
HAL Id: hal-01358981
https://hal.science/hal-01358981

Submitted on 29 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantum Monte Carlo with very large multideterminant
wavefunctions

Anthony Scemama, Thomas Applencourt, Emmanuel Giner, Michel Caffarel

To cite this version:
Anthony Scemama, Thomas Applencourt, Emmanuel Giner, Michel Caffarel. Quantum Monte Carlo
with very large multideterminant wavefunctions. Journal of Computational Chemistry, 2016, 37 (20),
pp.1866-1875. �10.1002/jcc.24382�. �hal-01358981�

https://hal.science/hal-01358981
https://hal.archives-ouvertes.fr

ar
X

iv
:1

51
0.

00
73

0v
2

 [
ph

ys
ic

s.
ch

em
-p

h]
 1

7
D

ec
 2

01
5

Quantum Monte Carlo with very large multideterminant wavefunctions

Anthony Scemama1 and Thomas Applencourt1 and Emmanuel Giner2 and Michel Caffarel1
1Lab. Chimie et Physique Quantiques, CNRS-Université de Toulouse, France. and

2Dipartimento di Scienze Chimiche e Farmaceutiche,

Università degli Studi di Ferrara, Ferrara, Italie.

An algorithm to compute efficiently the first two derivatives of (very) large multideterminant
wavefunctions for quantum Monte Carlo calculations is presented. The calculation of determinants
and their derivatives is performed using the Sherman-Morrison formula for updating the inverse
Slater matrix. An improved implementation based on the reduction of the number of column
substitutions and on a very efficient implementation of the calculation of the scalar products involved
is presented. It is emphasized that multideterminant expansions contain in general a large number
of identical spin-specific determinants: for typical configuration interaction-type wavefunctions the
number of unique spin-specific determinants Nσ

det (σ =↑, ↓) with a non-negligible weight in the
expansion is of order O(

√
Ndet). We show that a careful implementation of the calculation of the

Ndet-dependent contributions can make this step negligible enough so that in practice the algorithm
scales as the total number of unique spin-specific determinants, N↑

det
+ N↓

det
, over a wide range

of total number of determinants (here, Ndet up to about one million), thus greatly reducing the
total computational cost. Finally, a new truncation scheme for the multideterminant expansion is
proposed so that larger expansions can be considered without increasing the computational time.
The algorithm is illustrated with all-electron Fixed-Node Diffusion Monte Carlo calculations of the
total energy of the chlorine atom. Calculations using a trial wavefunction including about 750 000
determinants with a computational increase of ∼ 400 compared to a single-determinant calculation
are shown to be feasible.

I. INTRODUCTION

In a series of recent works we have proposed to use very
large configuration interaction (CI) trial wave functions
in Fixed-Node Diffusion Monte Carlo (FN-DMC).[1–4]
The main bottleneck of such calculations is the price to
pay for computing the first two derivatives of the trial
wavefunction at each Monte Carlo step. In the present
paper, we describe in detail the various strategies we
have devised to make such calculations feasible. To il-
lustrate quantitatively the performance of our algorithm,
let us mention that in a first application to the oxygen
atom,[3] converged all-electron Fixed-Node DMC calcu-
lations have been possible with a trial wavefunction in-
cluding up to 100 000 Slater determinants. In another
application to the metal atoms of the 3d series,[1] up to
about 48 000 determinants for all-electron FN-DMC sim-
ulations have been used. In the illustrating case of the
chlorine atom used here, a converged all-electron Fixed-
Node DMC calculation including up to 750 000 Slater
determinants is presented. The trial wavefunction and
its derivatives being expressed as a sum of determinants,
the computational time needed at each Monte Carlo step
is expected to scale linearly in the number of determi-
nants, a situation which can rapidly become intractable
if large expansions are desired (say, greater than a few
thousands).

To tackle this difficulty a number of methods have
been recently proposed. Nukala and Kent [5] have intro-
duced a recursive algorithm for updating the Slater de-
terminants reducing significantly the computational com-
plexity. In 2011, Clark et al. have proposed the Table
method[6] which leads to a total cost per step scaling as

O(N2

elec
) +O(NsNelec) +O(Ndet), Nelec being the num-

ber of electrons, Ns the number of single excitations,
and Ndet, the number of determinants. In the case of
the water molecule a speedup of about 50 has been ob-
tained. More recently, Weerasinghe et al. proposed a
compression algorithm[7] based on the idea of reducing
the number of determinants of the expansion by combin-
ing repeatedly determinants differing by one single or-
bital. The total cost per step is then reduced by about
the compression factor, that is the ratio of the initial to
the final number of determinants. When applied to the
first-row atoms, a reduction of the number of determi-
nants by a factor of up to about 27 has been obtained
(however, for the sake of comparison this factor should
be reduced here to about 11, see note [8]).
Here, we present our approach to reduce the computa-

tional cost of large multideterminant expansions, as it is
implemented in the QMC=Chem program developed in
our group.[9] Before describing our algorithm it is impor-
tant to emphasize on a fundamental and general aspect
regarding efficient calculations of large multi-determinant
expansions. Chemical systems studied in quantum chem-
istry are in general compact (not extended over large por-
tion of space like, for example, in solid-state applications)
and include a fixed and moderate number of electrons
(say, up to a thousand of active electrons). It is thus im-
portant to be very cautious with the notion of scaling law
of the computational effort as a function of the various
critical parameters: Number of electrons, orbitals, and
determinants. Indeed, the asymptotic regime where such
scaling laws are valid is not necessarily reached in prac-
tice and the prefactors generally play a crucial role. In
particular, the algorithm leading to the best theoretical

scaling law is not necessarily in practice the most optimal

http://arxiv.org/abs/1510.00730v2

2

one, as will be the case here. Following this idea, our
algorithm has been designed to be a good compromise
between good scaling laws and efficient practical imple-
mentation on modern processors. A detailed discussion
of this important aspect is presented in sectionV.
The standard approach in QMC is to use a Slater-

