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A new three-parameter cumulative distribution function defined on (α,∞), for some α ≥ 0, with asymmetric probability density function and showing exponential decays at its both tails, is introduced. The new distribution is near to familiar distributions like the gamma and log-normal distributions, but this new one shows propre elements and does not generalize neither of these distributions. Hence, the new distribution constitutes a new alternative to fit lighted-tail behaviors of high extreme values. Further, this new distribution shows great flexibility to fit the bulk of data. We refer to this new distribution as the generalized exponential log-squared distribution (GEL-S). Statistical properties of the GEL-S distribution are discussed. The maximum likelihood method is proposed for estimating the model parameters, but incorporating adaptations in computational procedures due to difficulties in the manipulation of parameters. The perfomance of the new distribution is studied using simulations. Applications of this model to real data sets from different domains show that this outperforms competitors.

Introduction

In a number of domains as medical applications, atmospheric sciences, microbiology, environmental science, and reliability theory among others, data are positive, right-skewed, with their highest values decaying exponentially. Among the most suitable models used by researchers and practitioners to deal with this kind of data are usually parametric distributions as the log-normal, gamma and Weibull distributions. However, known distributions are not always enough to reach a good fit of the data. This has motivated the interest in the development of more flexible and better adapted distributions, which have been generated using different strategies as the combination of known distributions [START_REF] Rubio | Survival and lifetime data analysis with a flexible class of distributions[END_REF], introduction of new parameters in given distributions [START_REF] Marshall | A New Method for Adding a Parameter to a Family of Distributions with Application to the Exponential and Weibull Families[END_REF], transformation of known distributions [START_REF] Gupta | Modeling failure time data by lehman alternatives[END_REF], junction of two distributions by splicing [START_REF] Rubio | Inference in Two-Piece Location-Scale Models with Jeffreys Priors[END_REF].

In this paper we propose a new procedure to develop new distributions. We aim to guarantee that a probability density function (pdf) f (x) defined for x > α, for some α ∈ R, exponentially decays to 0 as x → α + and x → ∞. An advantage of this condition is that this itself still holds if any polynomial x β with β ∈ R is included as a factor in such pdf. In this way the new distribution will have great flexibility in neighborhoods of 0 and ∞ by controling β, thus capturing a wide variety of shapes and tail behaviors. We refer to this new distribution as the generalized exponential log-squared distribution (GEL-S).

Note that the features for pdfs above mentioned are satisfied by the log-normal and related distributions. We will see that the log-normal distribution is a particular case of the new one, but this last distribution does not generalizes the log-normal distribution.

The aim of this paper is two-fold. First, to study statistical properties of the distribution GEL-S and methods for estimating its parameters. Second, to provide empirical evidence on the great flexibility of the GEL-S distribution to fit real light-tailed and right-skewed data from different domains. For numerical assessments, the implementation of this model is done using functions in the R software [START_REF] Team | R: A language and environment for statistical computing[END_REF].

In the next section the pdf associated to the new three-parameter distribution is introduced by considering the condition on pdfs indicated above, and explicit expressions of its cumulative distribution function (cdf) and survival function (sf) are provided in some cases. Further, closeness of the new distribution with well-known distributions is discussed. Section 3 presents statistical properties of the new distribution. Section 4 is devoted to the maximum likelihood method for estimating the parameters of the new distribution. In Section 5, the performance of the parameter estimation method is studied using simulations. Section 6 shows applications of the new distributions to real data sets coming from different domains. Section 7 concludes the paper presenting discussions and conclusions and next further steps. Proofs are presented in annexe.

The generalized exponential log-squared distribution

In this section the GEL-S distribution is introduced. We start defining the pdf of the new cdf by f (x) := C x β e -(2γ 2 ) -1 (log(x-α)) 2 , x > α, with α ≥ 0, β ∈ R and γ > 0, where C is the normalizing constant.

Let us see that this function holds exponential decays at its tails. Writing

x β e -(2γ 2 ) -1 (log(x-α)) 2 = e -(log(x-α)) 2 (2γ 2 ) -1 -β log x (log(x-α)) 2
and noting that, if α = 0, lim

x→α + log x log(x -α) 2 = lim x→0 + 1 log x , = 0 if α > 0, lim x→α + log x log(x -α) 2 = log α × lim x→α + 1 log(x -α) 2 = 0,
and, by applying the L'Hôpital rule,

lim x→∞ log x log(x -α) 2 = 1 2 lim x→∞ 1 log(x -α) = 0,
then we have, for any β ∈ R,

lim x→α + f (x) = 0, lim x→∞ f (x) = 0.
Further, this means that both tails of this function are light [START_REF] Bingham | Regular Variation[END_REF][START_REF] Resnick | Heavy-Tail Phenomena Probabilistic and Statistical Modeling[END_REF], which implies that f reaches 0 very fastly when x → α + or x → ∞.

