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1Université d’Orléans, INSA-CVL, PRISME EA 4229, 8 rue Léonard de Vinci, F45072,
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Abstract

We experimentally perform open and closed-loop
control of a separating turbulent boundary layer
downstream from a sharp edge ramp. The turbulent
boundary layer just above the separation point has
a Reynolds number Reθ ≈ 3 500 based on momen-
tum thickness. The goal of the control is to mitigate
separation and early re-attachment. The forcing em-
ploys a spanwise array of active vortex generators.
The flow state is monitored with skin-friction sen-
sors downstream of the actuators. The feedback con-
trol law is obtained using model-free genetic program-
ming control (GPC) (Gautier et al. 2015). The result-
ing flow is assessed using the momentum coefficient,
pressure distribution and skin friction over the ramp
and stereo PIV. The PIV yields vector field statistics,
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e.g. shear layer growth, the back-flow area and vortex
region. GPC is benchmarked against the best peri-
odic forcing. While open-loop control achieves sep-
aration reduction by locking-on the shedding mode,
GPC gives rise to similar benefits by accelerating the
shear layer growth. Moreover, GPC uses less actua-
tion energy.

1 Introduction

Fluid flows have an important impact on the perfor-
mance of ground or airborne transport vehicles, of gas
and oil pipelines and of chemical and pharmaceutical
processes, just to name a few applications. Hence,
the optimization of such flows by passive or active
means to increase engineering performance consti-
tutes a very core discipline of fluid mechanics (Brun-
ton and Noack, 2015). Passive flow control can pro-
vide an increase of performance without energy con-
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sumption. For instance, vortex generators on the
wings of most passenger aircrafts prevent early sep-
aration and thus increase lift and reduce drag. The
effect of many passive devices can be emulated by
active ones, e.g. fluidic jets may act as active vortex
generators. Such active control can be turned on just
in case of need, or turned off to prevent parasitic drag.
Active flow control is a key for further improvement
for transport vehicles and combustion (King, 2007,
2010). In particular, feedback control can bring dis-
tinct benefits over blind open-loop forcing (Rowley
and Williams, 2006), e.g. can counteract instabilities
in-time, perform disturbance rejection and compen-
sate for model uncertainty.

The focus of this study is separation mitigation.
Separation occurs in many flow processes and may
imply detrimental effects such as lift reduction, drag
increase and noise generation. Downstream of the
separation point, a shear layer develops and trans-
ports vorticity far from the wall. Large scale spanwise
vortices emerge from the roll-up of the shear layer
vorticity induced by the Kelvin-Helmholtz instability
(Mittal et al, 2005; Tennekes and Lumley, 1972). The
Kelvin-Helmholtz instability is characterized by the
Strouhal number Stθ = 0.012 based on the bound-
ary layer momentum thickness θ close to the mean
separation point (Hasan, 1992; Zaman and Hussain,
1981). As the shear layer emerges from the separa-
tion point, spanwise vortices progressively grow and
merge. This process leads to the shedding mode,
characterized by a Strouhal number StLSep

= 0.6−0.8
(Cherry et al, 1984; Dandois et al, 2007; Mabey, 1972)
based on the separation length LSep and the free ve-
locity flow field U∞.

Vortex generators (VGs) are a passive flow control
device which may efficiently delay separation (Lin,
2002; Godard and Stanislas, 2006a). VGs induce
an array of streamwise vortices energizing the near
wall flow by momentum transfer with the free-stream.
However, these VGs are permanently fixed to the sys-
tem and come with a parasitic drag even in operating
conditions where they are not needed. Thus, these
can induce drag penalties (Lin, 2002) if flow control
is just needed during specific phases.

By contrast, active flow control, which adds en-
ergy in the flow using actuators, can be switched-off

when control is not needed. Active separation con-
trol strategies are usually relying on optimal reduced
frequencies F+ to delay or shift a separation. In this
paper, F+ is scaled with LSep and U∞. According
to literature, the optimal frequency range presents
a large variability. For example, Seifert and Pack
(2003) emphasized the efficiency of 0.5 ≤ F+ ≤ 1.5
while Greenblatt and Wygnanski (2000) highlight an
optimal reduced frequency range 2 ≤ F+ ≤ 4 and
Amitay and Glezer (2002) show the possibility to use
F+ ≥ 10.

This large frequency range suggests to adapt the
control by closing the loop with sensors. Adaptive
control approaches like extremum or slope seeking
have shown good results for optimization (Benard
et al, 2010; Shaqarin et al, 2013). However, an ef-
fective in-time control of large-scale coherent struc-
tures or dominant instabilities needs to respect the
flow physics for the control design. This design may
be model-based using reduced-order models (Ger-
hard et al, 2003; Pastoor et al, 2008) to account for
nonlinear actuation dynamics. Evidently, the con-
trol law depends on the quality of the flow model.
Such a model is still a challenge (Cordier et al, 2013)
for broad-band turbulence dynamics with frequency
cross-talk preventing a meaningful local linearization.

On the other hand, a model-free control design us-
ing powerful methods of Machine Learning (Murphy,
2012) has been shown to be highly effective in a num-
ber of experiments (Duriez et al, 2014; Gautier et al,
2015; Parezanovic et al, 2015). This approach, called
Genetic Programming Control (GPC) in the sequel,
detects and exploits nonlinear actuation mechanisms
in an unsupervised manner. GPC has outperformed
the best open-loop control in terms of robustness and
has worked even in case of a demonstrated nonlinear
relation between actuators and sensors. The key en-
abler is the application of genetic programming, a
classical method of symbolic regression (Koza, 1992),
to optimize the closed-loop control law. As such,
GPC can be viewed as a generalization of the ge-
netic algorithms often used to identify the parame-
ters of control laws. We refer to the review article
of Brunton and Noack (2015) for an in-depth discus-
sion of model-based and model-free turbulence con-
trol strategies.
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In this paper, closed-loop control separation is per-
formed using GPC and benchmarked with an op-
timized open-loop control where vortex shedding is
locked-on, leading to a reduction of the separation
bubble (Debien et al, 2015). The control is intro-
duced by Active Vortex Generators (AVGs) which
are set-up similarly to the optimal configuration de-
termined by Godard and Stanislas (2006b) and Cu-
vier et al (2011).

The experimental setup including the description
of the facility, the model, the actuators/sensors and
measurement chains is detailed in Sec. 2. The GPC
algorithm used for the control design is then de-
scribed in Sec. 3 with a special attention paid to
the experimental implementation. In particular, we
define the cost functional used to rank the different
GPC individuals as a compromise between the reduc-
tion of the separation length and the value of the mo-
mentum coefficient needed to achieve it. In Sec. 4.1,
results of the best open and closed-loop experiments
are presented based on the measurements made dur-
ing the GPC runs. At this stage, eight particular
GPC individuals performing well during the learn-
ing process are highlighted and discussed. To un-
derstand the mechanisms behind the best performing
control laws, these individuals are further analysed in
Sec. 4.2 by including PIV measurements and by in-
creasing the evaluation times used for characterizing
the control laws. The performance of the different
individuals is then evaluated in terms of the AVGs’
characteristics, of the separation length and of the
energetic impact on the flow. Finally, in Sec. 4.3, the
properties of the mixing layer resulting from one of
the most efficient GPC individuals are benchmarked
with the best open-loop in terms of vorticity thick-
ness, turbulent kinetic energy, Reynolds stresses and
distribution of vortex region area.

