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Abstract. Although Fourier and Wavelet Transform have been widely used for texture classifi-

cation methods in medical images, the discrimination performance of FDCT has not been in-

vestigated so far in respect to breast cancer detection. Ιn this paper, three multi-resolution trans-

forms, namely the Discrete Wavelet Transform (DWT), the Stationary Wavelet Transform 

(SWT) and the Fast Discrete Curvelet Transform (FDCT) were comparatively assessed with 

respect to their ability to discriminate between malignant and benign breast tumors in Dynamic 

Contrast-Enhanced Magnetic Resonance Images (DCE-MRI).  The mean and entropy of the 

detail sub-images for each decomposition scheme were used as texture features, which were 

subsequently fed as input into several classifiers. FDCT features fed to a Linear Discriminant 

Analysis (LDA) classifier produced the highest overall classification performance (93,18 % 

Accuracy). 
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1. Introduction 

 
Breast cancer is a primary cause of mortality and morbidity in women. It is commonly 

conceded that early diagnosis can be the key to increased survival rates and also to 

more specific and less aggressive therapy options. Breast magnetic resonance (MR) 

imaging has emerged as a promising modality for breast cancer detection [1]. Dynam-

ic contrast-enhanced MR imaging (DCE-MRI) involves assessing the changes in sig-

nal intensity over time. This follows the intravenous injection of a paramagnetic con-

trast agent [2]. 

Several machine learning approaches have been proposed to analyze DCE-MRI da-

ta for breast tumor diagnosis. The implemented methods vary not only regarding the 

features extracted but also regarding the classification techniques used. A wide range 

of features have been explored in breast tumor Computer Aided Diagnosis (CAD) 

systems. Dynamic features [3, 4] have been used to characterize the temporal en-

hancement pattern of a tumor, while architectural features [3, 4] have been extracted 
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to characterize the morphology of the tumor. Moreover, kinetic [5, 6] and texture 

features [7, 8] have been used to distinguish between malignant and benign tumors. 

More specifically, Yao et al. [8] computed textural features based on the co-

occurrence matrix and also extracted frequency features by applying the discrete 

wavelet transform (DWT) on the texture temporal sequences of the breast tumors in 

order to classify them. Shannon et al. [9] applied textural kinetics to capture spatio-

temporal changes in breast lesion texture in order to distinguish malignant from be-

nign lesions. Furthermore, spatiotemporal features have proved to exhibit high per-

formance in charactering breast tumors.  Zheng et al. [10] used spatiotemporal en-

hancement patterns involving Fourier transformation and Gabor filters to analyze 

breast tumors. Gal et al. [11] extracted spatiotemporal features from a parametric 

model of contrast enhancement. Tzalavra et al.[12] extracted textural features from 

SWT detail sub-images in DCE-MRI data. 

Furthermore, several classification methods have been used in breast tumor CAD 

systems. More specifically, Twellman et al. [13] presented a classification technique 

using artificial neural networks. Zheng et al. [10] assessed the diagnostic performance 

of the features they extracted for differentiating between benign and malignant tumors 

using linear discriminant analysis (LDA). Yao et al. [8] used support vector machines 

(SVM) for breast tumor classification. 

The DWT has been widely used in several texture classification methods in medi-

cal images [14, 15] due to its multi-resolution characteristics. The Stationary Wavelet 

Transform (SWT), a modified time-invariant version of DWT, has been used in tex-

ture classification tasks [16]. The FDCT has been effectively used for characterizing 

carotid atherosclerotic plaque from B-mode ultrasound and discriminating between 

symptomatic and asymptomatic cases [17]. 

The purpose of this paper was to investigate the efficiency of multi-resolution 

wavelet methods to characterize the texture of breast tumors on DCE-MRI data. Three 

different decomposition schemes, namely the DWT, SWT and FDCT were imple-

mented in order to characterize the spatial enhancement of the breast tissue. A set of 

classifiers were used for evaluating each decomposition scheme’s ability to discrimi-

nate between benign and malignant tumors. More specifically, the following classifi-

ers were compared in terms of classification accuracy: Bagging, K-means, Decision 

Table, Logistic Model Trees, Multilayer Perceptron, Naïve Bayes and LDA. 

 

2. Multi-resolution Image Analysis 

 
 Images usually contain information at multiple resolutions. Therefore, multi-

resolution analysis has emerged as a useful framework for many image analysis tasks. 

The approach followed in this study, consists of the following main steps: tumor seg-

mentation, normalization across subjects, feature extraction from the tumor region 

and tumor classification into malignant or benign. In this study, tumor segmentation 

was manually performed by an expert radiologist. The manually segmented breast 

tumors are first spatially normalized using Principal Component Analysis (PCA), as 

described in [10], in order to eliminate scale variations. Fourier transform is subse-

quently applied to capture the temporal enhancement properties, hence to kinetic in-



formation. Then 3D wavelet transforms were applied to capture the spatiotemporal 

characteristics of the tumor. Specially, the FDCT method allows capturing both spa-

tial and temporal characteristics, as described in section 3.2 below. Texture features 

from the resulting images were extracted and introduced into different classifiers for 

tumor classification. 