Due to difficulties in the manipulation of f for any β ∈ R, for instance for computing integrals of this function, we limit our study to cases when β takes non-negative integer values. So, in this paper we consider the pdf defined by

f (x) := C x k e -(2γ 2 ) -1 (log(x-α)) 2 , x > α, with α ≥ 0, k = 0, 1, 2, . . . , and γ > 0, (1) 
where

C = γ 2π k i=0 k i α k-i e (i+1) 2 γ 2 /2 -1
is the normalizing constant. The deduction of C is presented in annexe.

The cdf is then, for x > α,

F (x) := x α f (z) d z = γC 2π k i=0 k i α k-i e (i+1) 2 γ 2 /2 Φ 1 γ log(x -α) -(i + 1)γ 2 , ( 2 
)
where Φ is the cdf of a standard normal random variable (rv). The deduction of F is presented in annexe. From (2) we may deduce the survival function F associated to F by using its definition F := 1 -F , but following similar computations to the ones done to deduce F and using the property 1 -Φ(x) = Φ(-x) we obtain the following expression, for x > α:

F (x) = ∞ x f (z) d z = γC 2π k i=0 k i α k-i e (i+1) 2 γ 2 /2 Φ - 1 γ log(x -α) -(i + 1)γ 2 .
Relating f with the pdf of a log-normal distribution with parameters µ and σ 2 , writing

x k e -(2γ 2 ) -1 (log x) 2 = e 2 -1 γ 2 (k+1) 2 x -1 e -(2γ 2 ) -1 (log x-γ 2 (k+1)) 2
we have that the former distribution becomes the latter one if α = 0, γ = σ, and γ = µ (k + 1). Hence, the log-normal distribution is a particular case of the GEL-S distribution, implying that the GEL-S distribution might thus inherit the importance that the log-normal distribution has taken to model data [START_REF] Crow | Lognormal Distributions: Theory and Applications[END_REF][START_REF] Limpert | Log-normal Distributions across the Sciences: Keys and Clues[END_REF]. However, the new distribution is not an extension of the log-normal distribution since this last one is built when considering the rv log X with X a rv following a normal distribution, but the introduction of x = e y in F (x) gives an expression that is not related to no expression based on normal rvs. The reader is referred to [START_REF] Yuan | On the Logarithmic Frequency Distribution and the Semi-Logarithmic Correlation Surface[END_REF][START_REF] Cohen | Estimation in the Three-Parameter Lognormal Distribution[END_REF][START_REF] Gupta | Reliability functions of generalized log-normal model[END_REF][START_REF] Singh | A generalized lognormal distribution and its goodness of fit to censored data[END_REF] for further details on the log-normal distribution and its generalizations.

As discussed above, a close distribution to the GEL-S distribution is the log-normal distribution.

Other pdfs close to the new pdf in terms of its structure are presented in Table 1 where the new one is included in order to appreciate similarities and differences among them. Overall these cases two main functions multiplying each other are identified: the first function is as a rational function and the second one is based on the exponential function. The closest first functions are the ones of the GEL-S and gamma distributions. On the second functions the structure of these functions through the GEL-S, two-parameter log-normal and three-parameter log-normal distributions are very similar.

Distribution Parameters Support pdf GEL-S α ≥ 0, k = 0, 1, 2, . . ., γ > 0 x > α C x k e -(log(x-α)) 2 2γ 2
Two-parameter log-normal

µ ∈ R, σ > 0 x > 0 x -1 σ 2π e - (log x-µ) 2 2σ 2
Three-parameter log-normal

δ, µ ∈ R, σ > 0 x > δ (x-δ) -1 σ 2π e - (log(x-δ)-µ) 2 2σ 2 Gamma α, β > 0 x > 0 β α Γ(α) x α-1 e -βx
Table 1: Close distributions to the GEL-S distribution Plots of pdfs and cdfs of the GEL-S, two-parameter log-normal and three-parameter log-normal distributions are exhibited in Fig. 1. Left plots concern pdfs and right plots their corresponding cdfs.

On top plots the GEL-S and two-parameter log-normal distributions are compared by varying their parameters. Note that the supports of the positive parts of the pdfs and cdfs for both distributions are not the same: the one of the log-normal distribution that begins at x = 0 + is in general slightly wider than that of the GEL-S distribution that begins at x = α + . On these plots the cdf and pdf of the Figure 1: Comparisons of pdfs (left plots) and cdfs (right plots) associated to GEL-S and twoparameter log-normal (top plots) and to GEL-S and three-parameter log-normal (bottom plots) distributions log-normal distribution are surrounded by the ones of the GEL-S distributions, reflecting the fact that the two-parameter log-normal distribution is a particular case of the GEL-S distribution as discussed above. This enclosure is done by varying γ of the GEL-S distribution. On bottom plots the GEL-S and three-parameter log-normal distributions are compared as in the previous comparisons, but considering the same support for both distributions by taking α = δ. Now the cdf and pdf of the log-normal distribution are partially surrounded by the ones of the GEL-S distribution, namely at the right side of the curves. α for top plots, k for middle plots, and γ for bottom plots. These plots show that always the increase of α, k, or γ promote the flattening of pdfs. On the other hand, the increase of α shifts the pdfs and cdfs to the right with slight increases in the heights of the pdfs, whereas the increase of γ increases the right skewness of the pdfs. 

