,W )] = EP(Zx) (all x ∈ X ).

By conditional independence of Zx and Z ′x′ given W , (1) yields

P⊗2((Zx − Z ′x′)ρ(x, x′) > 0)

= 1{ρ(x, x′) = 1}EP[Q(x,W )]
(
1− EP[Q(x′,W )]

)
+ 1{ρ(x, x′) = −1} (1− EP[Q(x,W )])EP[Q(x′,W )]

= 1{ρ(x, x′) = 1}EP(Zx) (1− EP(Zx′))

+ 1{ρ(x, x′) = −1} (1− EP(Zx))EP(Zx′)

Therefore, P⊗2((Zx − Z ′x′)ρ(x, x′) > 0) is minimized iff ρ(x, x′) = ρ0(x, x
′) with

ρ0(x, x
′) = 21{EP(Zx) < EP(Zx′)} − 1.

In words, declare that GC x is safer than GC x′ if EP(Zx) < EP(Zx′) and that GC x′ is safer
than GC x if EP(Zx) ≥ EP(Zx′) (safer across all contexts of accident).

The optimal ρ0 is a “scoring ranking rule” in the sense that ρ0 is fully known when the
mapping x 7→ EP(Zx) from X to [0, 1] is known. In particular, the definition of ρ0 depends on P
and not on P⊗2. Consequently, the estimation of ρ0 could be addressed through the estimation
of EP(Zx) (every x ∈ X ) which could be carried out based, for instance, on the loss function L1

x

given by
−L1

x(f,O) = Zx log (f(x)) + (1− Zx) log (1− f(x))

(where O is drawn from P and f ranges over a class of functions mapping X to ]0, 1[). The
performance of the resulting estimator of ρ0 could be expressed in terms of a cross-validated
empirical aggregated risk based on L1

x (all x ∈ X ). However, one could argue that a tailored
measure of performance should take the form of a cross-validated empirical aggregated risk based
on L2

x,x′ (all x, x′ ∈ X , x 6= x′) given by

L2
x,x′(ρ,O,O

′) = 1{(Zx − Z ′x′)ρ(x, x′) > 0})

(where (O,O′) is drawn from P⊗2 and ρ ranges over a class of functions mapping X 2 to
{−1, 0, 1}).

Reaching the objective in the real world under causal assumptions. Under so called
causal assumptions, it is possible to estimate Q(x,W ) and EP[Q(x,W )] = EP(Zx) (each x ∈ X )
from “real world observations” such as O = (W,X,Z = ZX) (as opposed to counterfactual
data-structures O) drawn from the “real world distribution” P (as opposed to the counterfactual
distribution P). Namely, let the randomization assumption postulate that X is conditionally
independent from (Zx)x∈X given W (P-almost surely) and let the positivity assumption postulate
that the conditional distribution of X given W puts positive mass almost everywhere (P or P -
almost surely). Under these causal assumptions, for each x ∈ X ,

Q(x,W ) = EP(Zx|W )
(a)
= EP(Zx|X = x,W )

(b)
= EP (Z|X = x,W ) (3)

where (a) follows from the randomization and positivity assumptions, and (b) follows from the
equality Z = ZX (sometimes called the consistency assumption) and the definition of P as the

5



marginal joint distribution of the summary measure O derived from O drawn from P. Moreover,
(3) straightforwardly implies that

EP[Q(x,W )] = EP(Zx) = EP [EP (Z|X = x,W )] . (4)

Thus, the estimation of ρ0 can be addressed in two steps through the estimation of

Q(X,W ) = EP (Z|X,W ) (5)

and
s0(x) = EP [Q(x,W )] (6)

for all x ∈ X . The estimation of Q can be carried out based, for instance, on the loss function
L1 given by

− L1(f,O) = Z log(f(X,W )) + (1− Z) log(1− f(X,W )) (7)

(where O is drawn from P and f ranges over a class of functions mapping X × W to ]0, 1[).

Given an estimator Q̃ of Q and an empirical distribution P̃W = ñ−1
∑ñ

i=1 Dirac(W̃i),

s̃(x) = E
P̃W

[Q̃(x,W )] =
1

ñ

ñ∑
i=1

Q̃(x, W̃i) (8)

estimates s0(x) for every x ∈ X . The estimator s̃ yields the empirical scoring ranking rule ρ̃
given by

ρ̃(x, x′) = 21{s̃(x) < s̃(x′)} − 1 (all x, x′ ∈ X , x 6= x′).

