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Targeting a simple statistical bandit problem

this alternative expression showing that nR n is the counterfactual sum of the differences between the two possible rewards at each step i where the randomized action A i differs from the optimal action r n (W i ) according to the estimate of the optimal rule at step n. Since the optimal action is that which has the larger conditional mean given the context, as opposed to that action which grants the larger reward, it is not guaranteed that R n is non-negative.

Inference of data-adaptive parameters are at the core of the present manuscript. We will derive CIs for ψ 0 and for R n , the first data-adaptive parameter we introduced, from a targeted minimum loss estimator (TMLE, which also stands for targeted minimum loss estimation) of the second data-adaptive parameter

the mean reward under r n , thus justifying entirely the title of the manuscript. There is much more to ψ rn,0 than being a convenient proxy for the inference of ψ 0 . In fact, we may argue that ψ rn,0 is more interesting than ψ 0 itself because it is the mean reward under rule r n that we know and can use concretely. The same reasoning motivates our choice of regret R n instead of its counterpart with r 0 substituted for r n .

Introduction

Statistical challenge. An infinite sequence of independent and identically distributed (iid) random variables (W n , Y n (0), Y n (1)) n≥1 drawn from a common law Q 0 is to be sequentially and partially disclosed during the course of a controlled experiment. The first component, W n , describes the nth context in which we will have to carry out one action out of two, denoted a = 0 and a = 1. The second and third components, Y n (0) and Y n [START_REF] Van Der Vaart | Weak Convergence[END_REF], are the rewards that actions a = 0 and a = 1 would grant. The set W of contexts may be high-dimensional. The rewards take their values in ]0, 1[.

The controlled experiment will unfold as follows. Sequentially, we will be informed of the new context W n . We will then carry out a randomized action A n ∈ {0, 1} with probability either g n (1|W n ) or g n (0|W n ) ≡ 1 -g n (1|W n ) to go for either action a = 1 or action a = 0, where g n (•|W n ) will be determined by us based on observations O 1 , . . . , O n-1 accrued so far during the course of the experiment. We will then be granted reward Y n ≡ Y n (A n ) corresponding to the action undertaken, the alternative reward being kept undisclosed, hence the nth observation O n ≡ (W n , A n , Y n ). This setting is one of the simplest bandits settings in the machine learning literature, hence the expression "simple bandit problem" in the title of this manuscript.

Our objective justifies why the expression actually reads "simple statistical bandit problem". Indeed, it consists in inferring the optimal rule r 0 (W ) ≡ arg max a=0,1 E Q0 (Y (a)|W ) (by convention, r 0 (W ) = 1 if equality occurs) with r n and the mean reward under r 0 ,

ψ 0 ≡ E Q0 Y (r 0 (W )) ,
trying to get a narrow confidence interval (CI) for ψ 0 and a sense of how well we sequentially determined our actions through the estimation of the following regret:

R n ≡ 1 n n i=1 Y i (r n (W i )) -Y i .
Regret is one the most central notion in the bandits literature. Seen here as a data-adaptive parameter, R n compares the actual average of the rewards granted at step n, n -1 n i=1 Y i , with the counterfactual average of the rewards we would have been be granted at step n if we had constantly used r n from the start of the experiment to decide which action to carry out at the n successive steps, n -1 n i=1 Y i (r n (W i )). We emphasize that the former average is known to us but the latter is not, since it may occur that A i = r n (W i ) for some 1 ≤ i ≤ n, in which case Y i (r n (W i )) is the reward that was kept secret from us at step i. If all actions A i coincide with r n (W i ) (1 ≤ i ≤ n), a very unlikely event, then R n = 0. In general, nR n equals Quick review of literature. [START_REF] Chakraborty | Statistical methods for dynamic treatment regimes[END_REF] present an excellent unified overview on the estimation of optimal rules. Their focus is on dynamic rules, which actually prescribe successive actions at successive time points based on time-dependent contexts. The estimation of the optimal rule from iid observations has been studied extensively, with a recent interest in the use of machine learning algorithms to reach this goal [START_REF] Qian | Performance guarantees for individualized treatment rules[END_REF][START_REF] Zhao | Estimating individualized treatment rules using outcome weighted learning[END_REF][START_REF] Zhao | New statistical learning methods for estimating optimal dynamic treatment regimes[END_REF]Zhang et al., 2012a,b;[START_REF] Rubin | Statistical issues and limitations in personalized medicine research with clinical trials[END_REF][START_REF] Luedtke | Super-learning of an optimal dynamic treatment rule[END_REF]. The estimation of the mean reward under the optimal rule is more challenging. [START_REF] Zhao | Estimating individualized treatment rules using outcome weighted learning[END_REF][START_REF] Zhao | New statistical learning methods for estimating optimal dynamic treatment regimes[END_REF] use their theoretical risk bounds evaluating the statistical performance of the estimator of the optimal rule as measures of statistical performance of the resulting estimators of the mean reward under the optimal rule. However, this approach does not yield CIs.