Statistical properties of the GEL-S distribution

In this section we study statistical properties of the GEL-S distribution. To this aim, hereafter X denotes a rv following a GEL-S distribution with parameters α, k, and γ, and with pdf f defined in (1).

Mean, variance, skewness, kurtosis, and moments

We start describing the nth moment of X , n = 0, 1, 2, . . .. This is, computations are presented in annexe,

E X n := ∞ α x n f (x) d x = C γ 2π n+k i=0 n + k i α n+k-i e (i+1) 2 γ 2 /2 , (3) 
which means that X has all its moments. From this expression important statistics of X can be deduced, so the mean

µ X := E X = C γ 2π 1+k i=0 1 + k i α 1+k-i e (i+1) 2 γ 2 /2 ,
the variance

σ 2 X := E X 2 -E X 2 = C γ 2π 2+k i=0 2 + k i α 2+k-i e (i+1) 2 γ 2 /2 -µ 2 X , the skewness Skew X := E X -µ X σ X 3 = C γ 2π 3+k i=0 3+k i α 3+k-i e (i+1) 2 γ 2 /2 -3µ X σ 2 X -µ 3 X σ 3 X ,
and the kurtosis

Kurt X := E X -µ X σ X 4 = C γ 2π 4+k i=0 4+k i α 4+k-i e (i+1) 2 γ 2 /2 -4µ X σ 3 X Skew X -6µ 2 X σ 2 X -µ 4 X σ 4 X .
Tab. 2 illustrates the previous statistics by considering the distributions shown in Fig. 2. These results show that the increase of the mean, the skewness and the kurtosis are promoted when any of the parameters α, k or γ increases, but for the variance only the increase of k or γ promote its increase. 

Parameters

µ X σ 2 X Skew X Kurt X α = 0.5, k = 1, γ = 0.

Mode

The explicit expression of f given by (1) allows the analysis of the mode x m of the GEL-S distribution. This is given in the following result.

Proposition 1. The mode of the GEL-S distribution with parameters α, k and γ exists, is unique and is the solution of the equation

x log(x -α) = kγ 2 (x -α).
The claim on unicity given in the previous proposition shows that the GEL-S distribution is always unimodal. Furthermore, from the relationship given by this proposition we have that, if k = 0,

x m = 1 + α, without influence of γ, whereas if k > 0, from x (x -α) log(x -α) = kγ 2 (x -α) 2 > 0, x m > 1 + α follows.
Illustrations of modes are presented in Tab. 3 considering the distributions shown in Fig. 2. Their correpondings means are included. These results corroborate the relations between the mode and α deduced above. Also, it is found that the mode is always lower than its corresponding mean.

Parameters µ X x m α = 0.5, k = 1, γ = 0.5 2.26 1.69 α = 1.0, k = 1, γ = 0.5 2.70 2.14 α = 1.5, k = 1, γ = 0.5 3.16 2.61 α = 0.5, k = 0, γ = 0.5 1.95 1.50 α = 0.5, k = 2, γ = 0.5 2.67 1.95 α = 0.5, k = 1, γ = 0.4 1.93 1.62 α = 0.5, k = 1, γ = 0.6 2.79 1.80
Table 3: Means and modes for the distributions shown in Fig. 2 

Quantiles and random number generation

The quantile function q(p), 0 < p < 1, is obtained by solving F q(p) = p, so, for the GEL-S distribution this function q corresponds to the solution of the nonlinear equation

γC 2π k i=0 k i α k-i e (i+1) 2 γ 2 /2 Φ 1 γ log(q(p) -α) -(i + 1)γ 2 = p. ( 4 
)
Since

F ′ (x) = C 1 x -α k i=0 k i α k-i e (i+1) 2 γ 2 /2 e -1 2 1 γ (log(x-α)-(i+1)γ 2 ) 2 > 0, x > α,
we have that the solution of ( 4) is unique.

Illustrations of quantiles are presented in Tab. 4. To compute quentiles, i.e. to solve (4), the function uniroot in the R software package was used. This table shows the quantile when p = 0.5, i.e. the median of X , x M , for the distributions presented in Fig. 2. Means taken from Tab. 2 are included in that table in order to compare these statistics. The quantiles q(0.01), q(0.05), q(0.95) and q(0.99) are also incorporated to this table, which may be used as risk measures in context like insurance or finance [START_REF] Alexander | Quantile Uncertainty and Value-at-Risk Model Risk[END_REF][START_REF] Belles-Sampera | The use of flexible quantile-based measures in risk assessment[END_REF]. These results show that in all cases the medians are lower than the means, this means that the bulk of data is concentrated to the left of the mean which in line with the right skewness of this type of distributions. Also, as expected, q(p) is increasing in p and q(0.01) is near to α, whereas due to the right skewness of the GEL-S distribution the differences between q(0.05) and q(0.01) are lower than the ones between q(0.99) and q(0.95).