In the counterfactual world, the performance of ρ̃ could be expressed in terms of a cross-
validated empirical aggregated risk based either on L1

x (all x ∈ X ) or on L2
x,x′ (all x, x′ ∈ X ,

x 6= x′). In the real world, however, only one of these options can be considered. Indeed, for
every f : X →]0, 1[ and x ∈ X , reasoning as in (3) implies

EP
[
EP (L1(f,O)|X = x,W )

]
= EP

[
L1
x(f,O)

]
.

On the contrary, there is no such equality relating EP⊗2

[
L2
x,x′(f,O,O

′)
]

to an expectation involv-

ing P . This is because for all observed contexts of accident we never observe two (conditionally)
independent accidents taking place in this context, just one.

3.2 Statistical roadmap

Statistical objective (in the real world). The causal argumentation developed in Sec-
tion 3.1 has given rise to a sound statistical problem. The problem is freed from the causal
modeling. By this, we mean that it makes fully sense and can be addressed in the real world
without further reference to the counterfactual world described in the causal model as an exten-
sion to the real world. If, eventually, one wished to give a causal interpretation to the solution of
the statistical problem, then one could rely on the causal assumptions (some of them untestable
from real data) proposed in Section 3.1.

Let us summarize what is the statistical problem. As stated in Section 2.2, we observe
O1, . . . , Oi = (Wi, Xi, Zi), . . . , On independently drawn from P . We wish to estimate s0 : X →
[0, 1] given by s0(x) = EP [Q(x,W )] (6) where Q : X ×W → [0, 1] is characterized by Q(X,W ) =
EP (Z|X,W ) (5). The statistical performance of an estimator sn : X → [0, 1] of s0 will be
evaluated based on (but not limited to) the aggregated risk∫

X
EP [EP (L1(sn, O)|X = x,W )]dµ(x) (9)
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(for a user-supplied measure µ on X ; we omit the measurability issues) where the loss function
L1 is given in (7). Such an evaluation is not tailored to the fact that we are secondarily interested
in s0 and primarily interested in the scoring ranking rule (x, x′) 7→ 21{s0(x) < s0(x

′)}−1 yielded
by s0, for the sake of ranking GCs of vehicles. However, the nature of our data sets does not
allow a tailored evaluation, unfortunately.

Aggregated loss and risk. We now elaborate the aggregated loss `1Q,µ(sn,W ) and related

risk RQ,µ(P )(sn) = EP [`1Q,µ(sn,W )] that we will use to evaluate the statistical performance of
sn. To do this, let us analyze the integrand in (9). For every x ∈ X , it holds that

EP [EP (L1(sn, O)|X = x,W )] = EP [L1
Q,x(sn,W )]

where, for any f : X →]0, 1[,

−L1
Q,x(f,W ) = Q(x,W ) log(f(x)) + (1−Q(x,W )) log(1− f(x)).

To evaluate the performance of f across X (as an estimator of s0), we aggregate the loss functions
L1
Q,x (x ∈ X ).

Denote
Λ(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q))

the Kullback-Leibler divergence between the Bernoulli laws with parameters p, q ∈]0, 1[2 and let
µ be a probability measure on X . We propose the aggregated loss function `1Q,µ given (omitting
the measurability issues) by

`1Q,µ(f,W ) =

∫
X

[
L1
Q,x(f,W ) +Q(x,W ) log(Q(x,W ))

+(1−Q(x,W )) log(1−Q(x,W ))
]
dµ(x)

=

∫
X

Λ(Q(x,W ), f(x))dµ(x). (10)

Note that we actually aggregate translated versions of the loss functions L1
Q,x to ensure non-

negativeness of the integrand in (10). In particular, Fubini’s theorem thus yields that the
resulting aggregated risk of sn:

RQ,µ(P )(sn) = EP [`1Q,µ(sn,W )] (11)

equals (9) up to the term∫
X
EP

[
Q(x,W ) log(Q(x,W )) + (1−Q(x,W )) log(1−Q(x,W ))

]
dµ(x)

which does not depend on sn. This additional term justifies why we wrote “based on (but not
limited to)” before (9).