2 Experimental Setup

2.1 Wind tunnel and test section

The experiments are performed in the “Lucien
Malavard” subsonic wind tunnel located at the
PRISME Laboratory, University of Orléans. The test

section is 2 m high, 2 m wide, and 5 m long. The
maximum free-stream velocity in the test section is
60 m/s, and the residual turbulence intensity is be-
low 0.4%. The ramp model (see Fig. 1) is set at
the mid-height of the test section and spans the tun-
nel’s width. The model is comprised of four parts:
an elliptic leading edge, a flat plate that enables the
development of a new, thin, boundary layer, a down-
ward sloping ramp, and a second flat plate for the
recovery region. Furthermore, a controllable flap is
fixed at the trailing edge to control the stagnation
point at the leading edge and to minimize the cir-
culation around the model. This flap is set at an
incidence of 7° to ensure a symmetrical pressure dis-
tribution at the leading edge. The ramp has a length
of l = 470 mm and a step height of h = 100 mm. The
edge ramp is located at x/h = 0 with a slant angle
of 25° ending with a 7th order polynomial given by:

y

h
= 1− 35

(x
l

)4

+ 84
(x
l

)5

− 70
(x
l

)6

+ 20
(x
l

)7

,

(1)
for 0.5 ≤ x/l ≤ 1.

For all the results presented in this paper, the free-
stream velocity is set to 20 m/s, achieving a Reynolds
number Reθ ≈ 3 500 based on momentum thick-
ness just above the sharp edge ramp. The boundary
layer is tripped to fix the transition, thus warranting
the reproducibility of its properties during the over-
all experiments. Further characterization of the un-
actuated flow (hereafter called baseline) is provided
in Debien et al (2014).

2.2 Active vortex generators (AVG)

For introducing the control, 54 AVGs in counter-
rotating configuration are employed. Each AVG is
composed of two jets (Fig. 2), leading to the gen-
eration of two counter-rotating streamwise vortices
that are triggered and driven in on/off mode. These
AVGs are positioned using the set of optimal param-
eters determined by Godard and Stanislas (2006b)
and Cuvier et al (2011). The AVGs are placed one
boundary layer thickness upstream of the sharp edge
ramp. The diameter of the exit holes is Φ = 1.2 mm.
The direction of the jets is characterized by the pitch
and skew angles α = 135° and β = 45°, respectively.
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Figure 1: a) Wind tunnel setup and b) close-up of the
sharp edge ramp with the measurement facilities(not
true to scale).

The distance between two jets of the same actuator
is λ/Φ = 15, and the transverse distance between the
center line of two consecutive AVGs is L/Φ = 30.
The jets’ velocity ratio is regulated to be close to
VJet/U∞ = 3.

All the AVGs are supplied with air through a
plenum chamber pressurized with compressed air
coming from the Laboratory network. Due to the
shape and size of the model, the plenum is divided
into two sets of tanks. The first one of capacity 90 L
is placed outside of the test section. In order to com-
pensate for the pressure loss over the long tubing
(4 m) connecting the tank to the actuators, a set of
three tanks of smaller capacity (20 L each) is embed-
ded in the profile, directly at the exit slots. Nine trig-
gered electro-valves with sonic throats are connected
to each of these three tanks. Each electro-valve sup-
plies in on/off mode two pairwise AVGs, i.e. a total
of 4 jets.

The exit velocity of the jets is estimated using a cal-
ibrated 4th order polynomial by measuring the pres-

Figure 2: Active vortex generators (counter-rotating
configuration).

sure inside the second set of tanks. The pressure
is measured by a differential pressure sensor (5 bar,
±100 Pa, 0.1% FSO) and is regulated by a mass flow
controller (Brooks, 5853 E series) providing up to
500 L/min. A performance evaluation of this system
showed that the pressure loss in the tank is less than
1.3% when AVGs are used in on/off mode with a
constant actuation frequency fPulse in the range of
10 Hz ≤ fPulse ≤ 100 Hz (at 50% duty cycle), corre-
sponding to a velocity jet variation of 3%.

Based on the determination of VJet, the momentum
coefficient cµ is estimated as

cµ =
ρJetSJetDcV

2
Jet

1
2ρ∞SRefU2

∞
, (2)

where ρJet is the flow density at the exit of the actua-
tor, ρ∞ is the free-stream density, Dc the duty cycle,
SJet is the total cross section of the 108 blowing jets,
and SRef the streamwise projected area of the ramp
(height × spanwise length).

2.3 Hot-film measurements

For evaluating the performance of a given closed-loop
control law, GPC needs to measure local flow charac-
teristics. In the experiments, the wall shear stress at
the ramp surface is measured on two locations (see
Fig. 1) using hot-film probes. These sensors give a
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monotonic signal of the absolute shear stress value
(Godard and Stanislas, 2006b; Cuvier et al, 2011;
Shaqarin et al, 2011), which is directly induced by the
local near wall velocity gradient. The two hot-films
are located within the recirculation bubble of the sep-
aration for the baseline flow. Due to the actuation,
the separation length decreases leading to an increase
of the recirculation velocity within the recirculation
bubble. This could lead to a non-monotonic varia-
tion of the hot-film signals with respect to the sepa-
ration length. In particular, if the separation length
is decreased, a change in the hot-film signal leads to
an ambigous interpretation. Indeed, the recircula-
tion velocity increases which leads to an increasing
wall shear stress on the sensors. If one is able to
decrease the separation length even further, the at-
tachment point may be moved progressively towards
the hot-film sensors yielding a significant reduction
of the wall shear stress. Thus, an evaluation of the
control effectiveness based solely on the hot-film sen-
sor value is not sufficient. Therefore, a set of static
pressure sensors located along the span are also used
to assess the effectiveness of the control (see Fig. 1).

Senflex SF9902, made of active Nickel elements,
are used as hot-film probes. These sensors are
1.5 mm long, 0.102 mm wide, and are deposited on
a polyamyde substrate with a thickness less than
0.2 mm. They are glued directly on the model’s sur-
face with 76µm double-sided tape at x/h = 0.06 and
x/h = 1.38 (Fig. 1). The conditioning of the signal
is achieved using a Dantec 90H02 Flow Unit. The
signal from the anemometer was low-pass filtered at
300Hz and conditioned on a 0 − 3.3 V range before
feeding the signal into an Arduino. In section 3, this
Arduino will be tasked to calculate in real-time the
actuation based on the data of the hot-film sensors.

2.4 Pressure measurements

The pressure distribution along the ramp model is
obtained using a PSI 8400 acquisition unit (2500 Pa,
±0.75 Pa) which allows the measurement of the 80
pressure transducers inserted into the model. The
pressure taps (0.3 mm in diameter) are connected
to pressure sensors by a 1.5 m long tygon capillary.
Time-series of fluctuations pressure are acquired with

a 200 Hz sampling frequency. During the GPC pro-
cess, the pressure distribution over the ramp (0 ≤
x/h ≤ 4.5) is measured using a recording time of
1 000U∞/h, corresponding to an uncertainty in the
estimation of the pressure coefficient (Cp = P−P∞

1/2ρ∞U2
∞

)

of ±7.5%. The pressure distribution for the baseline,
the open-loop case and the best GPC individuals is
then obtained using a recording time of 90 000U∞/h.
This allows to determine the pressure coefficient with
an uncertainty estimation of ±1%.