Constructing CIs for the mean reward under the optimal rule is known to be more difficult when there exists a stratum of context where no action dominates the other (if action means treatment, no treatment is neither beneficial nor harmful) [START_REF] Robins | Optimal structural nested models for optimal sequential decisions[END_REF]. In this so called "exceptional" case, the definition of the optimal rule has to be disambiguated. Assuming non-exceptionality, Zhang et al. (2012a) derive CIs for the mean reward under the (sub-) optimal rule defined as the optimal rule over a parametric class of candidate rules. Luedtke and van der Laan (2015a) derive CIs for the actual mean reward under the optimal rule. In the more general case where exceptionality can occur, different approaches have been considered [START_REF] Chakraborty | Inference about the expected performance of a data-driven dynamic treatment regime[END_REF][START_REF] Goldberg | Comment on "Dynamic treatment regimes: Technical challenges and applications[END_REF]Laber et al., 2014b;Luedtke and van der Laan, 2015b). Here, we focus on the non-exceptional case under a companion margin assumption [START_REF] Mammen | Smooth discrimination analysis[END_REF].

We already unveiled that our pivotal TMLE is actually conceived as an estimator of the mean reward under the current estimate of the optimal rule. Worthy of interest on its own, this data-adaptive statistical parameter (or similar ones) has also been considered in [START_REF] Chakraborty | Inference about the expected performance of a data-driven dynamic treatment regime[END_REF]Laber et al., 2014a,b;Luedtke and van der Laan, 2015a,b).

Our main result is a central limit theorem (CLT), which enables the construction of various CIs. The analysis (for the proofs that we omit here, see the full-blown [START_REF] Chambaz | Data-adaptive inference of the optimal treatment rule and its mean reward[END_REF] builds upon previous studies on the construction and statistical analysis of targeted, covariate-adjusted, response-adaptive trials also based on TMLE [START_REF] Chambaz | Inference in targeted group-sequential covariate-adjusted randomized clinical trials[END_REF][START_REF] Zheng | Drawing valid targeted inference when covariateadjusted response-adaptive rct meets data-adaptive loss-based estimation, with an application to the LASSO[END_REF][START_REF] Chambaz | Targeted covariate-adjusted response-adaptive lassobased randomized controlled trials[END_REF]. The asymptotic variance in the CLT takes the form of the variance of an efficient influence curve at a limiting distribution, allowing to discuss the efficiency of inference. One of the cornerstones of the theoretical study is a new maximal inequality for martingales with respect to (wrt) the uniform entropy integral. Proved by decoupling (de la Peña and Giné, 1999), symmetrization and chaining, it allows us to control several empirical processes indexed by random functions.

Organization. The manuscript is organized as follows. Section 2 presents our sampling strategy and how we implement TMLE. Section 3 describes the convergence of the data-adaptive sampling strategy, states the CLT satisfied by the TMLE, and Section 4 discusses the construction of CIs based on it. Section 5 illustrates the manuscript with the results of a simulation study. Section 6 concludes the manuscript (on a twist).

Sampling strategy and targeted minimum loss estimation

Let us introduce some notation. We let Q0,Y and q0,Y respectively denote the true conditional expectation Q0,Y (a, W ) ≡ E Q0 (Y (a)|W ) (for a = 0, 1) and related "blip function" q0,Y (W ) ≡ Q0,Y (1, W ) -Q0,Y (0, W ). More generally, every (measurable) function QY from {0, 1} × W to ]0, 1[ is associated with its blip function qY (W ) ≡ QY (1, W ) -QY (0, W ). Thus,

r 0 (W ) = arg max a=0,1 Q0,Y (a, W ) = 1{q 0,Y (W ) ≥ 0} ≡ R( Q0,Y )(W ) (0.1)
(recall that, by convention, r 0 (W ) = 1 if equality occurs), ψ 0 equals E Q0 Q0,Y (r 0 (W ), W ) and ψ rn,0 equals

E Q0 Q0,Y (r n (W ), W ) .
The adaptive sampling strategy and TMLE rely on a working model QY and loss function L Y for Q0,Y that we determine prior to starting the controlled experiment. Requirements on the complexity of QY will be given in Section 3. They also rely on a non-decreasing, Lipschitz function G from [-1, 1] to [0, 1] such that G(0) = 1/2 and, for some fixed and small real numbers p, ξ > 0, |x| > ξ implies G(x) = p if x < 0 and

G(x) = (1 -p) if x > 0 2.