 

Discrete Wavelet Transform. The two dimensional DWT is an effective tool to ana-

lyze images in a multi-scale framework [18]. The DWT is implemented via iterative 

linear filtering and critical down-sampling on the original image yielding three high-

frequency directional sub-bands at each scale level and also one low-frequency sub-

band usually known as image approximation. Directional sub-bands are sub-images 

exhibiting image details according to horizontal, vertical and diagonal orientations 

[19, 20]. 

 

Stationary Wavelet Transform. The SWT [21] is a translation-invariance modifica-

tion of the DWT. More specifically, no down-sampling is performed in SWT. Instead, 

up-sampling of the low-pass and high-pass filters is carried out.  

 

Fast Discrete Curvelet Transform. The FDCT [22, 23] involves initially the appli-

cation of a 2D FFT to the image and then the windowing in a parallelogram of finite 

support for each scale and angle. The final result is obtained with the application of 

the 2D inverse FFT. FDCT [22] is more fast and accurate and less redundant than 

Discrete Curvelet Transforms (DCT). 

 

3. Materials and Methods 

3.1 DCE MRI data 

The images used in this study were provided by the University of Pennsylvania. They 

were acquired from patients with breast tumors in a 1.5 T scanner (Siemens Sonata) 

or a 3 T scanner (Siemens Trio). In total, there were 44 subjects used, including 23 

malignant and 21 benign cases. All of the samples were histologically verified. The 

boundary of the suspicious tumors was outlined on the images by a radiologist with 

expertise in breast imaging. Examples of benign and malignant tumors are shown in 

Fig. 1. 

 
 

 
 

 

 
 

 

 

 

 

Fig. 1. Examples of a manually segmented malignant (right) and a benign (left) tumor 



 

3.2 Extraction of texture features   

This section briefly describes the extraction of the texture features for each of the 

decomposition schemes. 

The maximum value of decomposition of each of the investigated schemes equals to 

   (           ) where N is the number of rows and M is the number of columns 

of the image. In our experiments N=M=150, thus the maximum level of decomposi-

tion equals to 7. The statistics estimated from each detail sub-image were the mean 

and entropy of the absolute value of the detail sub-images, which both commonly 

have been used as texture descriptors.  

 
Fig.2 Examples of DWT sub images for 3 levels of decomposition for a malignant (right) and a benign 
(left) tumor (corresponding to images in Fig.1 (a) and (b)). The images in the first row correspond to the 

approximation images. For the images in rows 2-4, each column corresponds to the detail sub-images of the 

levels 1-3 respectively 

 

Fig.3 Examples of SWT sub images for 3 levels of decomposition for a malignant (right) and a benign 

(left) tumor (corresponding to images in Fig.1 (a) and (b)). The images in the first row correspond to the 

approximation images. For the images in rows 2-4, each column corresponds to the detail sub-images of the 

levels 1-3 respectively 

 

DWT and SWT: Several basic functions from different wavelet families were used, 

including Haar (haar), Daubechies (db), symlets (sym), coiflets (coif), and biorthogo-



nal (bior). The 3-level decomposition scheme resulted in 9 detail sub-images for each 

time instance; hence totally 27 detail sub-images and consequently 54 texture features 

were obtained. The approximation sub-images were not used for texture analysis be-

cause they are the rough estimate of the original image. Fig. 2 and Fig.3 show exam-

ples of DWT and SWT detail sub-images. 

FDCT: For the production of the detail sub images 4 decomposition scales were used. 

The number of angles for the second level was set to 16 (multiple of 4) and complex 

valued curvelets were used for the coefficients at the first level. For each level only 

the first half of the total coefficients was considered because curvelets produce sym-

metric coefficients for angles θ and θ + π. The total number of curvelet coefficients 

obtained was 150, leading to 300 texture features. 

3.3 Classification 

In order to classify the breast DCE-MRI tumors into benign and malignant, 6 classifi-

cation algorithms in combination with 3 feature selection methods, provided by the 

WEKA 3 Data Mining Software [24], were used. The performance of these classifiers 

was compared with LDA. All classifiers were evaluated with the leave-one-out meth-

od. 

Feature selection can be applied in two different ways, the wrapper approach and 

the filter approach. For the wrapper approach, two feature selection strategies were 

employed, the Best First (BF) [25] and the Simple Genetic Algorithm (SGA) [26], 

and were combined with the classifiers used later on for classification. For the filter 

approach, Information Gain (IG) [27] was used as the evaluation criterion of the fea-

tures.  The 10 best features according to the average value of information gain from 

the 44 leave-one-out iterations were then used for classification.    