Implementation. The implementation poses four challenges. The three first challenges are
that:

1. we do not know Q;
2. we must provide a probability measure µ on X ;
3. we must find a practical way to explore the set of functions from X to [0, 1].

The fourth challenge will arise once we have solved the three first ones. We propose the following
practical solutions:
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1. We estimate Q with Q̃ based on an independent data set. Specifically, Q̃ is the estimator
that we constructed in [8, Section 6.2] by super learning [10, 9] with 49 different algorithms.
In addition, denoting P̃W the empirical distribution of W in the data set used to build Q̃,
we also define s̃ as in (8) for future use.

2. The probability measure µ on X that we provide is the empirical distribution of X in
the data set used to construct Q̃. This simple choice guarantees that µ puts weight on
meaningful GCs, whereas the construction “by hand” of a synthetic µ would be prone
to putting weight on unrealistic GCs. The empirical distribution of X yields other dis-
tributions of interest by conditioning on the values of one of the seven components of
X. For instance, the empirical distributions of X conditional on size-class are five other
meaningful probability measures on X .

From now on, Q̃, s̃ and µ̃ are treated as fixed. We acknowledge that this may result in slightly
over-optimistic statements regarding our statistical performances.

3. We also provide low-dimensional, parametric working models F1, . . . ,FK where each Fk =
{fk,θ : θ ∈ Θk} is a set of functions from X to [0, 1]. We make sure that each Fk is
identifiable: fk,θ = fk,θ′ implies θ = θ′. Moreover, we assume that

θ 7→ R
Q̃,µ̃

(P )(fk,θ) = EP [`1
Q̃,µ̃

(fk,θ,W )] (12)

admits a unique minimizer θ̂k(P ) over each Fk.

For each 1 ≤ k ≤ K, let us assume that there exists a unique minimizer θ̂k(Pn) over Fk of
the empirical counterpart to the aggregated risk (12):

θ 7→ R
Q̃,µ̃

(Pn)(fk,θ) = EPn [`1
Q̃,µ̃

(fk,θ,W )] =
1

n

n∑
i=1

`1
Q̃,µ̃

(fk,θ,Wi).

The corresponding element of Fk, fk,θ̂k(Pn)
, estimates s0 and yields the empirical scoring ranking

rule (x, x′) 7→ 21{f
k,θ̂k(Pn)

(x) < f
k,θ̂k(Pn)

(x′)} − 1. We can now state the fourth challenge:

4. we must identify and select the best working model of the collection introduced to solve
challenge 3 above.

The identification and selection must use the aggregated risk R
Q̃,µ̃

but cannot be based on

comparisons of R
Q̃,µ̃

(Pn)(f
k,θ̂k(Pn)

), 1 ≤ k ≤ K, because they do not account for the fact that

bigger working models will often yield smaller, minimal aggregated risks at the cost of more
variability. We propose to rely on cross-validation.

4. Let Bn ∈ {0, 1}n be a random vector indicating splits into a training sample, {Oi : 1 ≤
i ≤ n,Bn(i) = 0}, and a validation sample {Oi : 1 ≤ i ≤ n,Bn(i) = 1}. The vector Bn
is drawn independently of O1, . . . , On from a distribution such that n−1

∑n
i=1Bn(i) = p,

for p ∈]0, 1[ a deterministic proportion. For notational simplicity, we choose p so that
np be an integer. Then, given Bn, Pn,Bn,0 = (n(1 − p))−1

∑n
i=1 1{Bn(i) = 0}Dirac(Oi)

and Pn,Bn,1 = (np)−1
∑n

i=1 1{Bn(i) = 1}Dirac(Oi) are, respectively, the training and
validation empirical measures.
For each 1 ≤ k ≤ K, the risk of θ̂k(Pn,Bn,0) is assessed through

R
Q̃,µ̃

(Pn,Bn,1)
(
f
k,θ̂k(Pn,Bn,0)

)
=

1

np

∑
1≤i≤n

1{Bn(i) = 1}`1
Q̃,µ̃

(
f
k,θ̂k(Pn,Bn,0)

,Wi

)
= Pn,Bn,1`

1
Q̃,µ̃

(
f
k,θ̂k(Pn,Bn,0)

, ·
)
.