Sampling strategy

The first n 0 randomized actions A 1 , . . . , A n0 are drawn from the Bernoulli distribution with parameter 1/2. In other words, we set g i = g b for i = 1, . . . , n 0 where g b (1|W ) = 1-g b (0|W ) ≡ 1/2, thus giving equiprobable chance to each action to be carried out as long as deemed necessary to start estimating Q0,Y from the accrued observations. Suppose now that O 1 , . . . , O n-1 have been observed. Explaining how the next observation is obtained will complete the description of the sampling strategy.

We estimate Q0,Y with Qn,Y ∈ arg min

QY ∈ QY 1 n -1 n-1 i=1 L Y ( QY )(O i ) g b (A i |W i ) g i (A i |W i ) . (0.2) The weights g b (A i |W i )/g i (A i |W i ) (i = 1, . . . , n
) compensate for the fact that our observations are not identically distributed. We associate the above estimator with its blip function qn,Y and rule

r n ≡ R( Qn,Y )(W ) ≡ 1{q n,Y (W ) ≥ 0}.
They are substitution estimators of q0,Y and r 0 . We now define

g n+1 (1|W ) = 1 -g n+1 (0|W ) ≡ G(q n,Y )(W ),
and thus are in a position to sample O n+1 : we request the disclosure of W n+1 , draw A n+1 from the Bernoulli distribution with parameter g n+1 (1|W n+1 ), carry out action A n+1 , are granted reward

Y n+1 = Y n+1 (A n+1 ) and form O n+1 ≡ (W n+1 , A n+1 , Y n+1 ).
The randomized action A n+1 rarely differs from the deterministic action r n (W n+1 ) in the sense that

|g n+1 (1|W n+1 ) -r n (W n+1 )| 1{|q n,Y (W n+1 )| > ξ} = p : (0.3) if |q n,Y (W n+1
)| is sufficiently away from 0, meaning that we confidently believe that one action is superior to the other, then A n+1 equals r n (W n+1 ) with (large) probability (1 -p). On the contrary, if |q n,Y (W n+1 )| is small, meaning that it is unclear whether an action is superior to the other or not, then the probability that A n+1 be equal r n (W n+1 ) lies between (1 -t) and 1/2, and is continuously closer to 1/2 as |q n,Y (W n+1 )| gets closer to 0.

TMLE

The initial substitution estimator of ψ rn,0 ,

ψ 0 n ≡ 1 n n i=1 Qn,Y (r n (W i ), W i ),
may fail to be √ n-consistent and must therefore be enhanced. Fortunately, we can rely on TMLE. Indeed, just like any mapping

Ψ ρ : P Q,g → E Q (Y (ρ(W ))
) with a fixed rule ρ from W to {0, 1}, the data-adaptive Ψ rn is pathwise differentiable from the nonparametric set of all possible data-generating distributions P Q,g of O ≡ (W, A, Y ) with g bounded away from 0 to [0, 1] (Luedtke and van der Laan, 2015a,b). Its efficient influence curve at P Q,g is ∆ rn (Q, g) where, for every rule ρ :

W → {0, 1}, ∆ ρ (Q, g) is characterized by ∆ ρ (Q, g)(O) = (Y -QY (ρ(W ), W )) 1{A = ρ(W )} g(A|W ) + QY (ρ(W ), W ) -Ψ ρ (P Q,g ). (0.4)
We let denote the quasi negative-log-likelihood loss function, which is characterized by

-( QY )(O) ≡ Y log( QY (A, W )) + (1 -Y ) log(1 -QY (A, W )),
and introduce the one-dimensional regression model through Qn,Y given by logit Qn,Y ( The optimal fluctuation parameter is

)(A, W ) ≡ logit Qn,Y (A, W ) + 1{A = r n (W )} g n (A|W ) for all ∈ R. It is tailored to the estimation of ψ rn,0 = Ψ rn (P Q0,gn ) in the sense that ∂ ∂ ( Qn,Y ( ))(O)| =0 equals (Y -Qn,Y (A, W ))1{A = r n (W )}/g n (A|W ), the component of ∆ rn (Q n , g n ) which is
n ∈ arg min ∈R 1 n n i=1 ( Qn,Y (ε))(O i ) g n (A i |W i ) g i (A i |W i ) .
Setting Q * n,Y ≡ Qn,Y ( n ), the TMLE of ψ rn,0 finally writes

ψ * n ≡ 1 n n i=1 Q * n,Y (r n (W i ), W i ).
3 Convergence of sampling strategy and asymptotic normality of TMLE [START_REF] Van Der Vaart | Weak Convergence[END_REF]. Specifically, we must choose them so that QY , L( QY ), R( QY ) be separable (countable would be sufficient) and that each admit a finite uniform entropy integral wrt an envelope function (van der Vaart and Wellner, 1996, Sections 2.5.1 and 2.6).

