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2 Division of Biostatistics, School of Public Health, UC Berkeley
3 MAP5 (UMR CMRS 8145), Université Paris Descartes

1 Introduction

Statistical challenge. An infinite sequence of independent and identically distributed (iid) random variables
(Wn, Yn(0), Yn(1))n≥1 drawn from a common law Q0 is to be sequentially and partially disclosed during the
course of a controlled experiment. The first component, Wn, describes the nth context in which we will have
to carry out one action out of two, denoted a = 0 and a = 1. The second and third components, Yn(0)
and Yn(1), are the rewards that actions a = 0 and a = 1 would grant. The set W of contexts may be
high-dimensional. The rewards take their values in ]0, 1[.

The controlled experiment will unfold as follows. Sequentially, we will be informed of the new context Wn.
We will then carry out a randomized action An ∈ {0, 1} with probability either gn(1|Wn) or gn(0|Wn) ≡
1− gn(1|Wn) to go for either action a = 1 or action a = 0, where gn(·|Wn) will be determined by us based
on observations O1, . . . , On−1 accrued so far during the course of the experiment. We will then be granted
reward Yn ≡ Yn(An) corresponding to the action undertaken, the alternative reward being kept undisclosed,
hence the nth observation On ≡ (Wn, An, Yn). This setting is one of the simplest bandits settings in the
machine learning literature, hence the expression “simple bandit problem” in the title of this manuscript.

Our objective justifies why the expression actually reads “simple statistical bandit problem”. Indeed, it
consists in inferring the optimal rule

r0(W ) ≡ arg max
a=0,1

EQ0 (Y (a)|W )

(by convention, r0(W ) = 1 if equality occurs) with rn and the mean reward under r0,

ψ0 ≡ EQ0

(
Y (r0(W ))

)
,

trying to get a narrow confidence interval (CI) for ψ0 and a sense of how well we sequentially determined
our actions through the estimation of the following regret:

Rn ≡
1

n

n∑
i=1

Yi(rn(Wi))− Yi.

Regret is one the most central notion in the bandits literature. Seen here as a data-adaptive parameter,
Rn compares the actual average of the rewards granted at step n, n−1

∑n
i=1 Yi, with the counterfactual

average of the rewards we would have been be granted at step n if we had constantly used rn from the start
of the experiment to decide which action to carry out at the n successive steps, n−1

∑n
i=1 Yi(rn(Wi)). We

emphasize that the former average is known to us but the latter is not, since it may occur that Ai 6= rn(Wi)
for some 1 ≤ i ≤ n, in which case Yi(rn(Wi)) is the reward that was kept secret from us at step i. If all
actions Ai coincide with rn(Wi) (1 ≤ i ≤ n), a very unlikely event, then Rn = 0. In general, nRn equals



∑
1 ≤ i ≤ n

Ai 6= rn(Wi)

Yi(1−Ai)− Yi(Ai),

this alternative expression showing that nRn is the counterfactual sum of the differences between the two
possible rewards at each step i where the randomized action Ai differs from the optimal action rn(Wi)
according to the estimate of the optimal rule at step n. Since the optimal action is that which has the larger
conditional mean given the context, as opposed to that action which grants the larger reward, it is not
guaranteed that Rn is non-negative.

Inference of data-adaptive parameters are at the core of the present manuscript. We will derive CIs
for ψ0 and for Rn, the first data-adaptive parameter we introduced, from a targeted minimum loss estimator
(TMLE, which also stands for targeted minimum loss estimation) of the second data-adaptive parameter

ψrn,0 ≡ EQ0

(
Y (rn(W ))

)
,

the mean reward under rn, thus justifying entirely the title of the manuscript. There is much more to ψrn,0
than being a convenient proxy for the inference of ψ0. In fact, we may argue that ψrn,0 is more interesting
than ψ0 itself because it is the mean reward under rule rn that we know and can use concretely. The same
reasoning motivates our choice of regret Rn instead of its counterpart with r0 substituted for rn.

Quick review of literature. Chakraborty and Moodie (2013) present an excellent unified overview on
the estimation of optimal rules. Their focus is on dynamic rules, which actually prescribe successive actions
at successive time points based on time-dependent contexts. The estimation of the optimal rule from iid
observations has been studied extensively, with a recent interest in the use of machine learning algorithms to
reach this goal (Qian and Murphy, 2011; Zhao et al., 2012, 2015; Zhang et al., 2012a,b; Rubin and van der
Laan, 2012; Luedtke and van der Laan, 2016). The estimation of the mean reward under the optimal rule
is more challenging. Zhao et al. (2012, 2015) use their theoretical risk bounds evaluating the statistical
performance of the estimator of the optimal rule as measures of statistical performance of the resulting
estimators of the mean reward under the optimal rule. However, this approach does not yield CIs.

Constructing CIs for the mean reward under the optimal rule is known to be more difficult when there
exists a stratum of context where no action dominates the other (if action means treatment, no treatment
is neither beneficial nor harmful) (Robins, 2004). In this so called “exceptional” case, the definition of the
optimal rule has to be disambiguated. Assuming non-exceptionality, Zhang et al. (2012a) derive CIs for the
mean reward under the (sub-) optimal rule defined as the optimal rule over a parametric class of candidate
rules. Luedtke and van der Laan (2015a) derive CIs for the actual mean reward under the optimal rule. In the
more general case where exceptionality can occur, different approaches have been considered (Chakraborty
et al., 2014; Goldberg et al., 2014; Laber et al., 2014b; Luedtke and van der Laan, 2015b). Here, we focus
on the non-exceptional case under a companion margin assumption (Mammen and Tsybakov, 1999).