This results in a cross-validated aggregated risk of working model Fk defined as

EBn

[
Pn,Bn,1`

1
Q̃,µ̃

(
f
k,θ̂k(Pn,Bn,0)

, ·
)]
. (13)
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The best working model among F1, . . . ,FK is the one indexed by the minimizer of these
criteria,

Kn = arg min
1≤k≤K

EBn

[
Pn,Bn,1`

1
Q̃,µ̃

(
f
k,θ̂k(Pn,Bn,0)

, ·
)]
.

It is because we resort to cross-validation that we must treat Q̃ as fixed. Indeed, the com-
putational burden of the estimation of Q0 with Q̃ as we carried it out in [8, Section 6.2] is so
considerable that it cannot be iterated across the successive folds.

Finally, we estimate s0 with the score function

Sn = f
Kn,θ̂Kn (Pn)

(14)

which is obtained by training the best working model on the whole data set.

4 Application

The 2011 BAAC* data set consists of 16,877 reports of accidents. There are 7,716 one-vehicle
and 9,161 two-vehicle accidents reported in it. The 2012 BAAC* data set consists of 15,852
reports of accidents. There are 7,025 one-vehicle and 8,827 two-vehicle accidents reported in it.
The 2013 BAAC* data set consists of 15,004 reports of accidents. There are 6,718 one-vehicle
and 8,286 two-vehicle accidents reported in it. The 2014 BAAC* data set consists of 15,323
reports of accidents. There are 6,771 one-vehicle and 8,552 two-vehicle accidents reported in it.

We exploit the 2011 BAAC* data set for two purposes. First, we build Q̃ by super learning [8,
Section 6.2] using all observations. Second, we arbitrarily select 1,000 different GCs among the
GCs that appear in the data set and define µ̃ as the probability measure putting mass 10−3 on
each of the selected GC.

Moreover, we arbitrarily decompose the 2012 BAAC* data set in two disjoint subsets, each
consisting of 5,000 reports of accidents. One is used to build s̃ from Q̃ as in (8). The other one
yields the empirical measure Pn which is referred to in Section 3.2. It is thus used to identify
the best working model and to train it as in (14).

Finally, the 2013 and 2014 BAAC* data sets are used in Section 4.3 to evaluate the global
ranking yielded by Sn.

4.1 Identifying by cross-validation the best among 25 working models

We elaborate K = 25 different working models.

The first one is the singleton {s̃} (see solution 1 to challenge 1 at the end of Section 3.2).
The second one is a logistic model using only the categorical components of x. The third one is
a logistic model using only the numerical components of x. The fourth one is a logistic model
using all the components of x. The fifth one is a logistic model using all the components of x
and the squares of the numerical components of x. The sixth one is a logistic model using all
the components of x and the squares and cubes of the numerical components of x. The next
seven working models are logistic models using all but one of the components of x. The twelve
remaining working models are obtained by using s̃(x) as an additional predictive variable in the
twelve previous working models.

We identify the best among the K = 25 working models as described in challenge 4 in
Section 3.2. The distribution of Bn is uniform on the set {b1, . . . , b10} where bj ∈ Rn is given by
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bj(i) = 1 iff n(j − 1)/10 + 1 ≤ i ≤ nj/10 for j = 1, . . . , 10. We compute the values of the cross-
validated risks (13) for all working models. The working model with the largest cross-validated
risk is the singleton {s̃}. Each model using s̃ as a predictor has a smaller cross-validated risk
than its counterpart which does not use s̃ as a predictor. The best working model, i.e., the
working model whose cross-validated risk is the smallest, is the the logistic model that uses all
components of x and the squares of the numerical components of x in addition to s̃(x). So we
select and train it on the whole data set, yielding the estimator Sn of s0, see (14).

4.2 Illustration

We arbitrarily characterize eight GCs to rank by global passive safety. The GCs are partially
presented in columns 2-4 in Table 1.

Arbitrarily made up, the synthetic GCs are not obtained by averaging a collection of GCs
with common date of design, date of entry into service and size class. Thus, none of them can
be interpreted as a typical representant of a certain class of light vehicles.

We observe that, within each size class, the scores decrease as the date of design increases:
S1 ≺ S2 ≺ S3, L1 ≺ L2 ≺ L3, M1 ≺ M2. In words, within each size class, the global passive
safety is improved from one generation to the next (the word “generation” refers to the date
of design). The same holds for the date of entry into service: within each size class, the scores
decrease as the date of entry into service increases. This is in agreement with the expert
assessment.