Introduce the norm

• Q0 characterized by f 2 Q0 ≡ E P Q 0 ,g b (f 2 (O)
). We will assume that QY satisfies the following assumption:

A1. There exists Q1,Y ∈ QY such that QY → E P Q 0 ,g b (L Y ( QY )(O)) from QY to R is minimized at Q1,Y .
Moreover, Q1,Y is well-separated in the sense that, for all δ > 0,

E P Q 0 ,g b L Y ( Q1,Y )(O) < inf E P Q 0 ,g b L Y ( QY )(O) : QY ∈ QY , QY -Q1,Y Q0 ≥ δ .
Finally, q1,Y = q0,Y .

The most stringent condition is the equality of the blip functions.

Our second assumption concerns the fluctuation/targeting step in the construction of the TMLE. Let g 0 be given by g 0 (1|W ) = 1 -g 0 (0|W ) ≡ G(q 0,Y (W )). (0.5) Just like g n is an approximation to r n , see (0.3) and its comment, g 0 is an approximation to the optimal rule r 0 . We will soon see that g 0 is the limit of g n . For every rule ρ : W → {0, 1}, consider the one-dimensional

regression model through Q1,Y characterized by logit Q1,Y,ρ ( )(A, W ) ≡ logit Q1,Y (A, W ) + 1{A = ρ(W )} g 0 (A|W ) (0.6)
for all ∈ R. We will assume that:

A2. For every rule ρ : W → {0, 1}, there exists a unique 0 (ρ) ∈ R which minimizes the real-valued mapping

→ E P Q 0 ,g 0 ( Q1,Y,ρ ( ))(O) over R.
The third and last assumption concerns Q 0 :

A3. The conditional distributions of Y (0) and Y (1) given W under Q 0 is not degenerated. Moreover, there exist γ 1 , γ 2 > 0 such that, for all t ≥ 0,

P Q0 (0 ≤ |q 0,Y (W )| ≤ t) ≤ γ 1 t γ2 . (0.7)
Taking t = 0 in (0.7) yields q0,Y (W ) = 0 with probability zero under Q 0 . In words, the optimal action r 0 (W ) is defined without ambiguity Q 0 -almost surely. In the terminology of [START_REF] Robins | Optimal structural nested models for optimal sequential decisions[END_REF], Q 0 is non-exceptional. More generally, (0.7) for t > 0 is a known as a margin assumption. Inspired from the seminal article [START_REF] Mammen | Smooth discrimination analysis[END_REF], A3 formalizes a tractable concentration of q0,Y (W ) around 0, where our inference task is the most challenging.

We may now state our results. According to the first proposition, the sampling strategy nicely converges as n tends to infinity: Proposition 0.1. Under A1, A2 and A3, it holds that Qn,Y -Q1,Y Q0 , qn,Y -q0,Y Q0 , r n -r 0 Q0 , g n -g 0 Q0 and the non-negative data-adaptive parameter ψ 0 -ψ rn,0 all converge in probability to zero as n tends to infinity.

The second proposition establishes the asymptotic normality of

√ n(ψ * n -ψ rn,0 ). Let us introduce Q * 1,Y ≡ Q1,Y,r0 ( 0 (r 0 )) (see (0.6) and A2), D * 1 given by D * 1 (O) ≡ (Y -Q * 1,Y (A, W )) 1{A = r 0 (W )} g 0 (A|W ) + Q * 1,Y (r 0 (W ), W ) -ψ 0 , (0.8) and σ 2 1 ≡ E P Q 0 ,g 0 D * 1 (O) 2 . Analogously, recalling the definition of Q * n,Y ≡ Qn,Y ( n ), let us define D * ni (O i ) ≡ (Y i -Q * n,Y (A i , W i )) 1{A i = r n (W i )} g i (A i |W i ) + Q * n,Y (r n (W i ), W i ) -ψ * n (each 1 ≤ i ≤ n) then σ 2 n ≡ n -1 n i=1 D * ni (O i ) 2 .
Proposition 0.2. Under A1, A2 and A3, ψ * n consistently estimates ψ rn,0 hence ψ 0 as well by Proposition 0.1. Moreover, σ 2 n consistently estimates σ 2 1 , which is positive, and n/σ 2 n (ψ * n -ψ rn,0 ) converges in law to the standard normal distribution as n tends to infinity.