Jastrow trial wavefunction consisting of a determi-
nantal CI-type expansion and a Jastrow prefactor to
describe the explicit electron-electron and electron-
electron-nucleus interactions (dynamical correlation ef-
fects). The Jastrow factor can be treated individually
using standard techniques with a computational cost of
aboutO(N2

elec
) or even less if unphysical long-range inter-

actions are cut off. In what follows, the Jastrow prefactor
will thus be omitted for simplicity.
A general N -electron and Ndet-determinant CI wave

function Ψ can be expressed in the spin-free formalism
used in QMC, denoting R = (r1, ..., rN) the full set of
electron space coordinates, and R↑ and R↑ the two sub-
sets of coordinates associated with ↑ and ↓ electrons :

Ψ(R) =

Ndet
∑

k=1

ckDetS↑
k(R↑)DetS↓

k(RN↓
) (1)

In this formula, the matrix elements of the Nσ×Nσ Slater
matrices Sσ

k (σ =↑, ↓) are defined as [Sσ
k]ij = φj(ri) where

φj are single-particle molecular orbitals (for simplicity, a
common set of orbitals for ↑- and ↓- electrons is used here,
the generalization to two different sets being straightfor-
ward). The Slater matrices are labelled by an integer k
defining which specific subset of Nσ molecular orbitals
is used to build it, the molecular orbitals being chosen
among a set of NMO active orbitals [

(

NMO

Nσ

)

such possi-

bilities]. It must be emphasized that expansion (1) con-
tains in general a large number of identical spin-specific
determinants (in the case of the chlorine atom treated
here, only 35 584 determinants are different out of the
1 000 000 determinants of the expansion, see Table III).
In practice, it is then important to calculate only once
these unique determinants. A convenient form for the CI
wavefunction taking account of this aspect is the follow-
ing bilinear form

Ψ(R) =

N
↑

det
∑

i=1

N
↓

det
∑

j=1

CijD
↑
i (R↑)D

↓
j (R↓) = D↑

†
CD↓. (2)

whereDσ are column vectors containing the values at the
σ−electron positions of the Nσ

det
different determinants

appearing in the Ndet−expansion, Eq.(1), and C is the

matrix of coefficients of size N↑
det

×N↓
det

.
In practical applications the wavefunction (2) is rarely

the full CI expansion (except for small systems or very
small basis set) but some approximate form resulting usu-
ally from the truncation of a limited configuration inter-
action (typically, CISD) or CASSCF calculation using a
threshold for determinantal coefficients. In the case of
the Full Configuration Interaction (FCI) where all possi-
ble determinants are considered, Nσ

det
attains its maximal

value of
(

NMO

Nσ

)

. In that case, Ndet = N↑
det

×N↓
det

and the

number of unique spin-specific determinants Dσ(R) is of
order

√
Ndet. In practice, using truncated forms the num-

ber of unique determinants of non-negligible weight also
follows a similar rule, essentially because the most nu-
merous excitations implying multiple excitations of elec-
trons of same spin plays physically a marginal role (see
note [10] for a more quantitative discussion). As a con-
sequence, we note that the constant coefficient matrix C

is usually (very) sparse since it contains Ndet non-zero

entries where Ndet ≪ N↑
det

×N↓
det

.
In section II all theoretical and practical details of our

algorithm is presented. In section III, a new truncation
scheme for the CI expansion motivated by the structure
of the bilinear form is proposed. This truncation scheme
allows to compute less ↑- and ↓- determinants than in the
standard procedure where a threshold is applied on the
coefficients |ck| of Eq.(1) (see, e.g. [11]). In section IV,
numerical results for the chlorine atom are presented to
illustrate the various aspects of the algorithm using CI
wave functions containing up to one million of Slater de-
terminants. In this example it is shown that the FN-
DMC energy can be obtained with a trial wavefunction
including about 750 000 determinants with a computa-
tional increase of only ∼400 compared to the same calcu-
lation using a single determinant. In section V a number
of important remarks we believe to be important to take
into account when comparing and implementing different
algorithms are made. As an illustration, a comparison of
the performance of our algorithm compared to that of
the Table method of Clark et al.,[6] is presented. Finally,
a summary of our main results is presented in Sec.6.

II. ALGORITHM AND IMPLEMENTATION

At every Monte Carlo step, the values of all the NMO

molecular orbitals (MOs) are computed (or a subset if
some orbitals are never used in Ψ) at all electron po-

sitions and stored in an (N↑
elec

+ N↓
elec

) × NMO array
Φ. Similarly, the derivatives of the MOs with respect
to the electron coordinates (gradients ∇x,i, ∇y,i, ∇z,i,
and Laplacian ∆i) are stored in four arrays ∇xΦ, ∇yΦ,
∇zΦ, and ∆Φ. Our implementation has already been
detailed in reference [12], but let us recall that this step
can be computed very efficiently on modern x86 central
processing units (CPUs) as it makes an intensive use of
vector fused multiply-add (FMA) instructions and has a
very low memory footprint. In this section, we describe
how the multi-determinant wave function is evaluated, as
well as its derivatives (gradients and Laplacian).