Comparisons can also be made across size classes, by ranking the scores from the largest to
the smallest. This yields the following global ranking by increasing passive safety: M1 ≺ S1 ≺
L1 ≺ S2 ≺ M2 ≺ S3 ≺ L2 ≺ L3. Commenting on this global ranking is uneasy. Actually, two
experts may very well expect diverging global rankings since it is difficult to compare GCs of
different size class, notably because they are not used similarly.

However, it is easy to give one explanation to one feature of this ranking. If we associate
the date of its design with every GC (between parentheses), then the global ranking writes:
M1 (1994) ≺ S1 (1998) ≺ L1 (2001) ≺ S2 (2005) ≺ M2 (2002) ≺ S3 (2011) ≺ L2 (2007) ≺
L3 (2013). In particular, the sequence of dates of design is not increasing. One may wonder
naively why would M2 designed in 2002 be globally safer than S2 designed in 2005, and why
would L2 designed in 2007 be globally safer than S3 designed in 2011? For experts, this does
not come as a surprise. An undisputable element of explanation is that, in general, GCs of the
smallest size class (small family car) are not as well equipped as GCs of larger size classes.

Finally, one should interpret this rankings cautiously. In particular, it is not possible to
disentangle completely the effects of better industrial design, wear due to time into service, and
more stringent safety regulations. Consider for instance a GC x designed and put into service
in 1994 like our synthetic GC M1 in Table 1. Its score Sn(x) quantifies its global safety with
respect to a distribution of context derived from the 2012 BAAC* data set. The large value
of Sn(x) can be due to the facts that (i) x is an old-designed GC in 2012, (ii) x is a worn
GC in 2012, and (iii) the distribution of context derived from the 2012 BAAC* data set differs
drastically from the distribution of context we would have derived from, say, a 1995 BAAC*
data set. How (i), (ii) and (iii) contribute to the making of Sn(x) cannot be determined, if at
all, without a more systematic analysis.

In a preliminary effort, we select 28 emblematic GCs. For each GC x among them, and for
any date of entry into service δ, we denote x(δ) the GC obtained by substituting δ for the original
date of entry into service of x. We observe how δ 7→ Sn(x(δ)) behaves, where δ ranges over a
set of meaningful dates of entry into service. Systematically, the above mapping is decreasing.
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generational class (GC)
GC code, x date of design date of entry into service size class score, Sn(x)

S1 1998 2001 small family car 0.327
S2 2005 2007 small family car 0.304
S3 2011 2011 small family car 0.298
L1 2001 2003 large family car 0.311
L2 2007 2008 large family car 0.294
L3 2013 2014 large family car 0.288
M1 1994 1994 minivan 0.339
M2 2002 2002 minivan 0.302

Table 1: Eight synthetic GCs. We only report the dates of design, dates of entry into service,
size classes, and give each GC a code for future reference. The above GCs are not obtained by
averaging a collection of GCs with common date of design, date of entry into service and size
class, so none of them can be interpreted as a typical representant of a certain class of light
vehicles. In the last column, we report the scores Sn(x) of each of these GCs x.

This finding is in agreement with the experts’ expectations: all other things being fixed, a new
GC is safer than a used GC, where “new” and “used” refer to the use and wear of the GC to
which the date of entry into service is a proxy.

4.3 Evaluation

In this section, we evaluate the global ranking yielded by Sn. For this, we first correlate the
scores Sn(xj) derived from the BAAC* data set with scores SNCAP(xj) derived from consumerist
studies for a collection {x1, . . . , xJ} ⊂ X of J = 155 GCs. Second, we compare the empirical
distributions of {Sn(Xi) : i ∈ S1} and {Sn(Xi) : i ∈ S2} with (S1,S2) ranging over a collection
of couples of disjoint subsets of {1, . . . , n}. See below for details.

Correlation with European New Car Assessment Programme consumerist ratings.
The European New Car Assessment Programme (Euro NCAP) consumerist association rates
vehicles in terms of a five-star safety rating to help consumers identify the safest choice for their
needs. The safety rating is determined from a series of vehicle tests, designed and carried out
by Euro NCAP. They represent, in a simplified way, important real-life accident scenarios that
could result in injured or killed car occupants or other road users.