Obviously, the larger is γ 2 from A3, the less concentrated is q0,Y (W ) around zero under Q 0 , the less difficult is our inference task. If we assume that γ 2 ≥ 1 and that the rate of convergence of qn,Y to q0,Y is sufficiently fast, then a first corollary to Proposition 0.2 shows that √ n(ψ * n -ψ 0 ) is also asymptotically normal. Introduce

γ 3 ≡ 1 4 + 1 2(1+γ2) .
Corollary 0.1. Under A1, A2 and A3, if γ 2 ≥ 1 hence γ 3 ∈ ( 1 4 , 1 2 ] and if n γ3 qn,Y -q0,Y Q0 converges in probability to zero as n tends to infinity, then the data-adaptive parameter √ n(ψ rn,0 -ψ 0 ) converges in probability to zero as n tends to infinity. Therefore, n/σ 2 n (ψ * n -ψ 0 ) converges in law to the standard normal distribution as n tends to infinity.

The proofs of Propositions 0.1, 0.2 and Corollary 0.1 rely on arguments typical of empirical processes theory and the analysis of TMLEs [START_REF] Chambaz | Data-adaptive inference of the optimal treatment rule and its mean reward[END_REF]. The underlying martingale structure of the empirical process proves again a nice extension to an iid structure.

Let Q * 1 be any distribution of (W, Y (0), Y (1)) such that W has the same distribution under Q 0 and Q *

1 and

E Q * 1 (Y (a)|W ) = Q * 1,Y (a, W ) for each a = 0, 1, Q 0 -almost surely. The influence func- tion D * 1 in (0.8) equals ∆ r0 (Q * 1 , g 0 ), the efficient influence curve of Ψ r0 at P Q * 1 ,g0 (0.4). Consequently, σ 2 1 = E P Q 0 ,g 0 ∆ r0 (Q * 1 , g 0 )(O) 2 . If Q1,Y = Q0,Y (a stronger condition than equality q1,Y = q0,Y in A1), then Q * 1,Y = Q0,Y (because 0 (r 0 ) from A2 equals zero) hence σ 2 1 = E P Q 0 ,g 0 ∆ r0 (Q 0 , g 0 )(O) 2 : the asymptotic variance of √ n(ψ * n -ψ rn,0
) coincides with the generalized Cramér-Rao lower bound for the asymptotic variance of any regular and asymptotically linear estimator of Ψ r0 (P Q0,g0 ) = ψ 0 when sampling independently from P Q0,g0 (Luedtke and van der Laan, 2015b). Otherwise, the discrepancy between σ 2

1 and E P Q 0 ,g 0 ∆ r0 (Q 0 , g 0 )(O) 2 will vary subtly depending on that between Q1,Y and Q0,Y , hence in particular on our working model QY .

Confidence intervals

Set a confidence level α ∈]0, 1/2[ and let ξ 1-α/2 be the corresponding (1 -α/2)-quantile of the standard normal distribution. By Proposition 0.2 and Corollary 0.1, the TMLE can be used to construct CIs for the data-adaptive parameter ψ rn,0 or ψ 0 itself, as stated in this second corollary to Proposition 0.2: Corollary 0.2. Under the assumptions of Proposition 0.2,

ψ * n ± ξ 1-α/2 σ n √ n (0.9)
contains ψ rn,0 with probability tending to (1 -α) as n tends to infinity. Moreover, under the stronger assumptions of Corollary 0.1, the above CI also contains ψ 0 with probability tending to (1 -α) as n tends to infinity.

Deriving a CI for R n is not as immediate because of its counterfactual nature. We need to introduce a new assumption:

A4. There exist an infinite sequence (U n ) n≥1 of iid random variables independent from (W n ) n≥1 and taking values in U and a deterministic (measurable) function Q0,Y mapping {0, 1} × U × W to ]0, 1[ such that Y n (a) = Q0,Y (a, U n , W n ) for all n ≥ 1 and both a = 0, 1.

With A4, we frame the present discussion in the context of non-parametric structural equations models [START_REF] Pearl | Causality: Models, Reasoning and Inference[END_REF]. The notation Q0,Y is justified by the equalities

Q0,Y (a, W n ) = E Q0 (Y n (a)|W n ) = E Q0 ( Q0,Y (a, U n , W n )|W n )
showing that, for each n ≥ 1 and a = 0, 1, the conditional mean of Y n (a) given W n is obtained by averaging out U n from Q0,Y (a, U n , W n ) conditionally on W n . Introduce

s 2 1 ≡ E P Q 0 ,g 0 D * 1 (O) + ψ 0 -Q0,Y (r 0 (W ), W ) 2 , s 2 n ≡ 1 n n i=1 D * ni (O i ) + ψ 0 n -Qn,Y (r n (W i ), W i ) 2 .
The latter is an empirical counterpart to and estimator of the former. We may now state the last result of this manuscript, which exhibits a conservative CI for R n :