We already unveiled that our pivotal TMLE is actually conceived as an estimator of the mean reward
under the current estimate of the optimal rule. Worthy of interest on its own, this data-adaptive statistical
parameter (or similar ones) has also been considered in (Chakraborty et al., 2014; Laber et al., 2014a,b;
Luedtke and van der Laan, 2015a,b).

Our main result is a central limit theorem (CLT), which enables the construction of various CIs. The
analysis (for the proofs that we omit here, see the full-blown Chambaz et al., 2016) builds upon previous
studies on the construction and statistical analysis of targeted, covariate-adjusted, response-adaptive trials
also based on TMLE (Chambaz and van der Laan, 2014; Zheng et al., 2015; Chambaz et al., 2015). The
asymptotic variance in the CLT takes the form of the variance of an efficient influence curve at a limiting
distribution, allowing to discuss the efficiency of inference. One of the cornerstones of the theoretical study
is a new maximal inequality for martingales with respect to (wrt) the uniform entropy integral. Proved by
decoupling (de la Peña and Giné, 1999), symmetrization and chaining, it allows us to control several empir-
ical processes indexed by random functions.
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Organization. The manuscript is organized as follows. Section 2 presents our sampling strategy and how
we implement TMLE. Section 3 describes the convergence of the data-adaptive sampling strategy, states the
CLT satisfied by the TMLE, and Section 4 discusses the construction of CIs based on it. Section 5 illustrates
the manuscript with the results of a simulation study. Section 6 concludes the manuscript (on a twist).

2 Sampling strategy and targeted minimum loss estimation

Let us introduce some notation. We let Q̄0,Y and q̄0,Y respectively denote the true conditional expectation
Q̄0,Y (a,W ) ≡ EQ0

(Y (a)|W ) (for a = 0, 1) and related “blip function” q̄0,Y (W ) ≡ Q̄0,Y (1,W )− Q̄0,Y (0,W ).
More generally, every (measurable) function Q̄Y from {0, 1}×W to ]0, 1[ is associated with its blip function
q̄Y (W ) ≡ Q̄Y (1,W )− Q̄Y (0,W ). Thus,

r0(W ) = arg max
a=0,1

Q̄0,Y (a,W ) = 1{q̄0,Y (W ) ≥ 0} ≡ R(Q̄0,Y )(W ) (0.1)

(recall that, by convention, r0(W ) = 1 if equality occurs), ψ0 equals EQ0

(
Q̄0,Y (r0(W ),W )

)
and ψrn,0 equals

EQ0

(
Q̄0,Y (rn(W ),W )

)
.

The adaptive sampling strategy and TMLE rely on a working model Q̄Y and loss function LY for Q̄0,Y

that we determine prior to starting the controlled experiment. Requirements on the complexity of Q̄Y will
be given in Section 3. They also rely on a non-decreasing, Lipschitz function G from [−1, 1] to [0, 1] such
that G(0) = 1/2 and, for some fixed and small real numbers p, ξ > 0, |x| > ξ implies G(x) = p if x < 0 and
G(x) = (1− p) if x > 0

2.1 Sampling strategy

The first n0 randomized actions A1, . . . , An0
are drawn from the Bernoulli distribution with parameter 1/2.

In other words, we set gi = gb for i = 1, . . . , n0 where gb(1|W ) = 1−gb(0|W ) ≡ 1/2, thus giving equiprobable
chance to each action to be carried out as long as deemed necessary to start estimating Q̄0,Y from the accrued
observations. Suppose now that O1, . . . , On−1 have been observed. Explaining how the next observation is
obtained will complete the description of the sampling strategy.

We estimate Q̄0,Y with

Q̄n,Y ∈ arg min
Q̄Y ∈Q̄Y

1

n− 1

n−1∑
i=1

LY (Q̄Y )(Oi)
gb(Ai|Wi)

gi(Ai|Wi)
. (0.2)

The weights gb(Ai|Wi)/gi(Ai|Wi) (i = 1, . . . , n) compensate for the fact that our observations are not identi-
cally distributed. We associate the above estimator with its blip function q̄n,Y and rule rn ≡ R(Q̄n,Y )(W ) ≡
1{q̄n,Y (W ) ≥ 0}. They are substitution estimators of q̄0,Y and r0. We now define

gn+1(1|W ) = 1− gn+1(0|W ) ≡ G(q̄n,Y )(W ),

and thus are in a position to sample On+1: we request the disclosure of Wn+1, draw An+1 from the Bernoulli
distribution with parameter gn+1(1|Wn+1), carry out action An+1, are granted reward Yn+1 = Yn+1(An+1)
and form On+1 ≡ (Wn+1, An+1, Yn+1).