The Euro NCAP rating methodology has been evolving through the years, and we refer the
interested reader to the association’s website for a detailed description (http://www.euroncap.
com/en/for-engineers/protocols/). We focus on scores derived from frontal-impact and side-
impact crash tests that quantify the protection of the driver and front passenger. We identify
three major periods during which the corresponding methodology did not change significantly:
1996–2000, 2001–2008, 2009–2014. During the first period, only one side-impact test (side-
impact with a mobile deformable barrier) was conducted. It yielded a side-impact grade lying in
[0, 16]. During the second period, an additional side-impact test (side-impact with a pole) was
optionally conducted. Either way, a single grade summarized the test(s), with values in [0, 16] if
one test was conducted and in [0, 18] otherwise. During the third period, both side-impact tests
were systematically conducted and yielded two grades lying in [0, 8]. One single frontal-impact
test was conducted during all periods, yielding a grade lying in [0, 16]. Larger grades mean
better protection.

Based on these grades, we elaborate a score by adding all (two or three) grades and sub-
stracting the result to 100, so that smaller scores mean better protection. We analyze the Euro
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NCAP data set and manage to compute a collection {SNCAP(xj) : 1 ≤ j ≤ J} of so called
Euro NCAP scores for J = 155 different GCs x1, . . . , xJ ∈ X . The analysis is tedious because
it cannot be automated. Each vehicle in the Euro NCAP data set for which we were able to
determine its GC is included.

Comparisons between Euro NCAP test results and real-world crash data have already been
done [7, and references therein]. Here, we evaluate how correlated are our scores Sn(xj) with
SNCAP(xj) for 1 ≤ j ≤ J = 155, see Figure 1 for a visual representation. The three plots
correspond to the three major periods 1996–2000 (38 GCs indexed by j ∈ J1), 2001–2008 (70
GCs indexed by j ∈ J2) and 2009–2014 (47 GCs indexed by j ∈ J3). Visually, it seems that
the cloud of points {(Sn(xj), SNCAP(xj)) : j ∈ Jk} shifts down and to the left as k goes from 1
to 3. Moreover, it seems that the y-range of the cloud tends to decrease.

Kruskall-Wallis and one-sided Wilcoxon non-parametric tests confirm all but one of the visual
findings regarding how the clouds of points shift. Indeed, the one-sided Wilcoxon test comparing
the distributions of {(Sn(xj), SNCAP(xj)) : j ∈ Jk} for k = 2, 3 does not support the fact that
the former is stochastically smaller than the latter.

For each period k = 1, 2, 3, we compute the ratio of the standard deviation of {Sn(xj) : j ∈
Jk} to its mean and the ratio of the standard deviation of {SNCAP(xj) : j ∈ Jk} to its mean. We
obtain: 4.17% and 6.91% (1996–2000), 4.24% and 5.44% (2001–2008), 4.02% and 3.18% (2009–
2014). We note that the ratios based on Sn do not vary much across periods whereas the ratios
based on SNCAP decrease. This second fact shows that the variability of {SNCAP(xj) : j ∈ Jk},
contrary to that of {Sn(xj) : j ∈ Jk}, tends to narrow (relative to their mean) as k goes from
1 to 3. The same result holds when considering the difference of the maximum and minimum
values instead of the standard deviation.

For each period k = 1, 2, 3, we also compute Spearman’s correlation and the p-value of the
test of “no correlation” against “positive correlation”. Spearman’s correlation is meant to assess
how well the relationship between two variables can be described using a monotonic function.
Therefore, it is a particularly convenient measure of association since we consider Sn and SNCAP

as score functions to rank GCs by safety. Thus, we interpret a large estimate of Spearman’s
correlation as a guarantee that, for any x, x′ ∈ X , if we observe Sn(x) ≤ Sn(x′), then it is
likely that we also observe SNCAP(x) ≤ SNCAP(x′), hence x is declared safer than x′ both by
Sn and by SNCAP. We respectively obtain: 29% and 0.0409 (1996–2000), 55% and 4 × 10−7

(2001–2008), 44% and 0.00877 (2009–2014). If the first p-value is not small enough to yield a
significant result, the two others are very small and show that, during both periods 2001–2008
and 2009–2014, the Sn and SNCAP scores are strongly positively correlated.