2.5 Particle image velocimetry and
vortex detection

Finally, for evaluating and analyzing the baseline,
the best open-loop actuation, and the best closed-
loop actuation laws (see section 4), the vector field
statistics are obtained with a Stereoscopic PIV ac-
quisition system (LaVision) and its DaVis 7.3 soft-
ware. Three-component PIV measurements are taken
in the vertical symmetry plane of the downward flow
induced at the mid-plane of one AVG (see Fig. 1). An
Nd:YAG laser (Quantel, EverGreen) generating two
pulses of 200 mJ each at a wavelength of 532 nm is lo-
cated above the test section. A streamwise slit in the
test section roof enables the vertical laser light sheet
to reach the model. Images are captured with two
CCD cameras (Imager LX 11M) mounted on opposite
sides of the light sheet to obtain forward-scattering.
Finally, Scheimpflug adapters are used to obtain a
focused area despite the viewing angle of about 45°.
The vector fields are computed with a final interro-
gation window of 32×32 pixels (50% overlap), giving
a grid of 256 points in the streamwise direction and
148 points in the transverse direction. The space res-
olution is 2.4 mm corresponding to 0.024x/h. The
vector field statistics are achieved with the capture
of 2 500 independent vector fields acquired at a sam-
pling frequency of 1.6 Hz. This leads to statistical
errors of the mean and second-order moments equal
to 1% and 3%, respectively, for a 97% confidence in-
terval (Benedict and Gould, 1996).

Instantaneous PIV vector fields are also used to
characterize two-dimensional vortex regions. Many
classical algorithms of vortex extraction (λ2 and
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(a) At the beginning. (b) At convergence.

Figure 3: Concept of closed lines γφ starting from a saddle point. (a) illustrates the situation at the
beginning of the algorithm, whereas (b) corresponds to the solution at convergence. Streamlines of the
vector field are depicted in light gray. Black solid lines correspond to the lines starting in the principal
directions of the saddle point. Colour lines refer to the boundary condition of each line (blue: exit of
velocity field ; green, red, cyan and orange: attraction by a critical point). The cyan and orange arrows in
(b) highlight two vortex region candidates created by the extraction algorithm. The area materialized by
yellow circles corresponds to the vortex region Ω associated to the closed lines drawn in green.

Okubo-Weiss Q criteria for instance) are based on
a scalar indicator function, whose magnitude relates
to the strength of vortex activity. In this frame-
work, the extracted regions depend on a threshold
value that is often chosen arbitrarily. Furthermore,
methods based on this approach often do not identify
correctly individual vortices and are usually not able
to separate adjacent vortices. Another approach for
determining the shape of a vortex is to purely rely
on geometrical methods. Recently, Petz et al (2009)
proposed an algorithm for vortex region extraction
that makes use of vector field topology. Their defi-
nition of a vortex region is based on the generaliza-
tion of the concept of closed streamlines loops. For
a divergence-free vector field, the union of all closed
streamlines defines intuitively a vortex region. By
extension, the authors generalize the streamline cri-
terion to vector fields with divergence, by introduc-
ing closed lines whose tangent present a constant in-
cident angle to the vector field. The union of these
lines defines a vortex region candidate that is discrim-
inated by imposing that vortex regions are bounded
by closed loops that start and end at saddle points.

It can be proved by continuity that at least one sad-
dle point is included in the closure of a vortex region
(Petz et al, 2009).

Figure 3 illustrates the concept of closed lines,
hereafter denoted γφ, that intersect the flow field at
a constant angle φ and enclose at least one saddle
point. The tracing of the closed lines starts from a
saddle point. The principal directions of the fixed
point lead to the discrimination of four distinct re-
gions for the closed lines, two oriented towards the
upper and lower boundaries of the flow field, and two
oriented toward upstream and downstream vortices.
As an illustration, let Ω be the region oriented toward
the core vortex in Fig. 3. Mathematically, this region
is defined as Ω = {γφ | φ ∈ [φMin;φMax]} where φMin

and φMax correspond to the angles specified by the
two principal components designing the region. The
lines γφ whose angle is close to the mean value of
[φMin;φMax] describe a straight path from the saddle
point to the vortex core, whereas lines associated to
angles close to φMin and φMax describe curves looping
around the vortex core before reaching it (see green
lines in Fig. 3(a)).
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Figure 4: Instantaneous vector field velocity above
the ramp and extracted vortex regions (black con-
tours). The black crosses correspond to the detected
critical points.

The algorithm of Petz et al (2009) presents two
steps. First, the critical points from a vector field are
extracted and sorted by class (saddle point, attract-
ing/repelling node, attracting/repelling focus, cen-
ter). The second step consists to trace the lines γφ for
different values of φ and then to identify vortex re-
gion candidates by clustering neighbouring lines with
similar behaviour. For each saddle point, the princi-
pal directions are determined and a first set of lines
γφ is generated with a regular distribution of angles
φ between two directions (see Fig. 3(a)). The type of
boundary condition of each line (attraction to a crit-
ical point or exit of the velocity field) is then deter-
mined, allowing the creation of vortex region candi-
dates by clustering the lines with the same boundary
condition (see Fig. 3(b)). During the algorithm, new
regions can be discovered and their bounds have also
to be determined. This iterative process takes end
when the boundary lines of two neighbouring regions
present a difference of angle φ equal to π/215. The
closed lines γφ and the critical points are kept dur-
ing the algorithm. This allows to sort the different
vortex regions (keeping one particular vortex region
among the set of regions enclosing the same critical
points) and to produce a hierarchy of vortex regions
(several regions being enclosed in a larger one).

A typical example of the vortex regions extracted
by this algorithm is presented in Fig. 4. This algo-
rithm is used in Sec. 4.3 to determine the statistical
distribution of the area of vortex regions for the dif-
ferent controlled flows.

  

da
dt = F (a,b) ,
s = H (a)

b = K (s)

GPC

Real-time
loop (fast)

Learning
loop (slow)

b s

JiKi

J1

JN

...

Figure 5: General principle of GPC. Two loops are
present. The inner loop is the actual control loop
which is on a real-time basis. The dynamical sys-
tem (upper box) feeds the sensors s to the controller
(middle box). The controller uses the control law
corresponding to the i-th individual (Ki) in order to
compute the actuation command b which is fed back
to the dynamical system. The outer loop is the evo-
lutionary learning loop. The GPC algorithm (lower
box) is providing the controller with control laws. Af-
ter a statistically significant evaluation time, the cost
function value Ji is computed for the control law Ki.
The GPC algorithm is using the individual values
J1, . . . , JN to evolve the population of control laws
until the control problem is solved.

3 Genetic Programming
Control

3.1 Control Design

Genetic Programming Control (Parezanovic et al,
2015; Gautier et al, 2015) is a model-free control
method designed to determine non-linear control laws
for a non-linear complex dynamical system in an un-
supervised, data driven manner. GPC is an evolu-
tionary algorithm largely based on classical genetic
programming (Koza, 1992; Koza et al, 1999) and
adapted to determine experimental control laws.

A general view of the algorithm implementation
can be seen in Fig. 5. The experiment is represented
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by the dynamical system:

da

dt
= F(a,b),

s = H (a) ,

b = K(s)

(3)

with a ∈ RNa representing the states, s ∈ RNs repre-
senting the measurements on the system and b ∈ RNb

representing the control laws. F, H, K are respec-
tively the evolution operator, the measurement func-
tion and the control laws. The control problem is de-
fined by a cost function J(s,b) to be minimized. In
the GPC framework, the control laws are represented
by expression trees, containing arbitrarily complex
combinations of user defined functions, operations,
sensors and random constants. The learning GPC
process is used to determine the control law best fit-
ted to be used in the inner real-time feedback loop.
Once the best control law is determined, the learning
loop can be disconnected.