A. Pre-processing

To take full advantage of the bilinear form, Eq.(2), a
preliminary step to be done only once before the QMC
run is performed. The purpose is twofold. First, to define

3

List index Decimal Binary Determinant

1 15 00001111 |1234〉
2 23 00010111 |1235〉
3 27 00011011 |1245〉
4 29 00011101 |1345〉
5 30 00011110 |2345〉
6 39 00100111 |1236〉
7 43 00101011 |1246〉
8 45 00101101 |1346〉
· · · · · · · · · · · ·

TABLE I: Ordering of determinants given by Eq. (3).

a convenient encoding of the determinants making their
manipulation easy and very rapid, and their storage re-
quirements very low. Second, to introduce a comparative
function allowing to sort the determinants so that con-
tiguous determinants in the sorted list are likely to have a
small number of differences in terms of multiple-particle
excitations. This step will be important to minimize the
number of Sherman-Morrison updates of the Slater ma-
trices as discussed in the next section.

Encoding. Determinants are initially encoded using 64-
bit integers as described in reference [13]: When the num-
ber of MOs is less or equal to 64, one integer encodes the
occupation of the orbitals by the ↑ electrons and another
one encodes the occupation of the orbitals by the ↓ elec-
trons, by setting to one the bits corresponding to the po-
sitions of occupied MOs. For instance, the Hartree-Fock
determinant for the chlorine atom (9 ↑-electrons and 8
↓-electrons) is encoded as (511,255), which is in binary
representation (111111111,11111111), and the doubly-
excited determinant resulting from an excitation from the
MO #7 to #12 for a ↑ and ↓ electron is (2495,2239) or
(100110111111,100010111111). When the system con-
tains more than 64 MOs, several Nint 64-bit integers are
used for each spin-specific determinant. The initial stor-
age requirement is therefore Ndet× (⌊NMOs/64⌋+1)×16
bytes.

The ↑ and ↓ determinants are treated in two distinct
lists. Each spin-specific list is then treated independently
as follows.

Sorting of determinants The list of determinants is
sorted with respect to some comparison function. We
recall that in a sort algorithm a key is associated with
each element of the list and that the choice of the com-
parison function is not unique. Furthermore, an exact
mapping between the elements of the list and the values
of the key is not necessary (several determinants can have
a common key). We have tested a variety of keys with
the objective of having both a simple and efficient encod-
ing and an ordered list of determinants where contiguous
determinants have a minimal number of differences in
terms of particle-excitations with high probability.

The key ω used here is the numerical value of the 64-
bit integer obtained by accumulating an xor operation

(⊕) on all the Nint 64-bit integers in constituting the
determinant

ω = i1 ⊕ · · · ⊕ iNint
− 263 (3)

As Fortran does not handle unsigned integers, we shift
the value by −263 to get an ordering consistent with the
unsigned representation. Table I gives an example of the
ordering with 4 electrons in 8 orbitals. One can remark
that the probability of using a single excitation to go from
one determinant to the next one in the list is very high.

The sort is performed in a linear time with respect toN↑
det

and N↓
det

thanks to the radix sort algorithm.[14] Then,
duplicate determinants are filtered out by searching for
duplicates among determinants giving the same key ω.
At this point, we have two spin-specific lists of sorted de-

terminants containing respectively N↑
det

and N↓
det

unique
determinants.
Sparse representation of Cij . We now want to express

the matrix of coefficients C in a sparse coordinate format
made of an array of values, an array of column indices,
and an array of row indices. Note that the dimension of
such arrays is exactly Ndet. For each determinant prod-
uct in Eq.2, we compute the key ω corresponding to the ↑
determinant. As the list of unique determinants is sorted,
we can use a binary search to find its position i in the
list in logarithmic time. This position is appended to the
list of row indices. Similarly, the list of column indices is
updated by finding the position j of the ↓ determinant.
To improve the memory access patterns in the next steps,

the value N↑
det

× (j − 1)+ i is appended to an additional
temporary array. Finally, the additional temporary array
is sorted (in linear time with the radix sort), and we apply
the corresponding ordering to the three arrays contain-
ing the sparse representation of the C matrix. Now, the
elements of the C matrix are ordered such that reading
the arrays sequentially corresponds to reading the matrix
column by column.
Let us emphasize that this pre-processing step is not

a bottleneck as it scales linearly with the number of de-
terminant products and has to be done only once. For
instance, this pre-processing step takes roughly 3 seconds
on a single core for a wave function with one million of
Slater determinants. In sharp contrast, the computa-
tions described in the next paragraphs that need to be
performed at every Monte Carlo step are critical.

B. Calculation of the vectors D↑ and D↓

The list of integers corresponding to the indices of the

molecular orbitals occupied in the first determinant D↑
1

is decoded from its compressed 64-bit integer representa-

tion. This list is used to build the Slater matrix S
↑
1
corre-

sponding to D↑
1
by copying the appropriate N↑ columns

of Φ. We then evaluate the determinant and the inverse
Slater matrix in the usual way: we perform the LU fac-

torization of S↑
1
using partial pivoting (using the dgetrf

4

lapack routine[15], O(N↑
elec

3

)). It is now straightfor-

ward to obtain the determinant D↑
1
(R↑), and the inverse

Slater matrix
(

S
↑
1

)−1

is obtained using the dgetri la-

pack routine in O(N↑
elec

3

). If the dimension of the Slater
matrix is smaller than 6 × 6, one can remark that this

cubic algorithm will cost more than the näıve O(N↑
elec

!)
algorithm. Moreover, linear algebra packages are opti-
mized for large matrices and usually do not perform well
on such small matrices. Therefore, we used a script to
generate hard-coded subroutines implementing the näıve
algorithm for the calculation of the determinant and the
inversion of 1× 1 to 5× 5 matrices.
For all the remaining determinants {D↑

i>1
}, the

Sherman-Morrison (SM) formula is used to update the

inverse Slater matrix in place in O(N↑
elec

2

). The col-
umn updates are executed sequentially by substituting
one column at a time. In the case of a double excita-
tion for instance, a sequence of two updates will be per-
formed. The substitution taking place at k-th column,
the SM formula is given by