The solution q of (4) given p, 0 < p < 1, could be used to generate random numbers of a rv that follows a GEL-S distribution. Indeed, since F ′ > 0 the (non-explicit) function F -1 (p) is strictly increasing and we can then apply the inverse transform sampling method to draw random samples. This method consists in [START_REF] Devroye | Non-Uniform Random Variate Generation[END_REF] Parameters µ X q(0.5) (x M ) q(0.01) q(0.05) q(0.95) q(0.99) 4: Means and quantiles for the distributions shown in Fig. 2 1. Generate a random number p from the standard uniform distribution in the interval [0, 1]; and, 2. Compute q such that F (q) = p, i.e. ( 4).

α = 0.5, k = 1, γ = 0.
The implementation of the previous method may be done by generating random numbers following an uniform distribution that may be performed using the function runif in the R software package, and after by computing quantiles that may be performed using the function uniroot mentioned above.

We will come back on this random number generation procedure later in order to simulate random numbers following a GEL-S distribution. These numbers will be used to study the performance of the new distribution.

Maximum likelihood estimation

In this section we propose the method of maximum likelihood for estimating α, k and γ.

Let X be a rv following a GEL-S distribution with parameters α, k and γ, and let x 1 , . . . , x n be a sample of X obtained independently. Let θ = (α, k, γ).

Following the method of maximum likelihood, the likelihood function of this random sample is then given by

L(θ|x 1 , . . . , x n ) = n i=1 C x k i e -(2γ 2 ) -1 (log(xi -α)) 2 ,
and then its log-likelihood function is

l(θ|x 1 , . . . , x n ) = n logC + k n i=1 log x i - 1 2γ 2 n i=1 log(x i -α) 2 .
Maximum likelihood estimates (MLEs) of α, k and γ might be reached by solving the non-linear system obtained by equaling to 0 the derivatives of l with respect to θ. Unfortunately, the parameter k is not continuous and thus such procedure cannot be applied.

We propose the following alternative to reach the maximum of l. Fixing k = 0, 1, 2, . . ., l is maximized by searching optimal estimates α and γ. Then, k, α and γ are selected as the ones that maximize l through the range of values k taken into account. This procedure is equivalent to maximize l by considering all three parameters at the same time. Hence, following this procedure proposed we need to solve the non-linear system, fixed k,

∂l ∂α = n 1 C ∂C ∂α + 1 γ 2 n i=1 log(x i -α) x i -α = 0 ∂l ∂γ = n 1 C ∂C ∂γ + 1 γ 3 n i=1 log(x i -α) 2 = 0.
There are not explicit solutions for this system. A method to numerically solve such system is the Newton-Raphson (NR) algorithm. This is a well-known and useful technique for finding roots of systems of non-linear equations in several variables. We use the function nlm (non-linear minimization)

in the R software package that carries out a minimization of an objective function using a NR-type algorithm. In our case the function nlm is applied to the objective function -l(θ|x 1 , . . . , x n ) given k in order to obtain maximum likelihood estimates θ of θ.

A limitation of the function nlm is that it does not allow for constraints. This is an issue for estimating both parameters α and γ of a GEL-S distribution since α needs to be non-negative and γ positive, so negative values as estimates for α and γ are not allowed. In practice, applications of nlm to get estimates for α and γ showed that only the estimates of α could eventually be negative. In order to circumvent this limitation we use if necessary the following simple modification of α in a GEL-S distribution: consider α 2 instead of α. This means that α could be estimated by negative values, but then the true value for α is positive since it is equal to α 2 .

For interval estimation of (α, γ) and hypothesis tests on these parameters, we use the 2 × 2 observed information matrix given by, fixed k,

I (θ) = -E       ∂ 2 l ∂α 2 ∂ 2 l ∂α∂γ ∂ 2 l ∂α∂γ ∂ 2 l ∂γ 2      
where

∂ 2 l ∂α 2 = n 1 C ∂ 2 C ∂α 2 -n 1 C 2 ∂C ∂α 2 + 1 γ 2 n i=1 log(x i -α) (x i -α) 2 - 1 (x i -α) 2 ∂ 2 l ∂α∂γ = n 1 C ∂ 2 C ∂α∂γ -n 1 C 2 ∂C ∂α ∂C ∂γ - 2 γ 3 n i=1 log(x i -α) x i -α ∂ 2 l ∂γ 2 = n 1 C ∂ 2 C ∂γ 2 -n 1 C 2 ∂C ∂γ 2 - 3 γ 4 n i=1 log(x i -α) 2 .
Under certain regularity conditions, the maximum likelihood estimator θ given k approximates as n increases a multivariate normal distribution with mean equal to the true parameter value θ and variance-covariance matrix given by the inverse of the observed information matrix, i.e. Σ = σ i j = I -1 (θ). Hence, the asymptotic behavior of two-sided (1 -ǫ)100 % confidence intervals (CIs) for the parameters α and γ are approximately

α ± z ǫ/2 σ11 , γ ± z ǫ/2 σ22
where z δ represents the δ 100 % percentile of the standard normal distribution.