The learning process is achieved as follows. A first
population of N individuals representing the control
laws Ki with i ∈ [1, . . . , N ] is randomly created.
Each of these individuals is tested in the real-time
dynamical system loop during the evaluation time T .
At the end of the evaluation time, a cost function
value Ji is given to each individual Ki. A selection
process determines which individuals are chosen for
the population evolution. For each of the N new
individuals to produce, a tournament is achieved be-
tween randomly chosen evaluated individuals, the in-
dividual with the lowest cost function value being se-
lected for evolution. The selected individuals then go
through genetic operations: replication (copy of the
selected individual to the next generation), mutation
(partial random alteration of the content of the in-
dividual) and crossover (partial exchange of the con-
tent of two selected individuals). Also, the five best
individuals of the evaluated population are directly
copied into the next generation in order to ensure
that the following generation is at least as good as
the preceding one. These operations are illustrated
in Fig. 6.

Additionally to this classical genetic programming
implementation, GPC encompasses modifications to

Mutation

Cop
y/E

litis
m

Crossover

Figure 6: Graphical illustration of the different ge-
netic operations: copy, crossover, mutation.

account for the experimental evaluation of the indi-
viduals: when an individual appears again in a new
generation, it is further evaluated and its cost func-
tion value is averaged. Also, the three best individ-
uals of each generation is reevaluated three times.
This ensures that the convergence process is not dra-
matically affected by measurement noise and errors
by eliminating intrinsically bad individuals that were
accidentally assigned a low cost function value. Also
it increases the statistical significance of the best in-
dividual’s cost function value which allows to reduce
the impact of having a suboptimal evaluation time T
and then reduce the overall process time cost.

Once a new generation is created, a new evalu-
ation of the whole population can be achieved. The
learning process is stopped either when the cost func-
tion value of the best individual reaches a known
global minimum (theoretical optimality stop crite-
ria, though this is unlikely in an experiment), when
no improvement has been achieved through several
generations (empirical optimality stop criteria), when
the minimal cost function value reaches a user pre-
determined value that reflects an acceptable perfor-
mance (performance stop criteria) or when a pre-
scribed number of generations has been reached (op-
erational cost stop criteria). In those cases the best
individual is used in the real-time controller and the
learning loop can be disconnected.
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3.2 Experimental Implementation

In the experiments, the GPC learning loop is imple-
mented on a standard computer in Matlab, whereas
the inner loop is implemented on an Arduino micro-
controller. This Arduino acquires the experimental
sensors signal and computes the control command
sent to the actuators according to the current indi-
vidual in the real-time closed-loop control. For each
generation, the outer loop generates expressions for
the individuals, compiles and uploads them on the
inner-loop Arduino. The Arduino then loops between
the evaluation of each control law Ki during a time
T = 5 s, with a 3 s resting time in between, and re-
turns the cost function values Ji to the learning loop.

The mean values of the hot-film sensors for the
baseline flow (HFi,0) and for continuous blowing of
the jets (HFi,Blow) are used at the beginning of each
generation and every 100 evaluations of the cost func-
tions to normalize the hot-film sensors.

For each of the two hot-film sensors, three virtual
sensors are created which leads in total to Ns = 6.

The first virtual sensor is calibrated to the average
blowing and not blowing values, i.e.

si =
〈HFi〉 −HFi,0

HFi,Blow −HFi,0
, i ∈ {0, 1}, (4)

where 〈·〉 denotes a moving average over ten measure-
ments.

The second one is the instantaneous calibrated
value of the sensor:

si+2 =
HFi −HFi,0

HFi,Blow −HFi,0
, i ∈ {0, 1}. (5)

The calibration ensures that the virtual sensor values
are close to the [0, 1] interval. The third sensor is an
instantaneous fluctuation calculated as:

si+4 = si+2 − si

=
HFi − 〈HFi〉

HFi,Blow −HFi,0
i ∈ {0, 1}. (6)

The operators used to create the individuals are +,
−, ×, /, sin, cos, ln, exp and tanh. Sensitive opera-
tions such as / and ln are protected so that any value

in R can be used as arguments. The absolute value
of the denominator of / is saturated to 10−2. Also,
x 7→ ln(x) is modified to x 7→ ln(|x|) for |x| > 10−2

and x 7→ ln(10−2) otherwise. Finally, the output of
the constructed control laws is passed through the
Heavyside function to transform the continuous out-
put from Ki to an on/off signal. If b > 0 (respectively
b < 0), the control is on (respectively off).

The physical objective of the control problem is to
re-attach the boundary layer in an energy efficient
manner. The state of the boundary layer is assessed
by the mean wall-friction measured by the hot-films
and the average pressure distribution measured by
the pressure taps. The actuation cost is assessed by
the calculation of the average cµ obtained from the
flow meter on the pressure tank. This problem corre-
sponding to a multi-objective optimization, the cost
function used for GPC is defined as:

J = JHF + `PStatJPStat + `ActJAct (7)

where Ji, i ∈ {HF,PStat,Act}, corresponds to the
cost functions for the different criteria to optimize
and where `PStat

and `Act are penalization coeffi-
cients.

The term JHF related to the wall friction is calcu-
lated using:

JHF =
1

NHF

NHF∑
i=1

[
1− tanh

(
〈HFi〉
HFi,0

− 1

)]
(8)

where NHF is the number of hot-film sensors.
The term JPStat

related to the static pressure sen-
sors is obtained using:

JPStat
=

∫
T

1

0.1 +

NP∑
i=1

(P (xi)− P0(xi))
2 xmax − xi
xmax − x|x=0

dt,

(9)
where NP is the number of static pressure sensors
used for the estimation and xi their streamwise coor-
dinates. In the experiments, the estimation of JPStat

is based only on the pressure sensors located from the
sharp edge (x = 0) to xmax = 4.7h. In addition, P0

is the baseline pressure, and 0.1 in the denominator
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is added to prevent the division by zero. The JPStat

cost function penalizes an attachment point located
far from the sharp edge and therefore large separa-
tion bubble as the separation point is fixed by the
geometric discontinuity.

The actuation penalization term JAct is obtained
using:

JAct =

∫
T

cµ
VJet

dt. (10)

In Sec. 4, we will keep constant the weight `PStat

and analyse the influence of `Act on the best GPC
actuation laws.

4 Results

The presentation of the results will be done in three
steps. First, in Sec. 4.1, we present the GPC results
through the data that are used during the Genetic
Programming runs, i.e. the signal of the HF sen-
sors, the pressure sensors, and the estimation of the
momentum coefficient cµ. Then, in Sec. 4.2, we per-
form an a posteriori analysis of the previous GPC
results with the PIV measurements obtained offline.
Finally, an in-depth analysis of a particular actuation
law (individual 7), ranked among the most efficient
by GPC, is done in Sec. 4.3. In the following, the use
of individual and control or actuation law is strictly
equivalent.

4.1 GPC Results

During the experimental determination of the closed-
loop control laws, the use of the HF sensors is twofold:
as an input signal for the computation of the con-
trol law, and to estimate JHF according to (8). Both
calculations are implemented in real time on the Ar-
duino. The pressure data on the ramp is collected
on a different computer and used to compute JPStat

according to (9). These results are weighted with the
estimation of JAct to determine J needed to rank the
individuals in the GPC algorithm.