[(S+ uv
†
k)

−1 = S
−1 − S

−1
uv

†
kS

−1

1 + v
†
kS

−1u
(4)

where u is the column vector associated with the sub-
stitution of molecular orbital j by molecular orbital j′,

ui = φj′ (ri)−φj(ri) and v
†
k = (0, . . . , 1, . . . , 0), the value

1 being at position k. Other implementations[6] compare
the Slater matrix to a common reference, but here we
perform the SM updates with respect to the previously

computed determinant D↑
i−1

. To avoid the propagation

of numerical errors, we do the following for each D↑
i . If

the absolute value of the ratio of the determinant with the
substituted column over the previous determinant is be-
low 10−3, the current column substitution is not realized
and stored in a list of failed updates. When all updates
have been tried, the list of updates to do is overwritten
by the list of failed updates and all the remaining updates
are tried again, until the list of failed updates becomes
empty. If at one iteration the length of the list of failed
updates has the same non-zero length as in the previous
iteration of the sequence, the SM updates are cancelled

and the determinant is re-computed with the O(N↑
elec

3

)
algorithm.
The SM updates are hot spots in large multi-

determinant calculations, so some particular effort was
invested in their computational efficiency. One can first
remark that it is more efficient to use the hard-coded
näıve algorithm to compute fully the inverse matrix from
scratch than to do the SM update for Slater matrices with
dimensions 2× 2 and 3× 3 (the cost of the SM update is
quadratic with the size of the matrix). Therefore, the SM
updates are used for sizes greater than 3×3. Secondly, if

N↑
elec

is small (typically less than 50), a general routine is
very likely to be inefficient: for example, in double loops
over i and j running from 1 to n the compiler is not aware

of the number of loop cycles n at compile time, so it will
generate code to try to vectorize the loops (peeling loop,
scalar loop, vector loop and tail loop) and test which
branch to choose at execution time. If the loop count is
low, the overhead dramatically affects the performance.
For all matrix sizes in the [4× 4 : 50× 50] range, we have
generated size-specific subroutines from a template were
the loop counts and matrix dimensions are hard-coded,
in such a way to force the compiler to generate 100%
vectorized loops. When needed, the tail loops are writ-
ten explicitly. The binary code produced by the compiler
was validated with the maqao[16] static analysis tool by
checking that vector fused-multiply-add (FMA) instruc-
tions were produced extensively in the innermost loops of
the Sherman-Morrison updates. For larger matrix sizes,
a general subroutine is used. In all the different versions,
we use padding in the matrices to enforce the proper
memory alignment of all the columns of the matrices to
enable the vectorization of the inner-most loops without
the peeling loop.

The scaling of this step is O(N↑
elec

2 ×N↑
det

).

C. Calculation of the gradients and Laplacian

The bilinear expression of the wave function in Eq.(2)
yields the following expressions for the derivatives:

∇x,iΨ = (∇x,iD↑)
†
CD↓ +D↑

†
C(∇x,iD↓) (5)

∆iΨ = (∆iD↑)
†
CD↓ +D↑

†
C(∆iD↓) + 2[(6)

(∇x,iD↑)
†
C(∇x,iD↓) +

(∇y,iD↑)
†
C(∇y,iD↓) +

(∇z,iD↑)
†
C(∇z,iD↓)]

In the expression of the Laplacian of the wave function
(Eq.(6)), the gradient terms ∇iD↑ vanish when i is a ↓
electron. Similarly, the terms ∇iD↓ vanish when i is an
↑ electron. As a consequence, the cross-terms involving
both the gradients ∇iD↑ and ∇iD↓ are always zero, and
the 3Nelec components of the gradient and Laplacian can
be computed using the same instructions with different
input data. Hence we define ∇̃i as a four-element vector
[∇x,∇y,∇z,∆], and one only needs to implement

∇̃iΨ = (∇̃iD↑)
†
CD↓ +D↑

†
C(∇̃iD↓) (7)

The gradients and the Laplacian of the wave function
are computed together using Eq.(7) in an array of dimen-

sion 4 × Nelec, using the arrays ∇̃D
↑ and ∇̃D

↓, dimen-

sioned respectively as 4×N↑
elec

×N↑
det

and 4×N↓
elec

×N↓
det

.

The computation of all the four components of ∇̃Ψ can be
performed simultaneously using Single Instruction Mul-
tiple Data (SIMD) vector instructions. Indeed, modern
x86 CPUs can use vector operations on 256- or 512 bit-
wide vectors, which correspond to 4 or 8 double precision

5

elements, if the arrays are properly aligned in memory.
Hence we aligned the arrays on 512-bit boundaries using
compiler directives.

The ∇̃D
↑
j are computed using the array ∇̃Φ and the

inverse Slater matrix:

∇̃iD
↑
j =

∑

k

[S↑−1

]ik∇̃Φ↑
kj (8)

The innermost loop is the loop over the 4 components
(gradients and Laplacian) of ∇̃, so we unroll twice the
loop over k to enable vector instructions also on the AVX-
512 micro-architecture which requires 8 double precision
elements.
As in the case of the calculation of the determinants,

the scaling of this step is O(N↑
elec

2 ×N↑
det

).
The calculation of the derivatives of the total wave

function is then performed using two dense matrix-vector
products: (∇D↑)

† · (CD↓) and (D↑
†
C) · (∇D↓), as de-

tailed in the next subsection.