Proposition 0.3. Under A1, A2, A3 and A4, s 2 n consistently estimates s 2 1 , which is positive. Moreover,

ψ * n - 1 n n i=1 Y i ± ξ 1-α/2 s n √ n (0.10) contains R n with probability converging to (1 -α ) ≥ (1 -α) as n tends to infinity.
The proof of Proposition 0.3 unfolds as follows. Pretending, contrary to facts, that U n is also observed at each step though not used to define the TMLE, which is thus the same as before, we adapt the proof of Proposition 0.2 to obtain a similar CLT. The normalization factor involved now depends on U 1 , . . . , U n as well. We straightforwardly derive from it a CI for R n whose width λ n depends on U 1 , . . . , U n too. Fortunately, we can prove that the width of the CI in (0.10) is always larger than λ n . Since it is free of U 1 , . . . , U n , this yields the desired result. This clever scheme of proof draws its inspiration from [START_REF] Balzer | Targeted estimation and inference for the sample average treatment effect[END_REF].

Simulation study

We now illustrate Sections 2, 3 and 4 with a simulation study. Section 5.1 presents its settings and Section 5.2 its results.

Settings

Under Q 0 , the baseline covariate W decomposes as W ≡ (U, V ) ∈ [0, 1] × {1, 2, 3}, where U and V are independent random variables respectively drawn from the uniform distributions on [0, 1] and {1, 2, 3}. Moreover, Y (0) and Y (1) are conditionally drawn given W from Beta distributions with a constant variance set to 0.1 and means Q0,Y (0, W ) and Q0,Y ( 1

, W ) satisfying q0,Y (W ) = Q0,Y (1, W ) -Q0,Y (0, W ) ≡ 9 8 U 2 -5 2 U + 2 3 + 3 √ V 4 √ 3 1{U ≥ 1 4 V +3 3 } and Q0,Y (1, W ) + Q0,Y (0, W ) ≡ 4 5 + 1 3 √ V cos π 2 4U V 1{4U ≤ V } + sin π 2 4U -V 4-V 1{4U > V } -1 2 .
The conditional means Q0,Y (0, •), Q0,Y (1, •) and associated blip function q0,Y are represented in Figure 0.2 (left plots). We compute the numerical values of the following parameters: ψ 0 ≈ 0.5570 (mean reward under optimal rule r 0 ); Var P Q 0 ,g b ∆(Q 0 , g b )(O) ≈ 0.1812 2 (variance under P Q0,g b of the efficient influence curve of Ψ at P Q0,g b , i.e., under Q 0 with equiprobability of carrying out action a = 1 or a = 0); Var P Q 0 ,g 0 ∆(Q 0 , g 0 )(O) ≈ 0.1548 2 (variance under P Q0,g0 of the efficient influence curve of Ψ at P Q0,g0 , i.e., under Q 0 and the approximation g 0 to r 0 ); and Var P Q 0 ,r 0 ∆(Q 0 , r 0 )(O) ≈ 0.1512 2 (variance under P Q0,r0 of the efficient influence curve of Ψ at P Q0,r0 , i.e., under Q 0 and r 0 ).

We set p = 10%, ξ = 1% and choose G characterized over [-1, 1] by

G(x) ≡ p1{x ≤ -ξ} + -1/2-p 2ξ 3 x 3 + 1/2-p 2ξ/3 x + 1 2 1{-ξ ≤ x ≤ ξ} + (1 -p)1{x ≥ ξ}.
Reducing p to 5% did not change the results significantly (not shown). Working model QY consists of functions QY,β mapping {0, 1} × W to [0, 1] such that, for each a = 0, 1 and v ∈ {1, 2, 3}, logit QY,β (a, (U, v)) is a linear combination of 1, U, U 2 , . . . , U 5 and 1{ j-1 10 ≤ U < j 10 } (1 ≤ j ≤ 10). The resulting global parameter β belongs to R 96 . Neither Q0,Y nor q0,Y belongs to QY or {q Y,β : QY,β ∈ QY }. However, expit(q Y,0 ) does belong to the latter working model.

The targeting steps are performed when sample size is a multiple of 25, at least 200 and no more than 1000, when the experiment is stopped. Working model QY is fitted wrt quasi log-likelihood loss function using the cv.glmnet function from package glmnet [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF], with weights given in (0.2) and the option "lambda.min". This means imposing (data-adaptive) upper-bounds on the 1 -and 2 -norms of parameter β (via penalization), hence the search for a sparse optimal parameter.