Three different runs of genetic programming con-
trol are performed. For all the runs, the weight
`PStat

= 1
30 is kept constant. In addition, the prob-

ability of crossover, copy and mutation are fixed to

pCross = 0.7, pCopy = 0.1 and pMut = 0.2, respec-
tively. In order to test the influence of the amount of
actuation on the results, three different values of pe-
nalization weights `Act are considered, namely 2.5, 0.8
and 0.6. `Act = 2.5 corresponds to a strong penaliza-
tion whereas setting `Act = 0.8 and `Act = 0.6 lower
the level of penalization but still prevent constant
blowing as a solution. Recently, Debien et al (2015)

Figure 7: Variation of the normalized cost function
value J over the generations for two GPC runs, one
of 5 generations with `Act = 2.5 and one of 10 genera-
tions with `Act = 0.8.The five best individuals of each
run are plotted. Even when the first generation con-
tains already effective individuals (case `Act = 2.5),
we can note an overall improvement of the high rank-
ing individuals of the population with 20 to 30% re-
duction of J in few generations. This demonstrates
how the population is stirred towards the best indi-
vidual to explore local minima and further improve
the best result.

showed that for the same configuration of sharp edge
ramp the best open-loop actuation has a frequency
fPulse = 30 Hz and a duty cycle of 50%. In the
following, we benchmark against this best periodic
forcing eight particular actuation laws, namely: i)
individuals 1 and 2 are taken out the first GPC run
(`Act = 2.5) after 5 generations, individual 1 being
the best individual of all generations ; ii) individuals
3, 4, and 5 are the three best actuation laws obtained
from the second GPC run (`Act = 0.8) after 10 gener-
ations ; iii) individuals 6, 7, and 8 are obtained from
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the third GPC run (`Act = 0.6) after 5 generations,
individual 6 being the best individual of all genera-
tions.

The evolution of the normalized cost function J
over the generations is shown in Fig. 7 for two differ-
ent values of `Act. For each generation, the J value of
the five best performing actuation laws of each GPC
run is plotted to show not only the improvement of
the most effective control law but also to illustrate
the global convergence of the population toward ef-
fective control laws for an increasing number of gen-
erations. One can see that with an increase of the
number of generations, the performance of the best
actuation would likely have increased. Due to exper-
imental time constraints, the number of generations
is kept low.

The J values for the different individuals are
recorded in Tab. 1. These values are given, once with
the specific value of `Act used during the GPC run,
and once with an arbitrarily chosen value (`Act = 0.5)
to have a fair comparison with the best open-loop so-
lution which has been chosen to achieve maximum
performance regardless of actuation cost. The cost
corresponding to each control problem defined by a
different `Act value has also been computed for the
best open-loop.

This table shows how GPC consistently finds
closed-loop control laws performing better or sim-
ilarly (where pure performance is predominant) to
the best open-loop control as computed through the
cost function used for their respective determina-
tion. Interestingly, at the exception of individual 2,
all closed-loop control laws perform reasonably well
with a cost function adjusted for low actuation cost
(`Act = 0.5). As a matter of fact, the J |`Act=0.5 val-
ues seem to indicate that all these individuals are
roughly interchangeable. For instance individual 1
obtained with a high actuation penalization, individ-
ual 7 obtained with a low actuation penalization and
the best open-loop show similar values. Nonetheless,
the decomposition of the cost function in each of its
constituent (see Tab. 2) shows that the final value of
J is obtained through different mechanisms for each
GPC determined individual: some focus on perfor-
mance, others on economy.

This performance-actuation trade-off is further il-

Table 1: Performance comparison of the different ac-
tuation laws based on their J values. The penaliza-
tion coefficients between the different terms of the J
function were applied once with `Act = `Run

Act kept at
the value employed during the GP run and once with
`Act = 0.5 for comparison with the best open-loop
control. The right column introduces the reference
name of the GPC law in the manuscript. For details,
see text.

J |`Act=`Run
Act

J |`Act=0.5 Reference

`Run
Act = 2.5

Best open-loop 1.14 0.38
Best GPC law 0.88 0.38 Indiv. 1
Subopt. GPC law 1.12 1.00 Indiv. 2

`Run
Act = 0.8

Best open-loop 0.50 0.38
Best GPC law 0.45 0.40 Indiv. 3
Subopt. GPC law 0.47 0.42 Indiv. 4
Subopt. GPC law 0.52 0.41 Indiv. 5

`Run
Act = 0.6

Best open-loop 0.42 0.38
Best GPC law 0.42 0.39 Indiv. 6
Subopt. GPC law 0.45 0.41 Indiv. 7
Subopt. GPC law 0.46 0.45 Indiv. 8

Table 2: Performance comparison of the different ac-
tuation laws based on their Ji (i ∈ {HF,PStat,Act})
values. The weighting coefficients `i are not applied.

JHF JPStat JAct

Best open-loop 0.04 4.6 0.38
Indiv. 1 0.05 6.2 0.25
Indiv. 2 0.11 25.8 0.06
Indiv. 3 0.06 7.5 0.18
Indiv. 4 0.07 7.7 0.18
Indiv. 5 0.06 5.1 0.36
Indiv. 6 0.06 5.7 0.28
Indiv. 7 0.06 4.5 0.40
Indiv. 8 0.08 8.8 0.15
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Figure 8: Variation of the cost function values JHF

and JPStat versus JAct for the GPC individuals and
the best open-loop solution (label c).
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Figure 9: Pressure coefficient distribution over the
ramp for the baseline, the best open-loop and some
GPC individuals. Only the pressure sensors located
in the range 0 ≤ x/h ≤ 4.70 are used for estimating
JPStat

.

lustrated in Fig. 8 where JHF and JPStat
are plotted

versus JAct. We observe that JHF and JPStat
vary

as an hyperbolic function with respect to JAct, even
though a noticeable scatter can be seen for high val-
ues of the actuation penalty. This hyperbolic be-
haviour reflects the compromise between the cost
of the control and its effectiveness. The set of so-
lutions obtained by GPC is then equivalent to the
Pareto frontier classically used in multi-disciplinary
optimization. Due to the relatively large spacing of
the pressure sensors, the determination of the posi-
tion of the reattachment point using pressure sensors
can not be inferred with accuracy and is therefore not
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Figure 10: Pressure coefficient at the sharp edge
(x/h = 0) versus JAct for the baseline (label o), the
best open-loop (label c) and the GPC individuals.

clearly visible in the JPStat
distribution. The evolu-

tion of the pressure coefficient (Cp) over the length
of the ramp is presented in Fig. 9. Upstream of the
sharp edge (x/h = 0), Cp gradually decreases towards
the ramp due to a favourable pressure gradient in-
duced by the proximity of the ramp and by the blow-
ing of the AVGs. Downstream of the sharp edge of
the ramp, the pressure rises up to its maximal value
(Cp ≈ 0.2) around the location of the reattachment
point. Further downstream, the pressure converges
towards Cp ≈ 0.19. Figure 9 illustrates a direct rela-
tionship between actuation cost JAct (as reported in
Tab. 2) and separation control: the larger JAct is, the
smaller the separation length is. The Cp distribution
measured for the GPC individuals approach to the
one obtained for the best open-loop controller as JAct

increases. Whereas the pressure distribution around
the attachment point provides a direct measurement
of the effectiveness of the actuation, the pressure at
the separation point (see Fig. 10) depends mainly
on the momentum coefficient of the AVGs jets which
generates a pressure minimum around the actuators.

Based on these criteria, four individuals seem to
yield particular good results: individuals 1, 5, 6 and
7. Individual 5 and 7 present a JAct value close to
the best open-loop case whereas individuals 1 and 6
present a 34% and a 26% JAct reduction, respectively,
but also worse JPStat

values (see Fig. 8).
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4.2 Analysis based on PIV measure-
ments

Though the stereo PIV equipment is not able to feed
its results in real-time in order to be used in the GPC
process, it can be used to assess the controlled flow
using the controllers obtained by GPC. In this sec-
tion we provide an in-depth a posteriori analysis of
the controlled flows obtained by GPC, with a de-
tailed study of the actuation mechanism and eval-
uation from PIV of the flow features. A special focus
is done on the individual 7 which appears to be the
most interesting.