D. Computation of the intermediate vectors and Ψ

An important point is that the two matrix-vector prod-
uctsD↑

†
C andCD↓ need to be performed only once, and

the resulting vectors are used for the computation of Ψ
and ∇̃Ψ. As this step consists in two sparse matrix/dense
vector product, it has inevitably a low arithmetic inten-
sity (small number of floating point operations per data
loaded or stored) and the execution speed is limited by
data access. It is therefore critical to optimize for this
step the data movement from the main memory to the
CPU cores. As the same matrix C is used in both prod-
ucts, the two products can be computed simultaneously:

do k=1,det_num
i = C_rows(k)

j = C_columns(k)
Da_C(j) = Da_C(j) + C(k)*Da(i)

C_Db(i) = C_Db(i) + C(k)*Db(j)
enddo

In this way, the three arrays corresponding to the C ma-
trix are streamed from the main memory through the
CPU registers only once. The data relative to the matrix
C can be moved from the main memory with a very low
latency as the hardware prefetchers of x86 CPUs are very
efficient on unit stride access patterns. Also, the order-
ing of the arrays of the C matrix in the pre-processing
phase (see subsection about pre-processing) maximizes
the probability of Da C(j) and Db(j) to be in already in
the CPU registers as the column index j is very likely to
be constant from one iteration to the next. Da(i) and
C Db(i) are likely to be in a low-level cache (L1 or L2)

as the arrays are always small, dimensioned by N↑
det

and

N↓
det

(typically 25 KiB for a wave function with a million
of Slater determinants).

The asymptotic computational cost of this step is
O(Ndet). It is the only place in our approach where the
cost is proportional to the full number of determinants.
However, thanks to the implementation just presented,
the prefactor is so small that we have never observed
that it is a time-limiting step : in the regime where Ψ
has one million of determinant products, this step takes
only 10% of the total computational time.

We chose the convention that the number of ↑ electrons
is greater or equal to the number of ↓ electrons. As a

consequence the general case is that N↑
det

≥ N↓
det

so we
choose to compute the value of Ψ using the dot product

(D↑C) ·D↓ as it involves only N↓
det

operations.

III. IMPROVED TRUNCATION SCHEME

In practice, to avoid to handle too many products of
determinants in the CI wavefunction, Eq.(1), some sort of
truncation scheme is to be introduced. In standard QMC
implementations, it is usually done either by introducing
a threshold parameter for the absolute value of the coef-
ficients ck or by taking the smallest number of products
of determinants contributing to a given percentage of the
norm of the wavefunction. Note that truncating coeffi-
cients of Configuration State Functions (CSFs) can also
be considered as an improvement as it does not break the
property of the wave function to be an eigenstate of S2.

In the preceding section, it has been shown how to
compute as efficiently as possible the derivatives of the
trial wavefunction for a given number of products of spin-
specific determinants, Ndet. A remarkable result is that
the bulk of the computational effort may be reduced to
the calculation of ↑- and ↓-determinants. Accordingly,
to remove a product of determinants whose spin-specific
determinants are already present in other products will
not change the computational cost. A natural idea is thus
to truncate the wavefunction by removing independently

↑- and ↓- determinants.

To do this, we decompose the norm of the wave func-
tion as

N =

N
↑

det
∑

i=1

N
↓

det
∑

j=1

C2

ij =

N
↑

det
∑

i=1

N ↑
i =

N
↓

det
∑

j=1

N ↓
j (9)

where N ↑
i =

∑N
↓

det

j=1
C2

ij and N ↓
j =

∑N
↑

det

i=1
C2

ij are the con-

tributions to the norm of determinants D↑
i and D↓

i . We
approximate the wave function by removing spin-specific
determinants whose contribution to the norm are less
than a σ-dependent threshold ǫσ chosen by the user (re-
move Dσ

k such N σ
k ≤ ǫσ).

As we shall see in the next section, this alternative
truncated scheme allows to keep more determinants in
the CI expansion at the same computational cost.

6

Ndet N↑

det
N↓

det
NMOs RAM (MiB) CPU time (ms)

1 1 1 9 6.12 0.0179

10 7 7 16 6.20 0.0470

100 40 32 18 6.24 0.1765

1 000 250 186 19 6.42 0.9932

10 000 1 143 748 19 7.35 4.5962

100 000 5 441 3 756 19 13.20 20.5972

1 000 000 21 068 14 516 19 45.84 83.1611

TABLE II: Number of determinants (Ndet, N
↑

det
and N↓

det
),

number of occupied molecular orbitals (NMOs), amount of
memory per core and CPU time per per core per Monte Carlo
step (without Sherman-Morrison updates). The cc-pVDZ ba-
sis set is used.