Simulation studies

In this section we carry out Monte Carlo simulation studies to assess the performance of the MLEs of α and γ described in the previous section. Two sets of parameters are considered, each one corresponding to one study. The true parameters for these studies are presented in Tab. 5.

Each study takes into account the following scenarios by varying the sample size n: 1 000 and 10 000.

Then following the procedure to generate random numbers indicated in Subection 3.3, random numbers are simulated from a GEL-S distribution with given parameters α, k and γ. A fixed seed is used to generate such random numbers, impliying that all results of these studies can always be exactly replicated. The code used in these studies is available upon request.

Study

α k γ I 1.0 2 1.0 II 2.0 4 0.5
Table 5: Parameters for simulation studies Fig. 3 exhibits histograms of the empirical pdfs of the samples analyzed. These plots are built using 100 bins in order to have enough detail on the shape of these empirical curves. The plots on top correspond to the study I and the ones on bottom to the study II. From these plots a greater right skewness for data of the study I than the one for data of the study II is observed, independently of variations of n.

Next, estimates of α and γ are computed given k, using the procedure proposed in Section 4 for estimating α and γ given k. Considering always ranges of k from 0 to 6, Tab. 6 shows these results by varying the true parameters and n. For each k, the maximum likelihood reached is included. Then, by study and n, the models with the highest likelihood over the studied range of k are selected. These selected models are highlighted. It is found that the values k of the selected models correspond to the true values k, except when n = 1000 in the study II. Hence, it seems that, under the estimate method proposed, for small samples with not so high skewness other than the true parameter k could be possible. On the estimates of γ of the selected models, they are the nearest to the true parameters, except when n = 1000 in the study II. Considering α of the selected models, they are not always the nearest to the true parameters. For the estimates of α and γ indicated in the selected models in Tab. 6, Tab. 7 reports their 95 % CIs computed using standard errors of the maximum likelihood estimates of α and γ computed from the observed Hessian matrix provided by the function nlm. These results show that the errors of these estimates, as expected, decrease when n increases, and it seems that the errors of γ are systematically lower than the ones of α. 1.190 ± 0.279 1.004 ± 0.011 10 000 1.003 ± 0.099 1.001 ± 0.003 II 1 000 2.097 ± 0.051 0.538 ± 0.010 10 000 1.988 ± 0.018 0.501 ± 0.003 Table 7: 95 % CIs for α and γ in the simulation studies

Applications

In this section, we present applications in order to illustrate the performance and usefulness of the proposed distribution when compared to natural competitors.

Randomly chosen non-negative right-skewed real data from several domains are used. In all cases these data have been analyzed in other researches and in this paper are fitted using the GEL-S distribution. This allows the immediate comparison of our results with respect to the ones of competitors.

GEL-S parameters are always estimated using the procedure of maximum likelihood described in Section 4.

Data on time between nerve pulses

In the first application nerve data reported in [START_REF] Fatt | Spontaneous subthreshold activity at motor nerve endings[END_REF][START_REF] Cox | The Statistical Analysis of Series of Events[END_REF] are considered. These are times between 800 successive pulses along a nerve fibre. There are 799 observations rounded to the nearest half in units of 1 50 second. These data are available at www.statsci.org/data/general/nerve.html (accessed 28 August 2016).

The maximum likelihood estimates for the parameters of the GEL-S distribution for the studied nerve data and the corresponding reached log-likelihood are presented in Tab. 8. k α γ -l 1 1.438 × 10 -12 0.990 1995.12 Table 8: Fit of nerve data using the GEL-S distribution [START_REF] Rubio | Survival and lifetime data analysis with a flexible class of distributions[END_REF] fitted several models to these nerve data and selected the best model as the one with the minimum Akaike information criterion (AIC), the lower the better, this criterion being defined by -2n p -2l where n p is the number of parameters of the model. These authors considered the log two-piece (LTP), LTP sinh-arcsinh (LTP SAS), LTP normal, log-normal, Weibull, and gamma distributions. Also, [START_REF] Lemonte | The exponentiated generalized inverse Gaussian distribution[END_REF] fitted to these data the Marshall-Olkin extended Birnbaum-Saunders (MOEBS) distribution, and reported its AIC.

Tab. 9 presents the AIC values reported by [START_REF] Rubio | Survival and lifetime data analysis with a flexible class of distributions[END_REF] for each one of the models that these authors used, the AIC value reported by [START_REF] Lemonte | The exponentiated generalized inverse Gaussian distribution[END_REF], and the AIC value associated to the model based on the parameters indicated in Tab. 8. These values and the highlighted one then show strong evidence that the AIC favors the GEL-S model overall. The 95 % confidence intervals for the parameters of the better of all these models, i.e. the GEL-S model, are computed as in Section 5. These intervals for α and γ are 1.438 × 10 -14 ± 0.203 and 0.990 ± 0.016, respectively.