4.2.1 AVGs’ characteristics

To evaluate the performance of the different control
laws, the AVGs actuation characteristics are first ex-
amined. For the different control laws, the blowing
velocity VJet of the AVGs and an estimated “duty
cycle” are reported in Tab. 3. The blowing velocity
is computed from a calibration law where the input is
the pressure of the supplying tank. The “duty cycle”
corresponds to the ratio between the AVGs’ blowing
duration and the total acquisition time. Using these
values, the momentum coefficient cµ and the energy
flow rate of the blowing jets defined as

MJet = ρJetSJetDcV
3
Jet (11)

are computed.
Since blowing velocity is kept constant throughout

experiments, the cost function JAct mostly depends
onDc. However, it is worth noting that VJet may vary
within a 5–7% range around its designed operating
value. This occurs in high actuation frequency range
(fPulse ≥ 250 Hz) due to the limited time response
of the valves. For the closed-loop cases, Dc is in the
range between 0.07 and 0.49.

To get a better understanding about the control
laws synthesized by the GPC, the statistical distri-
bution of the actuation frequency is analysed. For
that purpose, the instantaneous actuation frequency
is inferred via a zero-crossing algorithm. The actua-
tion signal being updated at approximately 1 kHz on
the Arduino the discretization of the frequencies is
larger at frequencies fPulse ≥ 100 Hz.

Table 3: Characteristics of AVGs during the control
phase.

VJet Dc cµ × 10−4 MJet

Best open-loop 62.3 0.50 16.5 18.0
Indiv. 1 62.6 0.25 8.4 9.3
Indiv. 2 58.1 0.07 2.0 2.05
Indiv. 3 56.5 0.18 5.0 4.9
Indiv. 4 56.5 0.19 5.1 5.1
Indiv. 5 58.3 0.46 13.3 13.6
Indiv. 6 55.4 0.27 7.0 6.8
Indiv. 7 57.3 0.49 13.7 13.7
Indiv. 8 56.7 0.18 4.8 4.8
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Figure 11: Variation of the relative blowing times
versus the observed pulse frequencies for the GPC
individuals. Frequencies fPulse ≥ 100 Hz have to be
treated with care due to sampling issues.

Figure 11 shows the relative blowing time versus
pulse frequency fPulse for all the GPC individuals.
Except for individuals 2 and 5, the majority of the
control laws show a major contribution of frequencies
greater than 130 Hz.

Particularly, a major contribution of frequencies
fPulse ≥ 250 Hz are observed for individual 6 which
explains the origin of the low AVG blowing velocity
due to the limited switching speed of the valves. This
leads to a significant amount of time for which the
valves are only partially opened.
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For individual 2, the major frequency contribu-
tion is observed at fPulse ≈ 24 Hz while individ-
ual 5 presents a major frequency actuation in the
range of fPulse = 55− 110 Hz. Those two individuals
present a particular interest as previous experiments
have shown that the Kelvin-Helmholtz instability is
present close to separation point at a frequency of
fKH = 110 Hz and a vortex shedding at a frequency
of about fvs = 27Hz. Nevertheless, the low relative
cµ induced during the individual 2 control process
suggests that large periods without actuation occur,
corroborated by the bad cost function value of JPStat .

4.2.2 Separation length – back flow area

In this section the GPC actuation laws previously ob-
tained are analysed in detail to understand the mech-
anisms behind the best performing actuation laws.

The back flow area can be defined as the area in
which more than 50% of the samples have a negative
velocity. The resulting region is used to obtain the
position of the attachment and thus the separation
length LSep (Tab. 4) and the size of the back flow
area.

Table 4: Separation length and percentage of reduc-
tion with respect to the baseline for the best open-
loop and the GPC individuals.

LSep/h Reduction (%)

Baseline 5.4 -
Best open-loop 3.14 41.9
Indiv. 1 3.31 38.7
Indiv. 2 4.05 25.0
Indiv. 3 3.43 36.5
Indiv. 4 3.50 35.2
Indiv. 5 3.12 42.2
Indiv. 6 3.46 35.9
Indiv. 7 3.16 41.5
Indiv. 8 3.47 35.7

When the best open-loop control is applied, the
attachment point moves upstream and the separa-
tion length decreases by 41.9% compared to the base-
line case. For closed-loop control, LSep decreases by
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Figure 12: Variation of the separation length versus
the momentum coefficient for the best open-loop (la-
bel c) and the GPC individuals.
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Figure 13: Variation of the mean back flow area ver-
sus the separation length for the best open-loop (label
c) and the GPC individuals.

25–42% depending on the individual. Particularly,
individuals 5 and 7 achieve almost the same sepa-
ration length reduction (42 and 41.5%, respectively,
see Tab. 4) as the best open-loop solution while hav-
ing a lower cµ consumption. Except for individual
6, the position of the mean attachment point LSep/h
against cµ (Fig. 12) presents an hyperbolic behaviour
even though the actuation laws and thus mechanisms
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sus the momentum coefficient for the best open-loop
(label c) and the GPC individuals.

differ from each other.
In the same way, the back flow area is determined.

Its evolution versus the separation length (Fig. 13)
presents a linear behaviour, except for individuals
5 and 6. This result shows that the observation of
the back flow area is equivalent to the observation
of the variation of the separation length. This is
in agreement with the recent work of Gautier and
Aider (2013). Furthermore, the monotonic evolution
of the back flow area versus the momentum coefficient
(Fig. 14) shows that in the given setup, the momen-
tum coefficient seems to have the greatest impact on
the reduction of the separation length.

4.2.3 Kinetic and turbulent kinetic energy
flow rate

In this section, we discuss the GPC individuals in
terms of their energy content. For that purpose, we
introduce the mean kinetic energy flow rate (MEc)
and the turbulent kinetic energy flow rate (Mk) re-
spectively defined as:

MEc =

∫
S

(~U(x) · ~n)Ec(x) dS(x), and (12)

Mk =

∫
S

(~U(x) · ~n) k(x) dS(x). (13)

where ~U is the mean velocity and ~n denotes the
outward-pointing normal to S. Ec represents the
energy transported by the mean velocity and k is
the turbulent kinetic energy (TKE). Since the turbu-
lent production term is expected to be damped when
the recirculation region is reduced, the energy trans-
ported by the mean velocity downstream of the reat-
tachment point is expected to be larger when control
occurs. If one applies flow control, Mk is governed by
two properties: the modification of TKE value in the
wake and the thickness of the wake. Thus, a control
with a small cµ should increase the TKE by increas-
ing the mixing without reducing the wake thickness.
As cµ increases further, the thickness of the wake
should decrease, leading to a decrease of Mk.

Figures 15 and 16 show MEc
and Mk (at x/h =

5.5) versus cµ and respectively versus the size of back
flow area. MEc versus cµ does not exhibit a clear
trend (Fig. 15). First a large increase is observed for
cµ ≤ 8.45 × 10−4. For cµ > 8.45 × 10−4 the data
levels out in a plateau with 3% fluctations in MEc

.
In contrast, MEc

decreases linearly against the back
flow area as seen in Fig. 16. Furthermore, for simi-
lar back flow area value, this curve highlights more
efficient individuals with a large MEc

, for example
individual 7 compared to the best open-loop control
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for the GPC individuals.
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Figure 16: Variation of the turbulent kinetic energy
flow rate Mk and mean kinetic energy flow rate MEc

versus the mean back flow area at x/h = 5.5 for the
best open-loop (label c) and for the GPC individuals.

or individual 6 compared to individual 1.