IV. RESULTS

The chlorine atom (17 electrons) was chosen as a
benchmark. The cc-pVDZ and cc-pVTZ basis sets[17]
expressed in Cartesian coordinates (respectively 19 and
39 molecular orbitals) have been used. Timings were
measured as the total CPU time needed for one walker
to realize one Monte Carlo step (all electrons are moved).
It includes the calculation of the wave function, the drift
vector and the local energy. The benchmarks were run
on a single-socket desktop computer, with an Intel®

Xeon® E3-1271 v3 quad-core processor at 3.60 GHz with
the Turbo feature disabled. QMC=Chem was compiled
with the Intel® Fortran Compiler version 15.0.2 with
options to generate code optimized for the AVX2 micro-
architecture, and linked with the Intel® Math Kernel Li-
brary (MKL). The calculation of the FN-DMC energies
were performed using 800 cores on the Curie machine
(TGCC/CEA/Genci). The total computational time we
used to generate Figure 2 was 182 500 CPU hours.
Perturbatively selected configuration interaction wave

functions of CIPSI type (Configuration Interaction using
a Perturbative Selection done Iteratively, see ref.[3]) in
the Full-CI space were prepared with our code (Quantum
Package[18]) from one to one million determinants.
To illustrate the fact that the bilinear representation of

Eq.(2) gives rise to an O(
√
Ndet) scaling in this case, we

have measured the CPU time needed to realize one Monte
Carlo step. All the determinants are computed with the
cubic algorithm (no Sherman-Morrison updates). How-
ever, results obtained with SM updates show exactly the
same behavior. The timings are given in table II, together
with the number of ↑ and ↓ unique determinants, the
number of occupied molecular orbitals, and the amount
of RAM needed per CPU core. The computational cost
compared to a single-determinant calculation is given in
figure 1.
From the data of table II one can observe a CPU time

scaling almost perfectly linearly with N↑
det

+ N↓
det

. In-
deed, fitting the data with a law of the form cNγ

det, the
value of γ obtained is 1.02. Now, regarding the scaling
obtained with respect to the total number of determinant

100 101 102 103 104 105 106

Number of determinants

100

101

102

103

104

C
o
m
p
u
ta
ti
o
n
a
l
co
st

Without SM

With SM

FIG. 1: Computational cost with respect to the number of
determinants, normalized to the cost of a single-determinant
calculation. Results are given with and without Sherman-
Morrison updates.

Ndet N↑

det
N↓

det
Ninv Nsubst CPU time(ms)

1 1 1 2.0 0 0.0179

10 7 7 2.0 29 0.0237

100 40 32 2.1 130 0.0428

1 000 250 186 2.6 925 0.1643

10 000 1 143 748 5.1 4 283 0.6808

100 000 5 441 3 756 17.7 19 049 3.2794

1 000 000 21 068 14 516 54.7 63 325 12.8688

TABLE III: Number of determinants (Ndet, N
↑

det
and N↓

det
),

average number of matrix inversions in O(N3) (Ninv), average
number of Sherman-Morrison column substitutions (Nsubst)
and CPU time per core per Monte Carlo step.

products, we found in all cases (tables II,III and for the
two spin sectors) an exponent γ around 0.6. This value
is slightly higher than the expected γ = 0.5 due to the
sparsity of the C matrix: among all possible determinant
products, many have a zero coefficient and those are not
counted in Ndet.

A. Speedup due to Sherman-Morrison updates

Now, including the Sherman-Morrison updates, a
speedup of 6 − 7× is obtained. According to the doc-
umentation of the MKL library, the full matrix inver-
sion (dgetrf followed by dgetri) uses approximately
2n3 floating-point (FP) operations for an n × n ma-
trix, whereas one Sherman-Morrison column substitu-
tion in our implementation uses 5n2 + 2n+ 3 FP opera-
tions. From the data of table III, the average number of
Sherman-Morrison updates per determinant ranges be-
tween 1.7 and 2.5. From these results, one can conclude
that our implementation of column substitutions has an
efficiency higher than the efficiency of the matrix inver-
sion using the MKL library for such small matrices: for

7

Excitation D↑D↓ D↑ D↓

0 1 1 1

1 38 90 88

2 2 177 1603 1520

3 43 729 7811 6507

4 308 045 8581 5071

5 351 182 2090 579

6 291 481 77 0

7 3 067 0 0

8 280 0 0

TABLE IV: In the 1 000 000-determinant wave function, the
number of determinants resulting from excitation operators of
degree 0 to 8 applied on the Hartree-Fock reference (D↑

1
D↓

1
,

D↑
1
or D↓

1
).

an 9 × 9 matrix, two column substitution involve 1.71
times less FP operations than the full matrix inversion,
which is four times less than the speedup we measure.
The average number of substitutions is lower than

what one would have obtained with a fixed reference de-
terminant. For instance, if the Hartree-Fock ↑ and ↓
determinants had been taken as a fixed reference and
assuming all substitutions were successful (with a deter-
minant ratio greater than 10−3 in absolute value), the av-
erage number of Sherman-Morrison substitutions would
have been equal to 3.46 according to the data of table IV
where we have measured an average of 1.78 for the same
wave function with our implementation.
The average number of matrix inversions per step is

at least two since one determinant has to be computed
for each spin. Then, the probability of using the O(N3)
algorithm instead of the Sherman-Morrison updates to
reduce the propagation of numerical errors stays very
low below 0.17 %. We have checked that for a given
set of electron coordinates the local energies computed
with and without the Sherman-Morrison updates differ
by no more than 2 10−5 atomic units on all the wave
functions. These data confirm that the numerical stabil-
ity of the Sherman-Morrison updates can be controlled
without affecting significantly the computational time.

B. Use of the improved truncation scheme

We have generated a wave function for the chlorine
atom using the cc-pVTZ basis set with one million deter-
minants. The determinants are generated with the CIPSI
algorithm in the FCI space with 2 frozen electrons in the
1s orbital (2 MOs always doubly occupied, and 15 active
electrons in 37 MOs). This wavefunction has been trun-
cated using a standard truncation scheme based on the
absolute value of the CI coefficients (products of determi-
nants in Eq.(1) with |ck| ≤ ǫ are removed) and using the
contribution of spin-specific determinants to the norm of
the wavefunction as proposed in the preceding section.