The randomized action An+1 rarely differs from the deterministic action rn(Wn+1) in the sense that

|gn+1(1|Wn+1)− rn(Wn+1)|1{|q̄n,Y (Wn+1)| > ξ} = p : (0.3)

if |q̄n,Y (Wn+1)| is sufficiently away from 0, meaning that we confidently believe that one action is superior
to the other, then An+1 equals rn(Wn+1) with (large) probability (1− p). On the contrary, if |q̄n,Y (Wn+1)|
is small, meaning that it is unclear whether an action is superior to the other or not, then the probability
that An+1 be equal rn(Wn+1) lies between (1− t) and 1/2, and is continuously closer to 1/2 as |q̄n,Y (Wn+1)|
gets closer to 0.
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2.2 TMLE

The initial substitution estimator of ψrn,0,

ψ0
n ≡

1

n

n∑
i=1

Q̄n,Y (rn(Wi),Wi),

may fail to be
√
n-consistent and must therefore be enhanced. Fortunately, we can rely on TMLE. Indeed,

just like any mapping Ψρ : PQ,g 7→ EQ (Y (ρ(W ))) with a fixed rule ρ from W to {0, 1}, the data-adaptive
Ψrn is pathwise differentiable from the nonparametric set of all possible data-generating distributions PQ,g
of O ≡ (W,A, Y ) with g bounded away from 0 to [0, 1] (Luedtke and van der Laan, 2015a,b). Its efficient
influence curve at PQ,g is ∆rn(Q, g) where, for every rule ρ :W → {0, 1}, ∆ρ(Q, g) is characterized by

∆ρ(Q, g)(O) = (Y − Q̄Y (ρ(W ),W ))
1{A = ρ(W )}

g(A|W )
+ Q̄Y (ρ(W ),W )− Ψρ(PQ,g). (0.4)

We let ` denote the quasi negative-log-likelihood loss function, which is characterized by

−`(Q̄Y )(O) ≡ Y log(Q̄Y (A,W )) + (1− Y ) log(1− Q̄Y (A,W )),

and introduce the one-dimensional regression model through Q̄n,Y given by

logit
(
Q̄n,Y (ε)(A,W )

)
≡ logit

(
Q̄n,Y (A,W )

)
+ ε

1{A = rn(W )}
gn(A|W )

for all ε ∈ R. It is tailored to the estimation of ψrn,0 = Ψrn(PQ0,gn) in the sense that ∂
∂ε`(Q̄n,Y (ε))(O)|ε=0

equals (Y − Q̄n,Y (A,W ))1{A = rn(W )}/gn(A|W ), the component of ∆rn(Qn, gn) which is orthogonal to
the set of PQn,gn -square-integrable and centered functions of W . Here, Qn denotes any distribution of
(W,Y (0), Y (1)) such that EQn(Y (a)|W ) = Q̄n,Y (a,W ) for each a = 0, 1, Qn-almost surely.

The optimal fluctuation parameter is

εn ∈ arg min
ε∈R

1

n

n∑
i=1

`(Q̄n,Y (ε))(Oi)
gn(Ai|Wi)

gi(Ai|Wi)
.

Setting Q̄∗n,Y ≡ Q̄n,Y (εn), the TMLE of ψrn,0 finally writes

ψ∗n ≡
1

n

n∑
i=1

Q̄∗n,Y (rn(Wi),Wi).

3 Convergence of sampling strategy and asymptotic normality of TMLE

We must choose the working model Q̄Y and loss function LY for Q̄0,Y in such a way that Q̄Y and the sub-
sequent working models LY (Q̄Y ) ≡ {L(Q̄Y ) : QY ∈ Q̄Y } and R(Q̄Y ) ≡ {R(Q̄Y ) : QY ∈ Q̄Y } be reasonably
large/complex relative to a measure of complexity central to the theory of empirical processes (van der Vaart
and Wellner, 1996). Specifically, we must choose them so that Q̄Y , L(Q̄Y ), R(Q̄Y ) be separable (countable
would be sufficient) and that each admit a finite uniform entropy integral wrt an envelope function (van der
Vaart and Wellner, 1996, Sections 2.5.1 and 2.6).

Introduce the norm ‖ · ‖Q0
characterized by ‖f‖2Q0

≡ EP
Q0,gb

(f2(O)). We will assume that Q̄Y satisfies

the following assumption:
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A1. There exists Q̄1,Y ∈ Q̄Y such that Q̄Y 7→ EP
Q0,gb

(LY (Q̄Y )(O)) from Q̄Y to R is minimized at Q̄1,Y .

Moreover, Q̄1,Y is well-separated in the sense that, for all δ > 0,

EP
Q0,gb

(
LY (Q̄1,Y )(O)

)
< inf

{
EP

Q0,gb

(
LY (Q̄Y )(O)

)
: Q̄Y ∈ Q̄Y , ‖Q̄Y − Q̄1,Y ‖Q0 ≥ δ

}
.

Finally, q̄1,Y = q̄0,Y .

The most stringent condition is the equality of the blip functions.
Our second assumption concerns the fluctuation/targeting step in the construction of the TMLE. Let g0

be given by
g0(1|W ) = 1− g0(0|W ) ≡ G(q̄0,Y (W )). (0.5)

Just like gn is an approximation to rn, see (0.3) and its comment, g0 is an approximation to the optimal
rule r0. We will soon see that g0 is the limit of gn. For every rule ρ :W → {0, 1}, consider the one-dimensional
regression model through Q̄1,Y characterized by

logit
(
Q̄1,Y,ρ(ε)(A,W )

)
≡ logit

(
Q̄1,Y (A,W ) + ε

1{A = ρ(W )}
g0(A|W )

)
(0.6)

for all ε ∈ R. We will assume that:

A2. For every rule ρ :W → {0, 1}, there exists a unique ε0(ρ) ∈ R which minimizes the real-valued mapping
ε 7→ EPQ0,g0

(
`(Q̄1,Y,ρ(ε))(O)

)
over R.