Data on breaking stress of carbon fibers

In the second application we use uncensored data set from [START_REF] Nichols | A bootstrap control chart for Weibull percentiles[END_REF]. These well-known data are on breaking stress of carbon fibres (in Gba) and are available in the data set carbone in the package AdequacyModel distributed by the R software. The maximum likelihood estimates for the parameters of the GEL-S distribution for the studied data on breaking stress of carbon fibers and the corresponding reached log-likelihood are presented in Tab. [START_REF] Cordeiro | The β-Birnbaumâ ȂŞSaunders distribution: An improved distribution for fatigue life modeling[END_REF].

k α γ -l 3 
1.066 × 10 -14 0.465 56.77 Table 10: Fit of data on breaking stress of carbon fibres using the GEL-S distribution

The data studied in this subsection are popular since several authors have used them to assess their models and natural competitors. For instance [START_REF] Pal | Exponentiated Weibull distribution[END_REF] applied the exponentiated exponential (EE) distibution and a generalization of the exponentiated exponential family as well as of the Weibull family (EW) distibutions; [START_REF] Alzaatreh | The gamma-normal distribution: Properties and applications[END_REF] considered the Birnbaum-Saunders (BS), beta Birnbaum-Saunders (beta BS), two-parameter gamma-normal, and four-parameter gamma-normal distributions; [START_REF] Aryal | Transmuted Weibull Distribution: A Generalization of the Weibull Probability Distribution[END_REF] analyzed the transmuted Weibull distribution; [START_REF] Barreto-Souza | Some Results for Beta Fréchet Distribution[END_REF] taked into account the beta Fréchet (BF), exponentiated Fréchet (EF), and Fréchet distribution; [START_REF] Lemonte | The exponentiated generalized inverse Gaussian distribution[END_REF] studied the exponentiated generalized inverse Gaussian (EGIG), exponentiated gamma, generalized inverse Gaussian (GIG), gamma, exponentiated standard gamma (ESGamma), inverse Gaussian and hyperbola distributions; and, [START_REF] Lemonte | The exponentiated generalized inverse Gaussian distribution[END_REF] analyzed the MOEBS distribution. The results of [START_REF] Alzaatreh | The gamma-normal distribution: Properties and applications[END_REF] included the ones of [START_REF] Cordeiro | The β-Birnbaumâ ȂŞSaunders distribution: An improved distribution for fatigue life modeling[END_REF] who introduced the beta BS distribution and assessed the performance of their distribution also using the same data studied in this subsection.

As criterion to select the better model that fit the studied data, we also adopt the AIC. Tab. 11 presents the AIC values associated to all precedently mentioned models. These values have been reported by each one of the authors cited above. This table also includes the AIC value computed using the likelihood presented in Tab. 10. These values and the highlighted one then show that according to the AIC values the GEL-S model provides a significantly better fit than the other models. The 95 % confidence intervals for the parameters of the better of all these models, i.e. the GEL-S model, are computed as in Section 5. These intervals for α and γ are 1.066 × 10 -14 ± 0.552 and 0.465 ± 0.023, respectively.

Data on waiting times

In the third application data on waiting times (in minutes) before service of 100 bank customers reported by [START_REF] Ghitany | Lindley distribution and its application[END_REF] are used. For these data, the maximum likelihood estimates for the parameters of the GEL-S distribution are presented in Tab. 12 where the corresponding likelihood is included.

[16] fitted both the Lindley and exponential distributions to these data and reported their maximized log-likelihoods. Recently, [START_REF] Bidram | A new lifetime model with decreasing, increasing, bathtub-shaped, and upside-down bathtub-shaped hazard rate function[END_REF] fitted to the same data the exponentiated exponential-geometric distribution of a second type (EEG2), Weibull geometric (WG), exponentiated exponential-geometric (E2G), and generalized exponential-geometric (GEG) distributions. In order to select the better model for fitting the studied data in this subsection, Tab. 13 presents the AIC values associated to all models analyzed by both [START_REF] Ghitany | Lindley distribution and its application[END_REF] and [START_REF] Bidram | A new lifetime model with decreasing, increasing, bathtub-shaped, and upside-down bathtub-shaped hazard rate function[END_REF], and also the AIC value computed using the likelihood presented in Tab. 12: Fit of data on waiting times using the GEL-S distribution 12. These values and the highlighted one then show that the AIC considers our model as the favorite over the analyzed competitors. The 95 % confidence intervals for the parameters of the better of all these models, i.e. the GEL-S model, are computed as in Section 5. These interval estimates for α and γ are 1.521 × 10 -13 ± 1.189 and 0.818 ± 0.031, respectively. 

Model

Model

Another fatigue data

In the last application fatigue data reported by [START_REF] Birnbaum | Estimation for a Family of Life Distributions with Applications to Fatigue[END_REF] are modeled. These data are on the fatigue life of 6061-T6 aluminum coupons cut parallel to the direction of rolling and oscillated at 18 cycles per second, and they are organized in three groups by maximum stresses per cycle. In this application we take into account the ones corresponding to maximum stress per cycle 31 000 psi. Lifetimes are presented in cycles × 10 -3 .