In summary, despite the fact that the definitions and derivations of Sn and SNCAP hinge
on very different methodologies and data, it thus appears that the two score functions are very
similar for the sake of ranking by safety. We had not anticipated this result.

For years, the design teams of the major French car makers have been encouraged to evaluate
in terms of the Euro NCAP ratings what was the impact of the evolution of the designs. Now
that we have shown the strong positive correlation between a component of the Euro NCAP
rating (what we call SNCAP) and the score function that we have built based on real-life accidents
data (what we call Sn), the design teams will be reassured that such an evaluation is meaningful
in real life.

Evidence-based validation. What we call evidence-based validation consists in a three-step
procedure. First, we make groups of observations relative to accidents that occurred in similar
contexts. We develop what we mean by “similar contexts” in the next paragraph. If an accident
involves two GCs, then one of them is arbitrarily selected and the other discarded. Second,
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Figure 1: Comparing the scores Sn(x) yielded by our method with scores SNCAP(x) derived from
Euro NCAP consumerist ratings for 155 different GCs x. Each plot corresponds to a period
during which the Euro NCAP methodology did not change significantly for our purpose. We
also report the estimates of the Spearman correlations and p-values of the tests of no correlation
against positive correlation. The grey lines are fitted by least squares. The three plots share the
same x- and y-scales.
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we compute the scores of all the GCs selected during the first step (there are 1,550 of them).
Third, within each group of observations, we test if the conditional distribution of score given
that the accident resulted in a fatal or severe injury for the driver is stochastically smaller than
the conditional distribution of score given that the accident did not result in a fatal or severe
injury for the driver. In other words, within each group of observations, we test if the former
distribution’s CDF (cumulative distribution function) lies above the latter distribution’s CDF.

We regroup the observations by similar contexts and not identical contexts because each
context is unique in the 2013 and 2014 BAAC* data sets. In a given group {Oi : i ∈ I} of
accidents with similar contexts (similar Wi, i ∈ I), it is meaningful to regroup the accidents
according to the severities of injuries. Specifically, we write I = I0 ∪ I1 with i ∈ I1 if and only
if the driver of the vehicle involved (and selected, in case of a two-vehicle accident) indexed by
i was fatally or severely injured.

The test described in the third step compares the CDF F1 of {Sn(Xi) : i ∈ I1} to the CDF
F0 of {Sn(Xi) : i ∈ I0}; we expect that the GCs which better protected their occupants (indexed
by i ∈ I0) have smaller scores than the other GCs (indexed by i ∈ I1). Specifically, we carry
out a Wilcoxon test of the null hypothesis “F0 ≥ F1” against its alternative “F0 < F1”.

We make 32 groups of interest and study them as presented above. To make the groups, we
create 480 coarse contexts of reference by considering all combinations of “number of vehicles
involved” (1 or 2), “season” (October to March or April to September), “weekend” (yes or no),
“light condition” (daylight or dark), “urban area” (outside, small, or large), “intersection” (yes
or no), “type of collision” (head-on, rear end, angle, no collision, other). For each combination,
we look for the observed accidents in the 2013 and 2014 BAAC* data sets whose contexts
correspond with the combination. We only keep the accidents such that the driver was aged
under 20 and 60 years old, had her/his seatbelt fastened and was not driving under the influence
of alcohol. If the number of such accidents such that the driver was fatally or severely injured
and if the number of such accidents such that the driver was not fatally or severely injured are
both larger than 10, then the set of these observed accidents qualifies as a group of interest.

We report the corresponding p-values and cardinalities of the subgroups in Table 2.1 The
smallest p-value equals 34%, so we never reject the null for its alternative. Thus, we find no
evidence in the data supporting the hypothesis that, in at least one of the groups, the conditional
distribution of score given that the accident resulted in a fatal or severe injury for the driver is
not stochastically larger than the conditional distribution of score given that the accident did
not result in a fatal or severe injury for the driver.

Even if this conclusion is not definite, we find it reassuring. Again, we had not anticipated
that none of these comparisons would invalidate the stochastic domination of the conditional
distribution of score given that the accident did not result in a fatal or severe injury for the
driver over the conditional distribution of score given that the accident resulted in a fatal or
severe injury for the driver in a coarse context.