The third and last assumption concerns Q0:

A3. The conditional distributions of Y (0) and Y (1) given W under Q0 is not degenerated. Moreover, there
exist γ1, γ2 > 0 such that, for all t ≥ 0,

PQ0
(0 ≤ |q̄0,Y (W )| ≤ t) ≤ γ1t

γ2 . (0.7)

Taking t = 0 in (0.7) yields q̄0,Y (W ) = 0 with probability zero under Q0. In words, the optimal action r0(W )
is defined without ambiguity Q0-almost surely. In the terminology of (Robins, 2004), Q0 is non-exceptional.
More generally, (0.7) for t > 0 is a known as a margin assumption. Inspired from the seminal article (Mammen
and Tsybakov, 1999), A3 formalizes a tractable concentration of q̄0,Y (W ) around 0, where our inference task
is the most challenging.

We may now state our results. According to the first proposition, the sampling strategy nicely converges
as n tends to infinity:

Proposition 0.1. Under A1, A2 and A3, it holds that ‖Q̄n,Y − Q̄1,Y ‖Q0
, ‖q̄n,Y − q̄0,Y ‖Q0

, ‖rn − r0‖Q0
,

‖gn − g0‖Q0
and the non-negative data-adaptive parameter ψ0 − ψrn,0 all converge in probability to zero as

n tends to infinity.

The second proposition establishes the asymptotic normality of
√
n(ψ∗n−ψrn,0). Let us introduce Q̄∗1,Y ≡

Q̄1,Y,r0(ε0(r0)) (see (0.6) and A2), D∗1 given by

D∗1(O) ≡ (Y − Q̄∗1,Y (A,W ))
1{A = r0(W )}
g0(A|W )

+ Q̄∗1,Y (r0(W ),W )− ψ0, (0.8)

and σ2
1 ≡ EPQ0,g0

(
D∗1(O)2

)
. Analogously, recalling the definition of Q̄∗n,Y ≡ Q̄n,Y (εn), let us define

D∗ni(Oi) ≡ (Yi − Q̄∗n,Y (Ai,Wi))
1{Ai = rn(Wi)}

gi(Ai|Wi)
+ Q̄∗n,Y (rn(Wi),Wi)− ψ∗n (each 1 ≤ i ≤ n)

then σ2
n ≡ n−1

∑n
i=1D

∗
ni(Oi)

2.
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Proposition 0.2. Under A1, A2 and A3, ψ∗n consistently estimates ψrn,0 hence ψ0 as well by Proposi-

tion 0.1. Moreover, σ2
n consistently estimates σ2

1, which is positive, and
√
n/σ2

n(ψ∗n−ψrn,0) converges in law
to the standard normal distribution as n tends to infinity.

Obviously, the larger is γ2 from A3, the less concentrated is q̄0,Y (W ) around zero under Q0, the less
difficult is our inference task. If we assume that γ2 ≥ 1 and that the rate of convergence of q̄n,Y to q̄0,Y

is sufficiently fast, then a first corollary to Proposition 0.2 shows that
√
n(ψ∗n − ψ0) is also asymptotically

normal. Introduce γ3 ≡ 1
4 + 1

2(1+γ2) .

Corollary 0.1. Under A1, A2 and A3, if γ2 ≥ 1 hence γ3 ∈ ( 1
4 ,

1
2 ] and if nγ3‖q̄n,Y − q̄0,Y ‖Q0

converges
in probability to zero as n tends to infinity, then the data-adaptive parameter

√
n(ψrn,0 − ψ0) converges in

probability to zero as n tends to infinity. Therefore,
√
n/σ2

n(ψ∗n−ψ0) converges in law to the standard normal
distribution as n tends to infinity.

The proofs of Propositions 0.1, 0.2 and Corollary 0.1 rely on arguments typical of empirical processes
theory and the analysis of TMLEs (Chambaz et al., 2016). The underlying martingale structure of the em-
pirical process proves again a nice extension to an iid structure.

Let Q∗1 be any distribution of (W,Y (0), Y (1)) such that W has the same distribution under Q0

and Q∗1 and EQ∗1 (Y (a)|W ) = Q̄∗1,Y (a,W ) for each a = 0, 1, Q0-almost surely. The influence func-
tion D∗1 in (0.8) equals ∆r0(Q∗1, g0), the efficient influence curve of Ψr0 at PQ∗1 ,g0 (0.4). Consequently,

σ2
1 = EPQ0,g0

(
∆r0(Q∗1, g0)(O)2

)
.

If Q̄1,Y = Q̄0,Y (a stronger condition than equality q̄1,Y = q̄0,Y in A1), then Q̄∗1,Y = Q̄0,Y (because ε0(r0)

from A2 equals zero) hence σ2
1 = EPQ0,g0

(
∆r0(Q0, g0)(O)2

)
: the asymptotic variance of

√
n(ψ∗n − ψrn,0)

coincides with the generalized Cramér-Rao lower bound for the asymptotic variance of any regular and
asymptotically linear estimator of Ψr0(PQ0,g0) = ψ0 when sampling independently from PQ0,g0 (Luedtke and
van der Laan, 2015b). Otherwise, the discrepancy between σ2

1 and EPQ0,g0

(
∆r0(Q0, g0)(O)2

)
will vary subtly

depending on that between Q̄1,Y and Q̄0,Y , hence in particular on our working model Q̄Y .