This efficiency variation could be related to two
parameters: the shaping of the wake caused by the
form of a particular control law or the overall mass
flow value cµ used by the control law. For individual
7 and the best open-loop, the control process could
suggest that the physical process involved to control
the flow could be responsible forMEc ’s efficiency vari-
ation. Nevertheless, Fig. 11 shows that frequencies
injected in the flow for individuals 1 and 6 present a
similar broad bandwidth but cµ is decreased by 17%
for individual 6. As mentioned earlier, this large re-
duction of cµ is due to low VJet induced by the time
response of the valves. For this case, a 17% cµ reduc-
tion is responsible for a 3% MEc increase.

The evolution of Mk versus cµ is related to MEc :
for cµ ≤ 8.45×10−4, Mk decreases quickly with grow-
ing cµ and for cµ > 8.45 × 10−4 it levels off in a
plateau-like shape with 5% fluctuations. The evolu-
tion of Mk versus the back flow area present a global
trend where Mk increases with the back flow area,
as expected. Furthermore, the evolution of MEc and
Mk versus cµ indicates the existence of a plateau be-
ginning at a cµ value greater than the cµ value of indi-
vidual 6 (7.10−4), confirming its efficiency regarding
those parameters.
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Figure 17: Variation of the coefficient CJet,k versus
the momentum coefficient at four streamwise loca-
tions for the best open-loop (label c) and for the GPC
individuals.

Analogous to MJet, a criterium Mk given by (13)
is introduced using the TKE flow rate, which allows
to obtain a coefficient CJet,k given by:

CJet,k =
MJet

Mk
. (14)

This coefficient CJet,k is plotted versus cµ in
Fig. 17. It appears that the relation between CJet,k

and cµ is linear. To explain this relation, we can first
refer to the relation of MJet and Mk versus cµ. Con-
sidering a quasi constant VJet blowing, MJet ∝ cµ
while Mk ∝ c−1

µ for cµ ≤ 8.45 × 10−4 and Mk ∝ c0µ
for cµ ≥ 8.45 × 10−4. Furthermore, comparing the

relative variation ∆MJet ( ∼ MJetMax
−MJetMin

MJet
) and

∆Mk, it appears that ∆MJet ≈ 10∆Mk. So CJet,k

is governed by MJet which presents a linear relation
with cµ.

The study of the different individuals shows that
GPC is able to provide three individuals which
achieved the best performance with respect to their
respective cost-function. Also, it shows that accord-
ingly to the goal to be achieved GPC explores the dif-
ferent mechanisms that can be used to optimize the
cost function. If one looks at the separation proper-
ties, individuals 5 and 7 appear to be the most effi-
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Figure 18: Mean streamwise velocity x/h+ U/U∞ (a) and wall-normal velocity x/h+ 2.5× V/U∞ (b) over
the sharp edge ramp for the baseline, best open-loop and GPC individual 7.

cient individuals whereas if one looks at the energy
flow rate, individual 6 showed the best performance.
It shows a reduction in cµ of 46% compared to open-
loop whereas individuals 5 and 7 have a similar cµ
to open-loop. Consequently, the separation length of
individual 6 is larger than the open-loop case.

4.3 Analysis of the individual 7

As observed above, the individual 7 can be ranked
among the most efficient solutions and presents a sim-
ilar cµ value to the best open-loop control. For these
reasons, an in-depth flow analysis of the individual
7 is now performed by comparison to the best open-
loop control.

The expression for this individual is given below:

b(t) = −1.23
0.59 + s1 + s2 + tanh(s2)

s2s5
+ ln

(
s5 + s3

s4 + s5

)
.

(15)

The division and the natural logarithm are capped
so that there exist no division by 0 as explained in
Sec. 3.

As shown in Fig. 18(a), AVGs promote the mo-
mentum transfer between the near wall and the free
stream yielding a larger mean streamwise velocity in

the neighborhood of the sharp edge. In addition,
the counter-rotating vortices generated by the AVGs
induce a significant sweep flow motion at the laser
sheet position. This is evidenced by the strong nega-
tive mean transverse velocity close to the sharp edge.
Combined together, these mechanisms delay the sep-
aration and deflect the separated shear layer towards
the wall yielding a shorter recirculation (see Fig. 19).

For the baseline case, a higher level of TKE (see
Fig. 19 (a)) is observed close to the center line of
the shear layer which is progressively deflected to-
wards the wall. At the attachment point, the angle
of deflection of shear layer corresponds to 3.3°. The
maximum TKE value k/U2

∞ ≈ 0.56 is achieved close
to the separation point. It decreases quickly down
to a minimal value of k/U2

∞ ≈ 0.24 in the shear
layer at x/h ≈ 0.63. Beyond this point, the TKE
increases in the shear layer up to the reattachment
point (k/U2

∞ ≈ 0.5). On the other hand, the recircu-
lation bubble below the shear layer is characterized
by a low level of TKE (5×10−3 ≤ k/U2

∞ ≤ 1×10−2).

For the best open-loop, the evolution of the TKE
in the shear layer is similar to the baseline case but
higher levels are observed downstream from the sep-
aration point (k/U2

∞ ≈ 0.75). This maximal value
decreases up to x/h = 1 (k/U2

∞ ≈ 0.54) and then
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increases progressively up to the attachment point
(k/U2

∞ ≈ 0.58). At the attachment point, the shear
layer center line shows a larger angle of deflection of
9.6°. This intensification of the TKE shows also in
the recirculation bubble where 0.3 ≤ k/U2

∞ ≤ 0.5. As
already observed in Debien et al (2015), this inten-
sification in the TKE is due to the lock-on of vortex
shedding by the actuators, which is responsible for
the generation of large spanwise structures along the
ramp.

For the individual 7, the evolution of the TKE in
the shear layer presents an important difference since
a progressive increase from separation point (k/U2

∞ ≈
0.5) up to reattachment point (k/U2

∞ ≈ 0.54) occurs.
At the reattachment point, the shear layer center line
shows also a large angle of deflection of 9°. The re-
circulation bubble presents also an intensification in
the TKE level but a thin layer with low TKE level
(0.1 ≤ k/U2

∞ ≤ 0.2) is present above the ramp from
x/h ≥ 0.55 up to attachment point. It appears that
contrary to the best open-loop control where large
scale structures are generated by the AVGs blowing
to enhance mixing in recirculation bubble, the GPC
control strategy seems to stimulate the development
of shear layer and to stabilize it as it does not show
maximal TKE level near separation point but a fast
growth of TKE level is achieved downstream of the
separation point.

The evolution of the vorticity thickness (δω) of the
shear layer above the separation zone is presented
Fig. 20 for the baseline, the best open-loop and the
GPC individual. As observed by Castro and Haque
(1987) and Jovic (1996), the vorticity thickness is fea-
tured by a large growth rate which progressively de-
creases up to the reattachment point. Using a linear
fit in the least-square sense, the growth rate of the
separated shear-layer for both the baseline and the
best open-loop solution cases is ∂δω

∂(x/h) = 0.17 over

the range 0.25 ≤ x/LSep ≤ 0.6. This value is close to
that reported for free shear-layers (see e.g.(Browand
and Troutt, 1985)). The growth rate of the separated
shear-layer induced by the individual 7 seems to be
larger ∂δω

∂(x/h) = 0.25 (see Fig. 20). Note that unlike

baseline and the GPC individuals, the best open-loop
control vorticity thickness grows exponentially up to

Figure 19: Turbulent kinetic energy for the baseline
(a), the best open-loop (b) and the GPC individual 7
(c). White line corresponds to the center line of the
shear layer.
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Figure 20: Streamwise variation of the vorticity
thickness over the ramp for baseline, best open-loop
and GPC individual 7.

x/LSep = 0.25 before its linear growth. This change
coincides with the occurrence of high levels of TKE.
For the best open-loop control, a low actuation fre-
quency is used to lock on the shedding frequency.
Streamwise vortices are supposed to be produced by
the low AVGs’ activation frequency, and these vor-
tices are able to develop up to x/LSep ≈ 0.25 despite

18



Figure 21: Mean streamwise velocity and Reynolds stresses profiles of the mixing layer in similarity coordi-
nates for the baseline.