5 Discussion

In this article, we address the global ranking of GCs by passive safety: for any two GCs x, x′ ∈ X ,
x is declared globally safer than x′ if Sn(x) ≤ Sn(x′). The score function Sn : X → [0, 1] is
essentially built in two steps: following [8] we first build a score function Q̃ : X ×W → [0, 1] for
the contextual ranking of GCs (for any two couples (x,w), (x′, w′) ∈ X ×W of GCs x, x′ and

1When card(I1) and card(I0) are larger than 50, then we also carry out a one-sided Kolmogorov-Smirnov test
of “F0 ≥ F1” against “F0 < F1” (the computation of its p-value is based on asymptotic arguments). All these
additional tests confirm the decisions of the Wilcoxon tests.
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contexts of accident w,w′, the combination (x,w) is declared safer than (x′, w′) if Q̃(x,w) ≤
Q̃(x′, w′)) by combining data-adaptively a library of ranking algorithms; second, using causal
arguments, we derive Sn from Q̃ and a collection of working models by relying on cross-validation.

We illustrate the use of Sn by comparing eight different GCs. These synthetic GCs are not
obtained by averaging a collection of GCs with common date of design, date of entry into service
and size class, so none of these synthetic GCs can be interpreted as a typical representant of a
class of light vehicles. We also observe how Sn behaves as a function of date of entry into service
only for 28 emblematic GCs.

To validate the use of Sn, we propose a consumerist validation and an evidence-based valida-
tion. The consumerist validation consists in evaluating how correlated are the rankings yielded
by Sn and the Euro NCAP method, which relies on frontal- and side-impact crash tests. For the
evidence-based validation, we define 32 coarse contexts, or patterns, of traffic accident. For each
pattern, we retrieve all accidents that occurred in contexts featuring that pattern, we compute
the scores of all the involved GCs, and we test if the conditional distribution of score given that
the accident resulted in a fatal or severe injury for the driver is stochastically smaller than the
conditional distribution of score given that the accident did not result in a fatal or severe injury
for the driver. Both validation procedures yield satisfying results.

Our approach is very flexible and calls for improvement. If, in the future, the BAAC form
included additional relevant piece of information on the accident, such as the violence of impact
or a description of the driving assistance systems for active safety embarked in the vehicle, then
it would be very easy to use it. In this spirit, we are currently trying to enrich the definition of
a generational class by relying on auxiliary data sets. The main challenge that we wish to take
up next is that of the elaboration of a confidence region around Sn. Once solved, this delicate
theoretical problem will have a considerable practical impact.

We acknowledge that Sn provides ranking from the angle of the law of the BAAC* data
sets and not the law of real-life accidents on French public roads in any broader sense. Using
capture-recapture methods, the authors of [1, 2, 3, 4] estimate under-reporting correction factors
that account for unregistered casualties. The same kind of correction could be implemented in
the context of our study, by appropriate weighting.
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card(I0) 42 72 102 72 44 31 156 10
card(I1) 16 20 80 12 22 21 176 10
p-value 0.34 0.41 0.45 0.46 0.63 0.64 0.67 0.69

card(I0) 110 130 48 64 54 52 90 19
card(I1) 150 10 26 34 20 13 66 12
p-value 0.69 0.73 0.76 0.77 0.78 0.79 0.81 0.82

card(I0) 124 48 50 126 83 20 32 88
card(I1) 74 44 12 102 14 24 10 74
p-value 0.84 0.85 0.89 0.91 0.94 0.94 0.96 0.96

card(I0) 42 40 148 76 38 40 120 62
card(I1) 14 50 138 106 10 12 56 58
p-value 0.97 0.98 0.99 0.99 1.00 1.00 1.00 1.00

Table 2: Evidence-based validation. We (i) collect from the 2013 and 2014 BAAC* data sets
32 groups of observations relative to accidents that occurred in similar contexts, (ii) compute,
for each accident, the score of the involved GC (or one of the involved GCs), and (iii) test,
within each group, if the conditional distribution of score given that the driver was fatally or
severely injured (I1) is stochastically larger than the conditional distribution of score given that
the driver was not fatally or severely injured (I0). We carry out Wilcoxon tests and report the
p-values ranked by increasing order along with the cardinalities of the two samples used for each
test.
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