4 Confidence intervals

Set a confidence level α ∈]0, 1/2[ and let ξ1−α/2 be the corresponding (1 − α/2)-quantile of the standard
normal distribution. By Proposition 0.2 and Corollary 0.1, the TMLE can be used to construct CIs for the
data-adaptive parameter ψrn,0 or ψ0 itself, as stated in this second corollary to Proposition 0.2:

Corollary 0.2. Under the assumptions of Proposition 0.2,[
ψ∗n ± ξ1−α/2

σn√
n

]
(0.9)

contains ψrn,0 with probability tending to (1 − α) as n tends to infinity. Moreover, under the stronger as-
sumptions of Corollary 0.1, the above CI also contains ψ0 with probability tending to (1 − α) as n tends to
infinity.

Deriving a CI for Rn is not as immediate because of its counterfactual nature. We need to introduce a
new assumption:

A4. There exist an infinite sequence (Un)n≥1 of iid random variables independent from (Wn)n≥1 and taking
values in U and a deterministic (measurable) function Q̄0,Y mapping {0, 1} × U ×W to ]0, 1[ such that
Yn(a) = Q̄0,Y (a, Un,Wn) for all n ≥ 1 and both a = 0, 1.
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With A4, we frame the present discussion in the context of non-parametric structural equations mod-
els (Pearl, 2000). The notation Q̄0,Y is justified by the equalities

Q̄0,Y (a,Wn) = EQ0(Yn(a)|Wn) = EQ0(Q̄0,Y (a, Un,Wn)|Wn)

showing that, for each n ≥ 1 and a = 0, 1, the conditional mean of Yn(a) given Wn is obtained by averaging
out Un from Q̄0,Y (a, Un,Wn) conditionally on Wn.

Introduce

s2
1 ≡ EPQ0,g0

((
D∗1(O) + ψ0 − Q̄0,Y (r0(W ),W )

)2)
,

s2
n ≡

1

n

n∑
i=1

(
D∗ni(Oi) + ψ0

n − Q̄n,Y (rn(Wi),Wi)
)2
.

The latter is an empirical counterpart to and estimator of the former. We may now state the last result of
this manuscript, which exhibits a conservative CI for Rn:

Proposition 0.3. Under A1, A2, A3 and A4, s2
n consistently estimates s2

1, which is positive. Moreover,[
ψ∗n −

1

n

n∑
i=1

Yi ± ξ1−α/2
sn√
n

]
(0.10)

contains Rn with probability converging to (1− α′) ≥ (1− α) as n tends to infinity.

The proof of Proposition 0.3 unfolds as follows. Pretending, contrary to facts, that Un is also observed
at each step though not used to define the TMLE, which is thus the same as before, we adapt the proof of
Proposition 0.2 to obtain a similar CLT. The normalization factor involved now depends on U1, . . . , Un as
well. We straightforwardly derive from it a CI forRn whose width λn depends on U1, . . . , Un too. Fortunately,
we can prove that the width of the CI in (0.10) is always larger than λn. Since it is free of U1, . . . , Un, this
yields the desired result. This clever scheme of proof draws its inspiration from (Balzer et al., 2015).

5 Simulation study

We now illustrate Sections 2, 3 and 4 with a simulation study. Section 5.1 presents its settings and Section 5.2
its results.

5.1 Settings

Under Q0, the baseline covariate W decomposes as W ≡ (U, V ) ∈ [0, 1] × {1, 2, 3}, where U and V are
independent random variables respectively drawn from the uniform distributions on [0, 1] and {1, 2, 3}.
Moreover, Y (0) and Y (1) are conditionally drawn given W from Beta distributions with a constant variance
set to 0.1 and means Q̄0,Y (0,W ) and Q̄0,Y (1,W ) satisfying

q̄0,Y (W ) = Q̄0,Y (1,W )− Q̄0,Y (0,W ) ≡ 9
8

(
U2 − 5

2U + 2
3

)
+ 3
√
V

4
√

3
1{U ≥ 1

4b
V+3

3 c}

and

Q̄0,Y (1,W ) + Q̄0,Y (0,W ) ≡ 4
5 + 1

3
√
V

(
cos
(
π
2

4U
V

)
1{4U ≤ V }+ sin

(
π
2

4U−V
4−V

)
1{4U > V } − 1

2

)
.

The conditional means Q̄0,Y (0, ·), Q̄0,Y (1, ·) and associated blip function q̄0,Y are represented in Fig-
ure 0.2 (left plots). We compute the numerical values of the following parameters: ψ0 ≈ 0.5570 (mean
reward under optimal rule r0); VarP

Q0,gb
∆(Q0, g

b)(O) ≈ 0.18122 (variance under PQ0,gb of the efficient in-

fluence curve of Ψ at PQ0,gb , i.e., under Q0 with equiprobability of carrying out action a = 1 or a = 0);
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VarPQ0,g0
∆(Q0, g0)(O) ≈ 0.15482 (variance under PQ0,g0 of the efficient influence curve of Ψ at PQ0,g0 , i.e.,

under Q0 and the approximation g0 to r0); and VarPQ0,r0
∆(Q0, r0)(O) ≈ 0.15122 (variance under PQ0,r0 of

the efficient influence curve of Ψ at PQ0,r0 , i.e., under Q0 and r0).