We repeat N = 1000 times, independently, the strategy described in Section 2. Each time a targeting step is performed, we construct the CIs of Corollary 0.2 and Proposition 0.3, with a nominal coverage set to (1 -α) = 95% for each of them.

Results

Figures 0.1 and 0.2 illustrate a typical realization. Figure 0.2 represents Q0,Y , q0,Y and their estimators Qn,Y , qn,Y at final sample size n = 1000. The top plot of Figure 0.1 shows the 95%-CI I n in (0.9) at every sample size n where a CI is derived. By Corollary 0.2, the probability of the event "ψ rn,0 ∈ I n " is more likely to be close to 95% than the probability of the event "ψ 0 ∈ I n " in the sense that the latter property requires that the rate of convergence of qn,Y to q0,Y be sufficiently fast. Nevertheless, we observe on this realization that each I n contains both its corresponding data-adaptive parameter ψ rn,0 (pink cross) and ψ 0 (blue line). Moreover, the difference between the length of I n and that of the vertical segment joining the two curves of the same nuance of darker gray at sample size n gets smaller as n grows. This indicates that the variance of ψ * n gets closer to the optimal variance Var P Q 0 ,r 0 ∆(Q 0 , r 0 )(O) as n grows.

The bottom plot of Figure 0.1 shows the actual value of R n (green cross) and 95%-CI in (0.10) at every sample size n where a CI is derived. We observe on this realization that the regrets are all positive, a fact that was not granted. Moreover, each CI contains its corresponding data-adaptive parameter R n .

We can evaluate if our 95%-CIs achieve their nominal 95%-coverage. To do so, we carry out binomials tests. By construction, the empirical number of CIs which cover ψ rn,0 is a random variable drawn from a Binomial distribution with parameters (N, π). We choose to test the null "π ≥ 95%" against its one-sided alternative "π < 95%". A large p-value is interpreted as the absence of empirical evidence supporting that the CI does not achieve its nominal coverage. We do the same for ψ 0 and R n , mutatis mutandis.

Instead of reporting 3 × 33 = 99 empirical proportions of coverage and related p-values, we simply plot the logarithms of the p-values of the tests evaluating the coverage of ψ rn,0 and ψ 0 , see Figure 0.3. Overall, the orange curve dominates the green one, indicating that empirical coverage tends to be higher for ψ rn,0 (it ranges between 0.917 and 0.955 with an average of 0.940) than for ψ 0 (it ranges between 0.919 and 0.946 with an average of 0.937). This does not come as a surprise, as argued in the first paragraph of this section. Moreover, a majority of the p-values are larger than 5% (top grey horizontal line), and even more of them are larger than the Bonferroni-corrected threshold of 5/33%. Furthermore, the smallest p-values correspond to sample sizes n = 200 and n = 225, where inference is based on little information. As for the coverage of R n , it is far above the nominal 95%-coverage, ranging between 0.951 and 0.990 with an average of 0.997. This does not come as a surprise either since the CIs for R n are conservative by construction. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 200 400 600 800 1000 Mean rewards q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 200 400 600 800 1000 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q 200 400 600 800 1000 -5 -4 -3 -2 -1 0 Sample size at updating steps log 10 (p-values) q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q of binomial tests on empirical coverage A large p-value is interpreted as the absence of empirical evidence supporting that the related CI does not achieve its nominal coverage of 95%. The dark green curve corresponds with CIs for ψr n ,0, and the dark orange with CIs for ψ0. The gray curves show the threshold of 5% (top) and the Bonferonni-corrected threshold of 5/33% (bottom).

Conclusion (on a twist)

We acknowledged that assuming the equality q1,Y = q0,Y in A1 is a stringent condition. It happens that the equality is mandatory only in the context of Corollary 0.1, which provides sufficient conditions for the TMLE to estimate ψ 0 , the mean reward under r 0 . Yet we argued that we are more interested in the data-adaptive parameter ψ rn,0 , the mean reward under r n , than in ψ 0 . What can be said then without assuming q1,Y = q0,Y ?

