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Abstract. The massive expansion of the worldwide Protein Data Bank
(PDB) provides new opportunities for computational approaches which
can learn from available data and extrapolate the knowledge into new
coming instances. The aim of this work is to apply machine learning in or-
der to train prediction models using data acquired by costly experimental
procedures and perform enzyme functional classification. Enzymes con-
stitute key pharmacological targets and the knowledge on the chemical
reactions they catalyze is very important for the development of potent
molecular agents that will either suppress or enhance the function of the
given enzyme, thus modulating a pathogenicity, an illness or even the
phenotype. Classification is performed on two levels: (i) using structural
information into a Support Vector Machines (SVM) classifier and (ii)
based on amino acid sequence alignment and Nearest Neighbor (NN)
classification. The classification accuracy is increased by fusing the two
classifiers and reaches 93.4% on a large dataset of 39,251 proteins from
the PDB database. The method is very competitive with respect to ac-
curacy of classification into the 6 enzymatic classes, while at the same
time its computational cost during prediction is very small.

Keywords: enzyme classification, protein structure, amino acid sequence align-
ment, multi-class SVM, PDB database

1 Introduction

Proteins are macromolecules which are made of amino acids. Although many
distinct groups of proteins and protein families exist, enzymes constitute key
pharmacological targets as their primary role is to catalyze chemical reactions.
In contrast to most chemical catalysts which catalyze a wide range of reactions,
enzymes are usually highly selective, catalyzing specific reactions only. The latter



are classified into 6 standard categories, Oxidoreductases, Transferases, Hydro-
lases, Lyases, Isomerases, and Ligases, which are identified by their Enzyme
Classification (EC) number.

Knowing the EC number of a given enzyme is necessary for the development
of potent molecular agents. Having a large dataset of uniquely annotated (by
experimental procedures) enzymes at disposal, the goal of this work is to build
classification models that are able to predict the EC number of new enzymes
with high precision, repeatability and small computational time.
Previous work has been done on different datasets of enzymes. Dobson and Doig
[1] used only structural information and achieved an accuracy of 35% for top-
ranked prediction using one-class versus one-class SVM on 498 enzymes from the
PDB database. Others used only gene or amino acid sequences and achieved an
accuracy stemming from 72.94% on the PDB database using neural network [2]
to 96% using neural network on enzyme database [3], but also accuracies between
74% [4] and 88.2% using the Swiss-Prot database [5] [6]. A systematic review
on the various approaches used by different research groups, their utility and
inference is presented in [7]. The methodologies have been classified according
to the type of information used for descriptor generation into bioinformatics
approaches and chemoinformatics approaches.
In this paper we present a bioinformatics approach that exploits both structural
representation and protein sequence similarity in order to predict in silico the
EC number of an enzyme using machine learning techniques. The structure
is encoded by the torsion angles distribution, whereas the protein sequence is
characterized by its alignment error to training sequences in which the class label
(EC number) is known. Structural information has been previously used either as
validation criteria for newly generated models [8] or during structure calculation
to reproduce physically realistic conformational features [9]. In the following we
present the method, the results achieved, some discussion and future work.

2 Materials and methods

The outline of the method is shown in Fig. 1. Briefly, two supplementary descrip-
tors are extracted from each protein model based on the structural information
(SI) and the amino acid sequence (AA). Each descriptor is introduced into a
classifier trained previously on annotated data and then the classifier outputs
are fused into a single set of final class probabilities.

The method has been trained and tested on proteins from the PDB database.
Enzymes that were found experimentally to catalyze more than one chemical
reaction and were assigned multiple labels in the first level of the Enzyme Clas-
sification, were excluded from the analysis due to the uncertainty they introduce
in both training and testing phase. Also PDB entries containing amino acids
other than the 20 natural ones, were excluded from the AA analysis, as proper
physicochemical parameterisation of Selenocysteine (U) and Pyrrolysine (O) was
not part of this study. Same goes for ambiguous amino acids that are represented
with the letters B, Z, J and X. We concluded that since the X-ray crystallogra-
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Fig. 1. Overview of the method

phy phases were incapable of giving a clear answer on which amino acid it is and
provided that there were thousands of such cases in the full PDB dataset, we
would introduce non-quantifiable ”noise” to our dataset, which would inevitably
sabotage the reliability of our findings.

The functional classes and number of enzymes obtained per class is shown in
table 1.