The following classifiers were used: 

a) Bagging is a meta-classifier based on the bagging approach. The initial train-

ing set D of size Ν1 is used to generate m new training sets Di, each of size 

Ν2, by sampling from D uniformly and with replacement. The m base classi-

fiers of the ensemble are trained with these m new training sets. Then, the m 

base classifiers are tested on a test set and their classification results are 

combined by voting. 

b) K-means clustering [28] aims to partition n observations into k clusters in 

which each observation belongs to the cluster with the nearest mean.   

c) A decision table majority classifier [29] consists of a schema which is a set 

of features that are included in the table and a body consisting of labeled in-

stances from the space defined by the features in the schema. Given an unla-

beled instance, a decision table classifier searches for exact matches in the 

decision table using only the features in the schema. If no instances are 

found the majority class of the classifier is returned, otherwise the majority 

class of all matching instances is returned. 

d) Logistic Model Trees [30] are constructed by growing a standard classifica-

tion tree, building logistic regression models for all nodes, pruning some of 

the sub trees using a pruning criterion, and then combining the logistic mod-

els along a path into a single model.               



 

e) Multilayer Perceptron is a neural network [31] with one or more hidden lay-

ers that uses back-propagation to estimate the weights of the network. All 

nodes of the network use the sigmoid transfer function. 

f) Naïve Bayes [32] implements the probabilistic Naïve Bayes classifier, which 

is a specialized form of a Bayesian network, termed naïve because it relies 

on two important simplifying assumptions: firstly, that the predictive attrib-

utes are conditionally independent given the class, and, secondly that no hid-

den or latent attributes influence the prediction process. 

g) Linear Discriminant Analysis classifier [33] is based on the fact that distribu-

tions, which have a greater variance between the two classes and smaller var-

iance within each class, are easier to separate. 

 

4. Results 

 
Table 1 shows the classification results for all the above mentioned classifiers and all 

feature sets for each of the multi-resolution methods. 

The highest accuracy and sensitivity scores for all methods are obtained with LDA. 

More specifically, for FDCT, LDA yielded an accuracy of 93.18% and a sensitivity of 

100%. Additionally, the meta-classifier based on K-means for the DWT and FDCT 

datasets yields the highest specificity value of 100%.  

 

Table 1. Classification results for multi-resolution schemes: DWT, SWT, FDCT: ACC: accuracy, SN: 

sensitivity, SP: specificity. 

 

Multiresolution 

Scheme 

Classification performance (%) 

DWT  

(db4,L=3) 

Algorithm Accuracy Sensitivity Specificity 

 BF-Naïve Bayes 84,09 73,91 95,24 

BF-Multilayer Perceptron 77,27 69,57 85,71 

IG-Bagging 79,54 78,26 80,95 

BF-K-means 77,27 56,52 100,00 

BF-Decision Table 72,73 69,57 76,19 

BF-Logistic Model Trees 79,55 73,91 85,71 

LDA 86,36 91,30 80,95 

SWT  

(sym9, L=3) 

    

 BF-Naive Bayes 81,82 69,57 95,24 

BF-Multilayer Perceptron 79,55 78,26 80,95 

SGA-Bagging 79,55 73,91 85,71 

BF-K-means 70,45 47,83 95,24 

BF-Decision Table 86,36 78,26 95,24 

BF-Logistic Model Trees 77,27 73,91 80,95 

LDA 91,00 100,00 85,71 

FDCT 

(4 scales) 
    

 BF-Naive Bayes 86,36 82,61 90,48 

BF-Multilayer Perceptron 86,36 82,61 90,48 

Bagging 77,27 73,91 80,95 

IG-K-means 84,09 69,57 100 



BF-Decision Table 81,82 78,26 85,71 

IG-Logistic Model Trees 81,82 78,26 85,71 

LDA 93,18 100,00 85,71 

 

5. Conclusion 

 
In this work, we investigated the possibility of using multi-resolution wavelet 

schemes to characterize the texture of breast tumors in DCE-MRI. Texture features 

were extracted from each scheme and fed into several classifiers. The experimental 

results illustrated high accuracy rates in breast tumor classification using FDCT and 

LDA as a classifier.  Therefore, it can be concluded that curvelets can be key to breast 

tumor detection.  

A main limitation of the method is its dependency on tumor boundary segmentation, 

currently performed manually. This limitation can be overcome by incorporating an 

automatic segmentation technique [34] making the method more robust and reproduc-

ible. Also, the refinement of the rough manual segmentation prior to feature extrac-

tion is possible to increase lesion classification accuracy, as shown in prior work [10]. 

Additional studies, systematically applying new multi-resolution schemes and more 

classifiers to larger populations, are expected to verify our findings. Finally, the use of 

automatic segmentation could result to ameliorated classification results. 
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