Threshold ǫ Ndet N↑

det
N↓

det
CPU time(ms)

|ck| > ǫ

0.96 1 1 1 0.02450

0.0404 10 8 8 0.03080

0.0103 100 53 35 0.05888

2.02 10−2 110 54 37 0.06004

10−2 1000 254 168 0.1745

2.53 10−3 2003 496 335 0.3364

10−3 10000 1700 994 0.9732

10−4 30198 3668 1853 1.920

3.55 10−5 100000 9256 4524 4.912

10−5 348718 24758 12511 14.20

10−6 993811 52291 26775 31.11

0.0 1000000 52433 26833 31.92

Threshold ǫ↑ = ǫ↓ = ǫ Ndet N↑

det
N↓

det
CPU time(ms)

N ↑
i > ǫ ; N ↓

j > ǫ

10−2 1 1 1 0.02450

5.10−3 3 3 2 0.02688

10−3 86 21 17 0.03899

5.10−4 214 29 28 0.04636

10−4 1361 93 74 0.08808

5.10−5 2424 120 89 0.1054

10−5 9485 234 166 0.1855

10−6 54016 772 523 0.5960

10−7 207995 2279 1389 1.740

10−8 459069 5797 3291 4.196

10−9 748835 14456 8054 9.724

10−10 926299 30320 16571 19.18

0 1000000 52433 26833 31.92

TABLE V: Number of determinants, number of spin-specific
determinants and computational cost as a function of
the truncation threshold with two different truncation ap-
proaches. The cc-pVTZ basis sets is used.

The wave functions obtained after truncation as well as
the computational time in milliseconds per Monte Carlo
step are detailed in table V.

As it should be the timings in the case of one single
or all determinants are identical in both cases. Choos-
ing ǫ large enough, only one determinant is kept. By
decreasing the threshold the number of determinants in-
creases, but with a marked difference between the two
truncation schemes. For a given total number of deter-
minants Ndet, the proposed scheme contains much less
spin-specific determinants than in the standard case. For
example, for Ndet ∼ 100 there are about two times less
σ-determinants. For Ndet ∼ 2 000 the factor is about 5
and close to Ndet ∼ 10 000 a factor 7 is observed. Fur-
thermore, the gains in CPU times evolve with the same
factor since the computational time is proportional to the
number of spin-specific determinants (not Ndet).

On figure 2, we can see that the FN-DMC energy is
converged within the error bars with a threshold of 10−6

8

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1

Threshold

−460.12

−460.11

−460.10

−460.09

−460.08
E
n
er
g
y
(a
.u
)

FIG. 2: Total FN-DMC energy of the chlorine atom
with truncated near-Full-CI/cc-pVTZ wave functions. Spin-
specific determinants with a contribution to the norm less
than the threshold are removed.

Threshold Energy (a.u.) CPU time (hours)

10−2 -460.0776(08) 15 820

5 10−3 -460.0800(10) 14 521

10−3 -460.0937(11) 14 522

10−4 -460.1045(12) 19 109

10−5 -460.1092(14) 22 344

10−6 -460.1067(17) 47 679

10−9 -460.1113(60) 48 530

TABLE VI: All-electron Fixed-Node DMC energies. The
threshold is applied to the contribution of the spin-specific
determinants to the norm of the wavefunction.

on the contributions N ↑
i and N ↓

j to the norm of the wave
function. Table VI gives the energies of the truncated
wave functions, and the CPU time needed to run the
calculations.
Figure 3 compares the computational cost obtained

with the two truncation approaches. For a fixed com-
putational cost, our truncation strategy keeps a much
larger number of determinant products than the standard
truncation scheme. Removing spin-specific determinants
which contribute to less than 10−5 of the norm can make
the calculation of a wave function with 9 485 determi-
nants cost only 7.6 more than a single determinant cal-
culation. Note that with such a number the FN-DMC
energy is expected to be converged as a function of the
number of Slater determinants (see, Fig.2).

V. SOME REMARKS ABOUT COMPARISONS

WITH OTHER METHODS

Comparing the practical performance of various meth-
ods is not easy. A first important aspect to consider is the
formal scaling of the computational cost (both in terms
of CPU and memory) as a function of the critical pa-
rameters: Number of electrons, molecular orbitals, and

0 200000 400000 600000 800000 1000000

Number of determinants

0

200

400

600

800

1000

1200

1400

C
o
m
p
u
ta
ti
o
n
a
l
co
st

Determinant products : CI coefficients

Spin-specific : Contribution to the norm

−410

−510

10−8

10−7

10−6
−510

10−9

10−6

FIG. 3: Computational cost with respect to the number of
determinants, normalized to the cost of a single-determinant
calculation. The truncation is applied to the absolute value
of the CI coefficients or to the contribution to the norm of
the spin-specific determinants. The value of the truncation
threshold is given on the figure next to the corresponding
points.