Table 1. Enzyme Classification of the 39,251 enzymes

ID EC 1 EC 2 EC 3 EC 4 EC 5 EC 6
Name Oxidoreductase Transferase Hydrolase Lyase Isomerase Ligase

Number 7,256 10,665 15,451 2,694 1,642 1,543

2.1 Feature extraction

Proteins are chains of amino acids joined together by peptide bonds. The three-
dimensional (3D) configuration of the amino acids chain is a very good predictor
of protein function, thus there has been many efforts in extracting an appropri-
ate representation of the 3D structure [10]. Since many conformations of this
chain are possible due to the possible rotation of the chain about each carbon
(Cα) atom, the use of rotation invariant features is preferred over features based
on cartesian coordinates of the atoms. In this study the two torsion angles of the
polypeptide chain were used as structural features. The two torsion angles de-
scribe the rotation of the polypeptide backbone around the bonds between N-Cα



(angle φ) and Cα-C (angle ψ). The probability density of the torsion angles φ
and ψ ∈ [−180◦, 180◦] was estimated by calculating the 2D sample histogram of
the angles of all residues in the protein using equal sized bins. When the protein
consisted of more than one chain, the torsion angles of all chains were included
into the feature vector. Smoothness in the density function was achieved by mov-
ing average filtering, i.e. by convoluting the 2D histogram with a uniform kernel.
The range of angles was discretized using 19× 19 bins centered at 0◦ (with bin
size equal to 20◦ for all bins except the 1st and last) and the obtained matrix
of structural features was linearized to a 361-dimensional feature vector for each
enzyme.

The structural description based on the probability density of the torsion
angles does not provide any information about the spatial location of the amino
acids in the chain, as well as their sequence. The connectivity patterns (protein
sequence) reflects the intrinsic composition of the macromolecule and is an im-
portant descriptor of spatial composition. Many methods have been developed
to quantify the similarity between two protein sequences which are either based
on sequence alignment [11] or provide a similarity score without performing prior
alignment [1]. A common algorithm that provides a similarity score to each pair
of sequences is the Smith-Waterman algorithm [12]. The Smith-Waterman al-
gorithm calculates the optimal local alignment of two sequences by computing
a similarity matrix that takes into account matches, mismatches, substitutions,
insertions and deletions between the two sequences [13]. Based on this algo-
rithm, a score S(i, j) between each pair of sequences i and j was obtained and
used to calculate the class probability of a sequence based on nearest neighbor
classification rule.

2.2 Classification using structural and amino acid sequence
information

For a given enzyme, the 361 obtained features representing the protein’s struc-
tural conformation were introduced into a multi-class SVM to obtain 6 prob-
abilistic output features. A one-versus-all classification scheme was applied in
which 6 binary classifications are performed (class i versus not class i) and
combined by majority voting rule to decide which of the 6 classes is the most
probable. Since the SVM’s decision scores are not reflecting probabilities, an
additional sigmoid function was fitted to the data in order to map the SVM
outputs into pseudo-probabilities [14]. The latter are noted (pji )i∈[[1,6]], with pji
reflecting the probability for the enzyme j to belong to the class EC i.
In order to allow the fusion of classifiers, the scores of amino acid sequence
alignment (matrix S) were also converted to pseudo-probabilistic output for the
second classifier. Specifically, for a given enzyme j, the nearest neighbor of each
class was found using as distance measure the alignment scores with the training
samples. The alignment scores between the enzyme j and the 6 neighbors were
normalized by the sum of their scores:



For each enzyme j, qji =

max
k∈training
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Thus the classifier decision scores for both descriptors were appropriately
scaled, such that

∑6
i=1 p

j
i =

∑6
i=1 q

j
i = 1, and allowed to be combined within a

fusion scheme.

2.3 Fusion of classifiers

It has been shown that fusion techniques that combine multiple machine learn-
ing methods achieve better predictive performance than any of the constituent
methods [15]. In this work we combine the probabilistic output of each classifier,
i.e. the SVM based on structural information and the nearest neighbor based
on protein sequence alignment. The classification fusion is constructed by fus-
ing the two probabilistic outputs (pji ) and (qji ) for each class i through a linear

combination into a final probability (zji ):

For each enzyme j, ∀i ∈ [[1 , 6]], zji = (1− α)pji + αqji

where α ∈ [0, 1] is a weight that regulates the contribution of each classifier.
Thus, the problem is to find the optimal parameter α that maximizes the overall
classification accuracy.