Let A1* be assumption A1 deprived of its condition q1,Y = q0,Y . In light of (0.1) and (0.5), let rule r 1 and its approximation g 1 be given by r 1 (W ) ≡ 1{q 1,Y (W ) ≥ 0} and g 1 (1|W ) = 1 -g 1 (0|W ) ≡ G(q 1,Y (W )). Introduce ψ 1 ≡ E Q0 (Y (r 1 (W ))) , the mean reward under rule r 1 . Now, let A2* be assumption A2 with → E P Q 0 ,g 1 ( Q 1,Y,ρ ( ))(O) substituted for → E P Q 0 ,g 0 ( Q1,Y,ρ ( ))(O) , where Q 1,Y,ρ ( ) is defined as in (0.6) using g 1 in lieu of g 0 . Introduce Q * 1,Y,r1 ≡ Q 1,Y,r1 ( 0 (r 1 )) and, in light of (0.8), D * 1 given by

D * 1 (O) ≡ (Y -Q * 1,Y (A, W )) 1{A = r 1 (W )} g 1 (A|W ) + Q * 1,Y (r 1 (W ), W ) -ψ 1 ,
then Σ 2 1 ≡ E P Q 0 ,g 1 (D * 1 (O) 2 ). Finally, consider the following counterpart to A3: A3*. The conditional distributions of Y (0) and Y (1) given W under Q 0 is not degenerated. Moreover, there exist γ 1 , γ 2 > 0 such that, for all t ≥ 0,

P Q0 (0 ≤ |q 1,Y (W )| ≤ t) ≤ γ 1 t γ2 . (0.11)
In addition, the ratio |q 0,Y /q 1,Y | can be defined and its (essential) supremum is finite.

The margin condition in A3* now concerns the limit blip function q1,Y . The true blip function q0,Y needs not take positive values Q 0 -almost surely anymore. As for the constraint on the ratio |q 0,Y /q 1,Y | (which is obviously met when q1,Y = q0,Y ), we could simply enforce it by choosing QY in such a way that |q Y | ≥ δ > 0 for all QY ∈ QY . We may now state the final result of this manuscript.

Proposition 0.4. Under A1*, A2* and A3*, it holds that Qn,Y -Q1,Y Q0 , qn,Y -q1,Y Q0 , r nr 1 Q0 , g n -g 1 Q0 and the data-adaptive parameter ψ 1 -ψ rn,0 all converge in probability to zero as n tends to infinity. Furthermore, ψ * n consistently estimates ψ rn,0 hence ψ 1 as well. It does so in such a way that n/σ 2 n (ψ * n -ψ rn,0 ) converges in law to the standard normal distribution as n tends to infinity, where σ 2 n consistently estimates the positive Σ 2 1 .

Therefore, under the assumptions of Proposition 0.4, the CI defined in (0.9) still contains ψ rn,0 with probability tending to (1 -α) as n tends to infinity. The most important result of the manuscript is thus preserved without assuming that the limit blip function and the true one coincide.

  orthogonal to the set of P Qn,gn -square-integrable and centered functions of W . Here, Q n denotes any distribution of (W, Y (0), Y (1)) such that E Qn (Y (a)|W ) = Qn,Y (a, W ) for each a = 0, 1, Q n -almost surely.

  Fig. 0.1.Illustrating the data-adaptive inference of the optimal rule, its mean reward and the related regret (see also Figure0.2). Top plot. The blue horizontal line represents the value of the mean reward under the optimal rule, ψ0. The gray curves represent the mapping n → ψ0 ± ξ 97.5% σ k / √ n (k = 1, 2), where σ1 ≈ 0.1512 is the square root of VarP Q 0 ,r 0 ∆(Q0, r0)(O) (darker gray) and σ2 ≈ 0.1812 is the square root of VarP Q 0 ,g b ∆(Q0, g b )(O) (lighter gray). Thus, at a given sample size n, the length of the vertical segment joining the two darker gray curves equals the length of a CI based on a regular, asymptotically efficient estimator of ψ0. The pink crosses represent the successive values of the data-adaptive parameters ψr n,0 . The black dots represent the successive values of ψ * n , and the vertical segments centered at them represent the successive 95%-CIs for ψr n ,0 and, under additional assumptions, for ψ0 as well. Bottom plot. The green crosses green represent the successive values of regret Rn. The black dots represent the successive values of ψ * n -n -1 n i=1 Yi, and the vertical segments represent the successive 95%-CIs for Rn.

Fig. 0

 0 Fig. 0.3. Empirical evaluation of the coverage of the CIs. The curves represent the logarithms of p-values of binomial tests of adequate coverage (null) vs. inadequate coverage (alternative).A large p-value is interpreted as the absence of empirical evidence supporting that the related CI does not achieve its nominal coverage of 95%. The dark green curve corresponds with CIs for ψr n ,0, and the dark orange with CIs for ψ0. The gray curves show the threshold of 5% (top) and the Bonferonni-corrected threshold of 5/33% (bottom).

  We must choose the working model QY and loss function L Y for Q0,Y in such a way that QY and the subsequent working models L Y ( QY ) ≡ {L( QY ) : Q Y ∈ QY } and R( QY ) ≡ {R( QY ) : Q Y ∈ QY } be reasonably large/complex relative to a measure of complexity central to the theory of empirical processes (van der Vaart