Figure 22: Mean streamwise velocity and Reynolds stresses profiles of the mixing layer in similarity coordi-
nates for the best open-loop.
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Figure 23: Mean streamwise velocity and Reynolds stresses profiles of the mixing layer in similarity coordi-
nates for the GPC individual 7.

the presence of the sharp edge (Debien et al, 2015).
Beyond x/LSep ≥ 0.25, the classic development of the
shear layer occurs.

In order to compare the shear-layers developing
above the recirculation region, mean velocity pro-
files and Reynolds stresses are plotted in dimension-
less form in Figs. 21, 22 and 23 for the baseline, the
open-loop control and the closed-loop control cases,
respectively. For that purpose, the reduced coordi-
nate η = y−yc

δω
is used, where yc corresponds to the

position of maximal velocity gradient (see Fig. 19 in
which the white line corresponds to yc). The velocity
difference ∆U = U∞ − UMin is used as the refer-
ence velocity, where UMin is the minimum stream-
wise velocity of the profile. For the baseline case
(Fig. 21), the dimensionless mean streamwise velocity
profiles do not reach a self-similar state which seems
to be induced by the presence of the separation bub-
ble which mainly affects the evolution of the lower
part of velocity profiles (η ≤ 0) and of the maxi-
mal velocity gradient along the ramp. For the best
open-loop (Fig. 22) and the individual 7 (Fig. 23),
the dimensionless mean streamwise velocity profiles

collapse downstream from x/LSep ≥ 0.25, achieving
a nearly self-similar state.

The baseline case presents higher Reynolds stresses
levels close to the shear layer center line (Castro
and Haque, 1987) while low Reynolds stresses lev-
els are observed close to the wall in the separation
bubble, consistent with the literature (Song et al,
2000). From the sharp edge ramp, the high level of
u2

rms/∆U
2 in the shear layer progressively decreases

up to 0.024 at x/LSep = 0.5 and then increases
up to reattachment point. In contrast, v2

rms/∆U
2

and u′v′/∆U2 increase from separation point up
to attachment point where v2

rms/∆U
2 = 0.028 and

u′v′/∆U2 = −0.018.

The actuation introduced by the AVGs increases
the Reynolds stresses levels in the recirculating bub-
ble. In the shear layer, both open-loop and indiv.
7 have similar characteristics. u2

rms/∆U
2 presents

higher level close to the separation point, decreases
up to x/LSep = 0.6 and then increases up to the
attachment point. v2

rms/∆U
2 presents an increase

from separation point up to attachment point. Down-
stream a plateau at 0.4 ≤ x/LSep ≤ 0.8 for open-
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loop, and 0.4 ≤ x/LSep ≤ 0.5 for individual 7 is vis-
ible. The shear component u′v′/∆U2 decreases up
to x/LSep = 0.7 for both cases. Furthermore, the

local maximum of
v2rms

∆U2 and u′v′

∆U2 are shifted towards
the lower part of the shear layer (η ≤ 0) close to the
separation point (see x/LSep = 0.2, Fig. 22 and 23).
For the best open-loop control, near wall Reynolds
stresses present high value for x/LSep ≤ 0.6 due to
the convection of large vortices created by the AVGs
(Debien et al, 2015).

The dimensionless Reynolds stresses reveal dras-
tic changes between the baseline and the controlled
cases. The decrease of the shear Reynolds stresses
component up to x/LSep = 0.7 when control is ap-
plied suggests that the shear layer development is
stimulated by AVGs’ blowing. This could explain
the self-similar state of the dimensionless streamwise
mean velocity achieved with flow control implying
that the driving of the shear layer development is due
to the convection and growth of structures induced
by the AVGs’ blowing.

The extraction of the vortex region Ω is now ob-
tained using the vector field topology. The area of the
detected vortex region ΩA is extracted to obtain the
vortex area distribution that is presented in Fig. 24
for the baseline case, the best open-loop control and
the individual 7. Overall, 50% of the detected vor-
tices occupy an effective area ΩA smaller than 0.01h2.
The cumulative distributions plotted in Fig. 24 evi-
dence that the GPC control induce the production
of smaller vortices compared to both baseline and
open-loop control. This property may somehow be
related to the broad range of frequencies excited by
the GPC control law. For the open-loop case, we have
reported elsewhere (see Debien et al (2015)) a lock-on
mechanism responsible for the generation of shedded
large-scale structures. Therefore, even though both
control strategies mainly act on the growth of the
separated shear-layer, the results displayed in Fig. 24
suggest two different mechanisms leading to a nearly
identical mean separation region: i. a rapid growth
of the shear-layer due to large-scale structure engulf-
ment (open-loop) and ii. an enhancement of the local
mixing of the shear-layer (GPC).

Figure 24: Cumulative distribution of area of the de-
tected vortex regions for the baseline, the best open-
loop and GPC individual 7.

5 Conclusions

Genetic programming control (GPC) has been ap-
plied to closed-loop forcing of a separated turbulent
boundary layer over a sharp edge ramp using only
the signal of two hot-film sensors placed near the in-
flection point of the ramp and static pressure sensors
along the ramp. GPC achieves control laws aiming
to reduce the separation length with a penalized mo-
mentum coefficient. The resulting law minimizes a
given cost function. The performance is monitored
by the pressure distribution, the hot-film signals and
the momentum coefficient. By varying the actuation
penalization of the cost function, multiple optimiza-
tion points were obtained.

The performance of GPC is benchmarked with the
optimized periodic actuation. The reduction of the
separation length, the back flow area, and the pres-
sure distribution is similar but GPC achieves this sep-
aration mitigation with a smaller momentum coeffi-
cient. This can be explained by the direct relation
between the momentum coefficient, the separation
length and the back flow area. Furthermore, the ki-
netic energy of the mean flow field reveals that GPC
achieves a better increase in the kinetic energy than
the best open-loop control.
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The velocity field properties were analyzed using
a Stereo PIV system. Similar performance benefits
are obtained with open and closed-loop control. For
the best open-loop control, the actuation frequency
is chosen close to shedding mode to obtain a lock-on
control. Downstream, the flow displays the stream-
wise vortices signature induced by the AVGs up to
x/LSep = 0.25. Beyond this point, the classic shear
layer develops and presents a similarity state for the
mean streamwise velocity, induced by the growth and
convection of large vortex region achieving the reduc-
tion of separation length. In contrast, the analysis
of the best GPC laws show much higher actuation
frequencies from twice to ten times the best open-
loop frequency. The vector field analysis also reveals
that streamwise vorticity signature induced by the
AVGs is not observed downstream from the sharp
edge ramp. Furthermore, the shear layer growth is in-
creased as compared to the baseline case. The GPC-
controlled shear layer displays a mean streamwise ve-
locity similarity state beyond x/LSep = 0.25. The
mean vortex region downstream of the sharp edge
ramp growths monotonically for GPC-based closed-
loop control — corroborating the rapid development
of the shear layer. As expected for high-frequency
forcing, GPC yields a finer distribution of vortex
region population as compared to baseline or best
open-loop control. Summarizing, GPC yields simi-
lar actuation benefits as best open-loop control but
at lower momentum coefficient. This improvement
is based on distinctly different high-frequency flow
structures, not on the lock-on of the periodic actua-
tion response.
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