We set p = 10%, ξ = 1% and choose G characterized over [−1, 1] by

G(x) ≡ p1{x ≤ −ξ}+
(
− 1/2−p

2ξ3 x3 + 1/2−p
2ξ/3 x+ 1

2

)
1{−ξ ≤ x ≤ ξ}+ (1− p)1{x ≥ ξ}.

Reducing p to 5% did not change the results significantly (not shown). Working model Q̄Y consists of
functions Q̄Y,β mapping {0, 1}×W to [0, 1] such that, for each a = 0, 1 and v ∈ {1, 2, 3}, logit Q̄Y,β(a, (U, v))
is a linear combination of 1, U, U2, . . . , U5 and 1{ j−1

10 ≤ U < j
10} (1 ≤ j ≤ 10). The resulting global parameter

β belongs to R96. Neither Q̄0,Y nor q̄0,Y belongs to Q̄Y or {q̄Y,β : Q̄Y,β ∈ Q̄Y }. However, expit(q̄Y,0) does
belong to the latter working model.

The targeting steps are performed when sample size is a multiple of 25, at least 200 and no more than
1000, when the experiment is stopped. Working model Q̄Y is fitted wrt quasi log-likelihood loss function `
using the cv.glmnet function from package glmnet (Friedman et al., 2010), with weights given in (0.2) and
the option "lambda.min". This means imposing (data-adaptive) upper-bounds on the `1- and `2-norms of
parameter β (via penalization), hence the search for a sparse optimal parameter.

We repeat N = 1000 times, independently, the strategy described in Section 2. Each time a targeting
step is performed, we construct the CIs of Corollary 0.2 and Proposition 0.3, with a nominal coverage set to
(1− α) = 95% for each of them.

5.2 Results

Figures 0.1 and 0.2 illustrate a typical realization. Figure 0.2 represents Q̄0,Y , q̄0,Y and their estimators
Q̄n,Y , q̄n,Y at final sample size n = 1000. The top plot of Figure 0.1 shows the 95%-CI In in (0.9) at every
sample size n where a CI is derived. By Corollary 0.2, the probability of the event “ψrn,0 ∈ In” is more likely
to be close to 95% than the probability of the event “ψ0 ∈ In” in the sense that the latter property requires
that the rate of convergence of q̄n,Y to q̄0,Y be sufficiently fast. Nevertheless, we observe on this realization
that each In contains both its corresponding data-adaptive parameter ψrn,0 (pink cross) and ψ0 (blue line).
Moreover, the difference between the length of In and that of the vertical segment joining the two curves of
the same nuance of darker gray at sample size n gets smaller as n grows. This indicates that the variance of
ψ∗n gets closer to the optimal variance VarPQ0,r0

∆(Q0, r0)(O) as n grows.
The bottom plot of Figure 0.1 shows the actual value of Rn (green cross) and 95%-CI in (0.10) at every

sample size n where a CI is derived. We observe on this realization that the regrets are all positive, a fact
that was not granted. Moreover, each CI contains its corresponding data-adaptive parameter Rn.

We can evaluate if our 95%-CIs achieve their nominal 95%-coverage. To do so, we carry out binomials
tests. By construction, the empirical number of CIs which cover ψrn,0 is a random variable drawn from a
Binomial distribution with parameters (N, π). We choose to test the null “π ≥ 95%” against its one-sided
alternative “π < 95%”. A large p-value is interpreted as the absence of empirical evidence supporting that
the CI does not achieve its nominal coverage. We do the same for ψ0 and Rn, mutatis mutandis.

Instead of reporting 3 × 33 = 99 empirical proportions of coverage and related p-values, we simply plot
the logarithms of the p-values of the tests evaluating the coverage of ψrn,0 and ψ0, see Figure 0.3. Overall,
the orange curve dominates the green one, indicating that empirical coverage tends to be higher for ψrn,0
(it ranges between 0.917 and 0.955 with an average of 0.940) than for ψ0 (it ranges between 0.919 and 0.946
with an average of 0.937). This does not come as a surprise, as argued in the first paragraph of this section.
Moreover, a majority of the p-values are larger than 5% (top grey horizontal line), and even more of them
are larger than the Bonferroni-corrected threshold of 5/33%. Furthermore, the smallest p-values correspond
to sample sizes n = 200 and n = 225, where inference is based on little information. As for the coverage of
Rn, it is far above the nominal 95%-coverage, ranging between 0.951 and 0.990 with an average of 0.997.
This does not come as a surprise either since the CIs for Rn are conservative by construction.
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Fig. 0.1. Illustrating the data-adaptive inference of the optimal rule, its mean reward and the related
regret (see also Figure 0.2). Top plot. The blue horizontal line represents the value of the mean reward under the
optimal rule, ψ0. The gray curves represent the mapping n 7→ ψ0 ± ξ97.5%σk/

√
n (k = 1, 2), where σ1 ≈ 0.1512 is the

square root of VarPQ0,r0
∆(Q0, r0)(O) (darker gray) and σ2 ≈ 0.1812 is the square root of VarP

Q0,gb
∆(Q0, g

b)(O)

(lighter gray). Thus, at a given sample size n, the length of the vertical segment joining the two darker gray curves
equals the length of a CI based on a regular, asymptotically efficient estimator of ψ0. The pink crosses represent the
successive values of the data-adaptive parameters ψrn,0. The black dots represent the successive values of ψ∗

n, and
the vertical segments centered at them represent the successive 95%-CIs for ψrn,0 and, under additional assumptions,
for ψ0 as well. Bottom plot. The green crosses green represent the successive values of regret Rn. The black dots
represent the successive values of ψ∗

n − n−1 ∑n
i=1 Yi, and the vertical segments represent the successive 95%-CIs for