The procedure of maximum likelihood described in Section 4 for estimating the parameters of the GEL-S distribution is applied to get estimates of α and γ given k. Following this procedure, when considering the analyzed fatigue data, it is found that for k ≥ 1 the maximum likelihood decreases continuously as k increases. This process stops only when the function nlm gives infinity as the maximum likelihood, which happens in k = 37. Due to these results we register as the estimates for α and β and the corresponding log-likelihood the ones obtained when k = 36. Tab. 14 presents these outputs.

k α γ -l 36 3.886 × 10 -14 0.363 401.82 Table 14: Fit of fatigue data using a GEL-S distribution

The analyzed fatigue data have been studied by several authors. For instance, [START_REF] Díaz-García | A new family of life distributions for dependent data: Estimation[END_REF] analyzed these data fitting the Laplace, normal, Pearson VII, t , Bessel, Kotz and Cauchy distributions and another more that these authors called the Special Case distribution which consists in the generalized Birnbaum-Saunders distribution incorporating the condition of independence of rvs. Also [START_REF] Morais | A compound class of Weibull and power series distributions[END_REF] examined these data using the Weibull Poisson (WP), Rayleigh Poisson (RP), and exponential Poisson (EP) distributions. Tab. 15 presents the SIC (Schwarz information criterion, defined by n p log n -2l with n the sample size) values that [START_REF] Díaz-García | A new family of life distributions for dependent data: Estimation[END_REF] computed for each of the models that they applied, shows the SIC values for the models that [START_REF] Morais | A compound class of Weibull and power series distributions[END_REF] analyzed computing such values using the log-likelihoods that these authors present, and also incorporates the SIC value computed using the likelihood presented in Tab. 14. According to these values and the highlighted one the AIC shows that our model provides the better fit with respect to competitors in this application. 

Model

Discussion and conclusion

In this paper a new right-skewed three-parameter distribution, with support (α, ∞) for some α ≥ 0 and with pdf showing exponential decays at its both tails, is introduced. We call this distribution the generalized exponential log-squared (GEL-S) distribution. The original distribution proposed had the limitation that one of its parameters k was not easily tractable as a continuous parameter, but it do when it taked the values 0, 1, 2, . . . . This led to reformulating the distribution proposed by limiting k to take non-negatives integers. The GEL-S distribution is close to well-known distributions as the two-parameter and three-parameter log-normal and gamma distributions, but the new one does not generalizes neither of these distributions. Statistical properties of the GEL-S distribution were analyzed. Closed forms for the nth moment and for statistics as the mean, variance, skewness, and kurtosis were provided. Also, the mode and quantile function were studied. The maximum likelihood method (MLE) for estimating the parameters of the distribution GEL-S was proposed, but it can not be applied using derivatives since one of its parameters is not continuous. This led to formulate a strategy to still apply derivatives which consisted in to fix k and after to compute derivatives with respect to the other parameters. Simulations conducted to assess the performance of the above-strategy for estimating parameters were performed, finding that for small samples that were not enough rightskewed, the true parameters could not be recovered. Nevertheless this last issue, applications performed on four well-known real light-tailed and right-skewed data sets related to different domains showed that the new distribution outperforms other competitors. Thus, the new distribution seems to be a promising model for representing light-tailed and right-skewed data.

A Proofs

Deduction of C given in [START_REF] Alexander | Quantile Uncertainty and Value-at-Risk Model Risk[END_REF]: Noting that ∞ α

x k e Deduction of F given in [START_REF] Alzaatreh | The gamma-normal distribution: Properties and applications[END_REF]. Noting that, for x > α, we have that, for x > α, .

F (x) = x α f (w)d w = C 2πγ k i=0 k i α k-i e

Proof of Proposition 1:

The result follows by derivating f given by (1) and solving the quation f ′ (x) = 0, i.e.

C kx k-1 e -(2γ 2 ) -1 (log(x-α)) 2 -1 γ 2 x k log(xα)

x -α e -(2γ 2 ) -1 (log(x-α)) 2 = 0, which implies, by x > α ≥ 0, x log(xα) = kγ 2 (xα).

(

) 5 
If α = 0, then x = 0 is a solution of [START_REF] Belles-Sampera | The use of flexible quantile-based measures in risk assessment[END_REF]. Since the left-side of this equation is a convex function with derivative log x + 1, and the right-side of the equation is a right line with slope kγ 2 , there is a second non-negative solution. In this case x = 0 is not a mode since lim x→0 + f (x) = 0, so the only one positive solution is the mode.

Assuming α > 0, the left-side of ( 5 The claims of the proposition then follow.

Fig 2

 2 Fig 2 presents curves of pdfs and cdfs of GEL-S distributions by varying parameters. Left plots concern pdfs and right plots their corresponding cdfs. Each row shows plots where only one parameter varies:α for top plots, k for middle plots, and γ for bottom plots. These plots show that always the increase of α, k, or γ promote the flattening of pdfs. On the other hand, the increase of α shifts the pdfs and cdfs to the right with slight increases in the heights of the pdfs, whereas the increase of γ increases the right skewness of the pdfs.