2.4 Validation scheme

The dataset was randomly split into 80% for training and 20% for testing. In
order to determine the optimum α, 20% of the training set has been hold out and
used as validation set, while the remaining part was used to train the classifier.
Upon selection of α based on the validation set, the classifier was retrained using
the whole training set, and the optimum α was used to assess accuracy of the
fusion on the testing set. The assessment of the multi-class system was based on
the confusion matrix. However, the performance of the system was also evaluated
in respect to the cumulative accuracy after i guesses, noted CAi(i ∈ [[1, 5]]),
which represents the classification accuracy after looking at the i highest class
probabilities.

3 Results

3.1 Structural information and amino acid sequences

Table 2 shows the cumulative accuracy (CA1 to CA5) for each enzymatic class
and each descriptor separately. Classification with amino acid sequences yields



from 12,2% (EC 3) to 49,2% (EC 6) better accuracy than classification with
structural information. The accuracy difference between those two approaches
might indicate that amino acid sequence content (with 93.4% overall accuracy)
is a better predictor of enzyme function than structural information (with 73.5%
overall accuracy).

Table 2. CA using structural information and amino-acid sequences separately

Structural information Amino acid sequence

Category CA1 CA2 CA3 CA4 CA5 CA1 CA2 CA3 CA4 CA5

EC 1 0.746 0.884 0.943 0.977 0.992 0.967 0.988 0.996 0.999 1.000

EC 2 0.762 0.920 0.970 0.990 0.997 0.937 0.964 0.977 0.996 1.000

EC 3 0.798 0.909 0.961 0.982 0.994 0.920 0.958 0.975 0.992 0.999

EC 4 0.596 0.685 0.790 0.900 0.950 0.892 0.922 0.944 0.983 0.993

EC 5 0.547 0.635 0.730 0.827 0.939 0.900 0.954 0.970 0.976 0.979

EC 6 0.304 0.476 0.605 0.822 0.926 0.796 0.822 0.841 0.871 0.964

Overall 0.735 0.864 0.924 0.965 0.986 0.934 0.966 0.979 0.993 0.998

3.2 Fusion of both information

Table 3 shows the most often predicted class by each method after each guess.
It can be seen that the order of predicted classes varies when different features
(SI and AA) are used for classification denoting that each descriptor captures
different aspects of enzymatic function.

The fusion of information relies on the study of the function α 7→ Acc(α),
where Acc is the accuracy on the validation set obtained by weighting the prob-
abilities obtained by the SI-based and AA-based classifiers. Fig. 2 illustrates the
classification accuracy in the interval α ∈ [0.8, 1]. The value that maximizes the
accuracy is α = 0.94 and was chosen for the assessment of the method on the
testing dataset. As expected, the optimum α gives a more significant weight to
amino acid sequences descriptors than to structural information descriptors.

The total cumulative accuracy (for multiple guesses) is shown in Fig. 3 for
each of the three methods, while Fig. 4 illustrates the cumulative accuracy for
each enzymatic class separately. For Transferases and Hydrolases the fusion of
features induced an average increase of accuracy by 1% on each guess compared
to the accuracy obtained by amino acid sequences only. For the other classes,
the accuracy of the fusion is comparable to the accuracy by AA indicating that
structural information does not additionaly contribute to classification.



Table 3. Most representative guesses for each true class

Guesses

True class Method 1st 2nd 3rd 4th 5th 6th

EC 1
SI EC 1 EC 2 EC 2 EC 4 EC 5 EC 6

AA EC 1 EC 2 EC 3 EC 4 EC 6 EC 5

EC 2
SI EC 2 EC 3 EC 1 EC 6 EC 5 EC 5

AA EC 2 EC 3 EC 1 EC 1 EC 5 EC 5

EC 3
SI EC 3 EC 2 EC 1 EC 6 EC 5 EC 5

AA EC 3 EC 2 EC 1 EC 1 EC 6 EC 5

EC 4
SI EC 4 EC 2 EC 1 EC 1 EC 5 EC 5

AA EC 4 EC 3 EC 2 EC 2 EC 1 EC 5

EC 5
SI EC 5 EC 3 EC 2 EC 1 EC 6 EC 4

AA EC 5 EC 2 EC 1 EC 3 EC 6 EC 6

EC 6
SI EC 2 EC 2 EC 1 EC 1 EC 5 EC 5

AA EC 6 EC 1 EC 2 EC 1 EC 4 EC 5

α
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c
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0.935