Rn.
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Fig. 0.2. Illustrating the data-adaptive inference of the optimal rule, its mean reward and the related
regret through the representation of the conditional mean Q̄0,Y , blip function q̄0,Y and their estimators
(see also Figure 0.1). Top left plot. The solid curves represent U 7→ Q̄0,Y (1, (U, v)) for v = 1 (in dark green, lowest
value in 1), v = 2 (in dark orange, middle value in 1) and v = 3 (in dark blue, largest value in 1). The dashed curves
represent U 7→ Q̄0,Y (0, (U, v)) for v = 1 (in dark green, largest value in 1), v = 2 (in dark orange, middle value in 1)
and v = 3 (in dark blue, smallest value in 1). Bottom left plot. The curves represent U 7→ q̄0,Y (U, v) for v = 1 (in dark
green, smallest value in 1), v = 2 (in dark orange, middle value in 1) and v = 3 (in dark blue, largest value in 1).
Right plots. Counterparts to the left plots, where Q̄0,Y and q̄0,Y are replaced with Q̄n,Y and q̄n,Y for n = 1000, the
final sample size.
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Fig. 0.3. Empirical evaluation of the coverage of the CIs. The curves represent the logarithms of p-values of
binomial tests of adequate coverage (null) vs. inadequate coverage (alternative). A large p-value is interpreted as the
absence of empirical evidence supporting that the related CI does not achieve its nominal coverage of 95%. The dark
green curve corresponds with CIs for ψrn,0, and the dark orange with CIs for ψ0. The gray curves show the threshold
of 5% (top) and the Bonferonni-corrected threshold of 5/33% (bottom).
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6 Conclusion (on a twist)

We acknowledged that assuming the equality q̄1,Y = q̄0,Y in A1 is a stringent condition. It happens that the
equality is mandatory only in the context of Corollary 0.1, which provides sufficient conditions for the TMLE
to estimate ψ0, the mean reward under r0. Yet we argued that we are more interested in the data-adaptive
parameter ψrn,0, the mean reward under rn, than in ψ0. What can be said then without assuming q̄1,Y = q̄0,Y ?

Let A1* be assumption A1 deprived of its condition q̄1,Y = q̄0,Y . In light of (0.1) and (0.5), let rule r1

and its approximation g1 be given by r1(W ) ≡ 1{q̄1,Y (W ) ≥ 0} and g1(1|W ) = 1− g1(0|W ) ≡ G(q̄1,Y (W )).
Introduce

ψ1 ≡ EQ0
(Y (r1(W ))) ,

the mean reward under rule r1. Now, let A2* be assumption A2 with ε 7→ EPQ0,g1

(
`(Q̄′1,Y,ρ(ε))(O)

)
substi-

tuted for ε 7→ EPQ0,g0

(
`(Q̄1,Y,ρ(ε))(O)

)
, where Q̄′1,Y,ρ(ε) is defined as in (0.6) using g1 in lieu of g0. Introduce

Q̄
′∗
1,Y,r1

≡ Q̄′1,Y,r1(ε0(r1)) and, in light of (0.8), D
′∗
1 given by

D
′∗
1 (O) ≡ (Y − Q̄

′∗
1,Y (A,W ))

1{A = r1(W )}
g1(A|W )

+ Q̄
′∗
1,Y (r1(W ),W )− ψ1,

then Σ2
1 ≡ EPQ0,g1

(D
′∗
1 (O)2). Finally, consider the following counterpart to A3:

A3*. The conditional distributions of Y (0) and Y (1) given W under Q0 is not degenerated. Moreover, there
exist γ1, γ2 > 0 such that, for all t ≥ 0,

PQ0 (0 ≤ |q̄1,Y (W )| ≤ t) ≤ γ1t
γ2 . (0.11)

In addition, the ratio |q̄0,Y /q̄1,Y | can be defined and its (essential) supremum is finite.

The margin condition in A3* now concerns the limit blip function q̄1,Y . The true blip function q̄0,Y needs
not take positive values Q0-almost surely anymore. As for the constraint on the ratio |q̄0,Y /q̄1,Y | (which is
obviously met when q̄1,Y = q̄0,Y ), we could simply enforce it by choosing Q̄Y in such a way that |q̄Y | ≥ δ > 0
for all Q̄Y ∈ Q̄Y . We may now state the final result of this manuscript.

Proposition 0.4. Under A1*, A2* and A3*, it holds that ‖Q̄n,Y − Q̄1,Y ‖Q0
, ‖q̄n,Y − q̄1,Y ‖Q0

, ‖rn −
r1‖Q0

, ‖gn− g1‖Q0
and the data-adaptive parameter ψ1−ψrn,0 all converge in probability to zero as n tends

to infinity. Furthermore, ψ∗n consistently estimates ψrn,0 hence ψ1 as well. It does so in such a way that√
n/σ2

n(ψ∗n − ψrn,0) converges in law to the standard normal distribution as n tends to infinity, where σ2
n

consistently estimates the positive Σ2
1 .