6 Figure 2 :

 62 Figure 2: Comparisons of pdfs (left plots) and cdfs (right plots) of GEL-S distributions by varying parameters (α on top plots, k on middle plots, γ on bottom plots)

Table 2 :

 2 α = 1.0, k = 1, γ = 0.5 2.70 0.87 1.80 9.23 α = 1.5, k = 1, γ = 0.5 3.16 0.84 1.81 9.33 α = 0.5, k = 0, γ = 0.5 1.95 0.60 1.75 8.90 α = 0.5, k = 2, γ = 0.5 2.67 1.46 1.80 9.21 α = 0.5, k = 1, γ = 0.4 1.93 0.37 1.34 6.33 α = 0.5, k = 1, γ = 0.6 Statistics for the distributions shown in Fig. 2

Figure 3 :

 3 Figure 3: Histograms by varying the parameters of the GEL-S distribution (study I on top and study II on bottom) and by varying n (n = 1000 to the left and n = 10000 to the right)

1 2γ 2 z 2 + 2 ,

 122 (i+1)z d z, z = log y and C is then deduced.

1 2γ 2 z 2 + 1 2 γ 2 (i+1) 2 Φ

 12122 (i+1)z d z, z = log y log(xα) γ -γ(i + 1) , u = z γ -γ(i + 1).

1 2 γ 2 (i+1) 2 Φ 1 2

 1221 log(xα) γ -γ(i + 1) ,and the deduction of F follows.Deduction of the nth moment in[START_REF] Aryal | Transmuted Weibull Distribution: A Generalization of the Weibull Probability Distribution[END_REF]. Let n = 0, 1, 2, . . .. Noting that E X n = C procedure as the one applied to deduce C given in (1) but considering n + k instead of k givesE X n = 2πγC n+k i=0 n + k i α n+k-i e γ 2 (i+1) 2

  ) has derivative, for x > α,log(xα) + x x -α ,implying that x log(xα) is increasing and satisfyinglim x→α + x log(xα) = -∞, lim x→∞ x log(xα) = ∞,whereas right-side of (5) has derivative kγ 2 , implying that kγ 2 (xα) and satisfyinglim x→α + kγ 2 (xα) = 0.Hence (5) has an only one positive solution that corresponds to the mode of X .

Table 6 :

 6 Parameter estimates in studies I (top) and II (bottom) given k (the selected models are highlighted)

	Given	n = 1000 Estimates	Maximum	Given	n = 10000 Estimates	Maximum
	k	α	γ	likelihood	k	α	γ	likelihood
	0 1 2 3 4 5 6	1.477 1.599 1.381 1.601 1.190 1.004 1.121 0.876 1.156 0.787 1.195 0.721 1.225 0.669	-3524 -3438 -3416 -3435 -3480 -3543 -3619	0 1 2 3 4 5 6	1.204 1.601 1.171 1.205 1.003 1.001 0.955 0.873 1.002 0.785 1.043 0.719 1.072 0.667	-35355 -34397 -34182 -34394 -34881 -35549 -36346
	Given	n = 1000 Estimates	Maximum	Given	n = 10000 Estimates	Maximum
	k	α	γ	likelihood	k	α	γ	likelihood
	0 1 2 3 4 5 6	2.309 0.732 2.244 0.646 2.171 0.585 2.097 0.538 2.021 0.500 1.945 0.469 1.868 0.444	-723 -714 -710 -709 -710 -712 -715	0 1 2 3 4 5 6	2.253 0.737 2.206 0.649 2.138 0.587 2.064 0.539 1.988 0.501 1.912 0.470 1.834 0.444	-7391 -7256 -7197 -7171 -7164 -7171 -7186

Table 9 :

 9 Nerve data: AIC. A lesser AIC indicates a better fit

	Model	n p	AIC
	Gamma	2	5411.11
	GEL-S	3	3996.25
	Log-normal	2	5443.70
	LTP t	4	5401.80
	LTP SAS	4	5395.71
	LTP normal	3	5398.45
	MOEBS	3	5391.10
	Weibull	2	5415.40

Table 11 :

 11 Data on breaking stress of carbon fibres: AIC. A lesser AIC indicates a better fit

	n p	AIC

Table 13 :

 13 Data on waiting times: AIC. A lesser AIC indicates a better fit

		n p	AIC
	Lindley	1	640.00
	E2G	1	640.23
	EEG2	1	640.00
	Exponential	1	660.00
	GEG	1	686.98
	GEL-S	3	461.02
	WG	1	647.91

Table 15 :

 15 Fatigue data: SIC. A lesser SIC indicates a better fit

		n p	SIC
	Bessel	3	925.36
	Cauchy	2	947.49
	EP	3	926.23
	GEL-S	3	812.87
	Kotz	4	928.12
	Laplace	2	922.87
	Normal	2	923.77
	Pearson VII	3	925.21
	RP	3	914.90
	Special Case	2	922.49
	t	3	925.21
	WP	3	913.33