0.94

0.945

Fig. 2. Classification accuracy on the validation dataset as a function of the weight α

Fig. 5 shows the confusion matrix of the classification fusion. The confusion
matrix allows to see whether an enzyme class is more or less predictable and
shows how the classification error is distributed among classes. Each row of the
confusion matrix has been normalized so that coefficient (i,j) represents the
proportion of enzymes from class EC i that are predicted as belonging to EC j.
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Fig. 3. Comparison of the overall CA between the 3 methods
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Fig. 4. Comparison of the CA for each true class between the 3 methods

The highest misclassification rates are observed for Ligases with 10.4% of them
classified as Transferases and 6.5% as Hydrolases. Conversely, Oxidoreductases,
Transferases and Hydrolases have very small misclassification rates.

The code was written in Matlab language and was performed using High-
Performance Computing (HPC) resources from the ”mesocentre” computing
center of École Centrale de Paris (http://www.mesocentre.ecp.fr) supported
by CNRS. Running on 2 Intel X5650 with 4GB RAM, the computational time
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required for predicting the enzymatic class of a new protein was less than a
minute.

4 Conclusions

The bioinformatics bottleneck is a major problem in the fields of Next Generation
Sequencing (NGS) and Drug Design (DD). Data accumulation is becoming a
challenge on its own as the handling and analysis of huge datasets is not a trivial
task. Therefore there is dear need in the field of bioinformatics to establish and
optimize new methodologies that are faster and much more efficient for routine
tasks in the aforementioned fields. A major drawback in protein classification is
the fact that protein similarity is still judged upon primary sequence comparisons
rather than combining structural information too. Using structural information
was quite challenging a while ago as significant computing power was required.
However, nowadays it is not too difficult to use optimized workstations and
supercomputers to analyze all structural information available. Remarkably, the
RCSB PDB database has now more than 114,000 entries. In 1990 there were only
507 structures available and in 2000 only 13,591 structures. Quick and reliable
classification of NGS generated sequences is of paramount importance in the
field of DD, as the problem of pharmacological target identification still holds.
Classifying quickly and reliably, the several thousands of proteins that are being
identified and sequenced on a daily basis would lead to an optimized pipeline



that could yield results of great interest to protein science, DD and NGS related
fields such as anticancer and antiviral therapy.

The proposed approach is fully automated, reproducible and computationally
very efficient during prediction phase. Also the achieved accuracy (73.5%) by the
SVM classifier based on structural information is significantly higher than the
reported accuracy (35%) of the SVM classifier by Dobson and Doig [1] based also
on protein structure. We used the torsion angles distribution to represent struc-
ture, whereas in [1] 55 structural attributes were originally extracted, including
residue fractions, surface fractions, secondary structure content, cofactors, met-
als and general properties. Then attribute subset selection was applied based on
backwards elimination.

Furthermore, the weighted combination of classifiers in the proposed scheme
led to a significant increase of accuracy (27.1% for the first guess) relatively to
the classification performed using only structural information, while the accuracy
increase relatively to the AA-based classification was only marginal (0.9%). The
trend is similar for the cumulative accuracy with multiple guesses. As can be seen
from Fig. 3, the classification fusion performs better in respect to the cumulative
accuracy with multiple guesses than the single classifiers.

The two classes that showed the best results after fusion (Transferases and
Hydrolases) are the ones which have the largest number of samples in the dataset.
This could be related to the selection of α through maximization of overall ac-
curacy which is biased towards the majority classes. It is well known that most
machine learning techniques rely on balanced datasets in which each class in-
cludes the same number of samples. In the future, we plan to investigate boot-
strapping and data aggregation techniques [16] which provide efficient solutions
to unbalanced datasets.

Moreover, in the current study, we investigated two common supervised clas-
sification techniques, the nearest neighbor and SVM. The nearest neighbor is
a very simple classifier often used as baseline to assess the necessity of more
advanced tools. SVM is a very popular algorithm due to its ability to capture
complex relationships between the datapoints and its high predictive power. Also
the number of required hyper-parameters to be optimized in SVM is small (usu-
ally 2, i.e. the parameters controlling the misclassification penalty and smooth-
ness), and thus quite easy to tune even by manual search or grid-search. Ongoing
work includes the investigation of different classifiers, in terms of accuracy and
performance.
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