Therefore, under the assumptions of Proposition 0.4, the CI defined in (0.9) still contains ψrn,0 with
probability tending to (1 − α) as n tends to infinity. The most important result of the manuscript is thus
preserved without assuming that the limit blip function and the true one coincide.
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V. H. de la Peña and E. Giné. Decoupling. Probability and its Applications (New York). Springer-Verlag, New

York, 1999. doi: 10.1007/978-1-4612-0537-1. URL http://dx.doi.org/10.1007/978-1-4612-0537-1.
From dependence to independence, Randomly stopped processes. U -statistics and processes. Martingales
and beyond.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate
descent. Journal of Statistical Software, 33(1):1–22, 2010. URL http://www.jstatsoft.org/v33/i01/.

Y. Goldberg, R. Song, D. Zeng, and M. R. Kosorok. Comment on “Dynamic treatment regimes: Technical
challenges and applications”. Electron. J. Stat., 8:1290–1300, 2014.

E. B. Laber, D. J. Lizotte, M. Qian, W. E. Pelham, and S. A. Murphy. Dynamic treatment regimes: Technical
challenges and applications. Electron. J. Stat., 8(1):1225–1272, 2014a.

E. B. Laber, D. J. Lizotte, M. Qian, W. E. Pelham, and S. A. Murphy. Rejoinder of “Dynamic treatment
regimes: Technical challenges and applications”. Electron. J. Stat., 8(1):1312–1321, 2014b.

A. R. Luedtke and M. J. van der Laan. Targeted learning of the mean outcome under an optimal dynamic
treatment rule. Journal of Causal Inference, 3(1):61–95, 2015a.

A. R. Luedtke and M. J. van der Laan. Statistical inference for the mean outcome under a possibly non-unique
optimal treatment strategy. Ann. Statist., 2015b. To appear.

A. R. Luedtke and M. J. van der Laan. Super-learning of an optimal dynamic treatment rule. International
Journal of Biostatistics, 2016. To appear.

E. Mammen and A. B. Tsybakov. Smooth discrimination analysis. Ann. Statist., 27(6):1808–1829, 1999.
doi: 10.1214/aos/1017939240. URL http://dx.doi.org/10.1214/aos/1017939240.

http://biostats.bepress.com/ucbbiostat/paper334
http://dx.doi.org/10.1007/978-1-4614-7428-9
http://dx.doi.org/10.1007/978-1-4614-7428-9
http://dx.doi.org/10.1111/sjos.12013
http://dx.doi.org/10.1111/sjos.12013
https://hal.archives-ouvertes.fr/hal-01301297
https://hal.archives-ouvertes.fr/hal-01301297
http://dx.doi.org/10.1007/978-1-4612-0537-1
http://www.jstatsoft.org/v33/i01/
http://dx.doi.org/10.1214/aos/1017939240


J. Pearl. Causality: Models, Reasoning and Inference, volume 29. Cambridge University Press, Cambridge,
2000.

M. Qian and S. A. Murphy. Performance guarantees for individualized treatment rules. Ann. Statist., 39(2):
1180–1210, 2011. doi: 10.1214/10-AOS864. URL http://dx.doi.org/10.1214/10-AOS864.

J. M. Robins. Optimal structural nested models for optimal sequential decisions. In D. Y. Lin and P. Heagerty,
editors, Proc. Second Seattle Symp. Biostat., pages 189–326, 2004.

D. B. Rubin and M. J. van der Laan. Statistical issues and limitations in personalized medicine research
with clinical trials. Int. J. Biostat., 8(1), 2012. Article 1.

A. W. van der Vaart and J. A. Wellner. Weak Convergence. Springer, 1996.
B. Zhang, A. Tsiatis, M. Davidian, M. Zhang, and E. Laber. A robust method for estimating optimal

treatment regimes. Biometrics, 68:1010–1018, 2012a.
B. Zhang, A. Tsiatis, M. Davidian, M. Zhang, and E. Laber. Estimating optimal treatment regimes from a

classification perspective. Stat, 68(1):103–114, 2012b.
Y. Zhao, D. Zeng, A. J. Rush, and M. R. Kosorok. Estimating individualized treatment rules using outcome

weighted learning. J. Amer. Statist. Assoc., 107(499):1106–1118, 2012. doi: 10.1080/01621459.2012.695674.
URL http://dx.doi.org/10.1080/01621459.2012.695674.

Y. Zhao, D. Zeng, E. B. Laber, and M. R. Kosorok. New statistical learning methods for estimating optimal
dynamic treatment regimes. J. Amer. Statist. Assoc., 110(510):583–598, 2015. doi: 10.1080/01621459.
2014.937488. URL http://dx.doi.org/10.1080/01621459.2014.937488.

W. Zheng, A. Chambaz, and M. J. van der Laan. Drawing valid targeted inference when covariate-
adjusted response-adaptive rct meets data-adaptive loss-based estimation, with an application to the
LASSO. Technical Report 339, U.C. Berkeley Division of Biostatistics Working Paper Series, 2015. URL
http://biostats.bepress.com/ucbbiostat/paper339.

14

http://dx.doi.org/10.1214/10-AOS864
http://dx.doi.org/10.1080/01621459.2012.695674
http://dx.doi.org/10.1080/01621459.2014.937488
http://biostats.bepress.com/ucbbiostat/paper339

	Introduction
	Sampling strategy and targeted minimum loss estimation
	Sampling strategy
	TMLE

	Convergence of sampling strategy and asymptotic normality of TMLE
	Confidence intervals
	Simulation study
	Settings
	Results

	Conclusion (on a twist)
	References