determinants. However, some caution is required since
the asymptotic regime where such scaling laws are valid
is not necessarily reached for the range of values consid-
ered. Here, we are in such a situation since a square-
root law for the computational cost as a function of the
number of determinants is approximately observed up to
about one million of determinants, despite the fact that
the theoretical dependence is linear.
A second important aspect – which is in general un-

derestimated – is the importance of optimally exploiting
the high-performance capabilities of present-day proces-
sors. Such an aspect must be taken into consideration
not only when implementing a given algorithm but also,
and much more importantly, at the moment of decid-
ing what type of algorithm should be used to achieve
the desired calculations (algorithm design step). While
describing our algorithm we have mentioned several im-
portant features. The use of vector fused-multiply add
(FMA) instructions (that is, the calculation of a=a+b*c
in one CPU cycle) for the innermost loops is extremely
efficient and should be searched for. Using such instruc-
tions (present in general-purpose processors), up to eight
FMA per CPU cycle can be performed. While comput-
ing loops, overheads are also very costly and should be
reduced/eliminated. By taking care separately of the var-
ious parts of the loop (peeling loop, scalar loop, vector
loop, and tail loop) through size-specific and/or hard-
coded subroutines, a level of 100% vectorized loops can
be reached. Another crucial point is to properly manage
the data flow arriving to the processing unit. As known,
to be able to move data from the memory to the CPU
with a sufficiently high data transfer to keep the CPU
busy is a major concern of modern calculations. Then,
it is not only important to make maximum use of the
low-latency cache memories to store intermediate data
but also to maximize prefetching allowing the processor

9

to anticipate the use of the right data and instructions in
advance. To enhance prefetching the algorithm should
allow the predictability of the data arrival in the CPU
(that is, avoid random access as much as possible). All
these various practical aspects are far from being anecdo-
tal since they may allow orders of magnitude in compu-
tational savings. We emphasize that in this work we have
chosen to make use of Sherman-Morrison (SM) updates,
despite the fact that it is not the best approach in terms
of formal scaling (for example, the Table method dis-
cussed below has a better scaling). However, the massive
calculations of scalar products at the heart of repeated
uses of SM updates are so ideally adapted to the features
of present-day processors just described above, that very
high performances can be obtained.

To give a quantitative illustration of such ideas we
present now some comparisons between the timings ob-
tained with our algorithm and those obtained with the
Table method of Clark et al.,[6] one of the most efficient
approach proposed so far. It is clear that making fair

comparisons between algorithms implemented within dif-
ferent contexts by different people is particularly difficult.
Accordingly, the timings given below must be taken with
lot of caution and should just be understood as an illus-
tration of the main issues. Ultimately, it is preferable to
compare the actual timings obtained for a given applica-
tion, with a given code, and a given processor. In this
spirit, we present in tables II and III our timings (in ms)
for an elementary Monte Carlo step (all electrons moved
once) in the case of the Cl atom.

We have coded the Table method in the QMC=Chem
code. In brief, the approach consists in computing the
Nσ

det determinants, DetSσ
k , and their derivatives, from

the evaluation of the series of ratios DetSσ
k/DetSσ

0 , where
S
σ
0 is the reference Slater matrix. Denoting s the num-

ber of particle-hole excitations connecting S
σ
0 and S

σ
k the

ratio of determinants can be expressed as the determi-
nant of a small sxs matrix whose matrix elements are
taken from a larger table of size NσxM computed in a
preliminary step (M= number of virtual orbitals used in
the expansion). The main computational costs are the
reading of the s2 elements in the pre-computed table and
the computation of the determinants of size s with a s3

cost, the two steps being performed for each elementary
determinant. In theory, the algorithm is attractive since
it avoids the repeated computation of SM updates whose
cost increases as the square of the number of σ-electrons.
However, in practice this advantage can be counterbal-
anced by the cost of making expensive (partially) ran-
dom access to the table. It is particularly true in the
case where large numbers of electrons and/or basis set
are used, a situation where the entire table cannot be
stored in the lowest-level cache.

To quantify such aspects, we present now some mea-
surements of the cost of the main steps of both algo-
rithms expressed in number of CPU cycles. The task
considered is the calculation of a wavefunction consisting
of a total of Ndet= 926299 determinants and involving

30320 different ↑-determinants and 16571 ↓-determinants
(this is the wavefunction corresponding to the threshold
ǫ↑ = ǫ↓ = 10−10 in Table V). Note that time measure-
ments are accurate with a precision of about ±20 cycles.
For the processor used here, a CPU cycle time is equal
to tCPU =0.28 ns.
Using our optimized SM algorithm, the time spent to

the computation of the initial reference inverse matrix
and determinant for the 9 ↑-electrons and 8 ↓ electrons
is measured to be 8368 and 7730 cycles, respectively. In
average (over the all set of different determinants), the
cost of updating the inverse Slater matrix and computing
the determinant is found to be about 544 and 359 cycles,
respectively. The average number of substitutions (and,
thus, number of elementary SM step corresponding to
one-column substitution) being about Nsubst ∼ 1.8, a
rough estimate of the total cost is then

TSM = [8368+7730+(544N↑
det

+359N↓
det

)Nsubst]tCPU ∼ 11.3ms

in good qualitative agreement with the total timing of
19.2 ms obtained by direct measurement and reported in
Table 5.
In the case of the Table method the initial step consist-

ing in evaluating the inverse of Sσ
0 and its determinant on

one hand and constructing the table on the other hand,
have been measured to take 16140 and 14574 cycles, re-
spectively (sum of ↑ and ↓ contributions). For each ratio
to evaluate, reading the table and calculating the deter-
minant of the s × s matrix using the LAPACK routine
dgetrf, are found to take in average 2430 and 2187 cy-
cles, for each spin respectively. An estimate of the cost
is thus

TTab = [16140+14574+(2430N↑
det

+2187N↓
det

)]tCPU ∼ 30.8ms

In this case it is seen that the optimized SM algorithm is
approximately three times faster than the Table method.
Although this schematic comparison should be taken
with lot of caution, it nevertheless illustrates that our
optimized SM algorithm is a competitive algorithm. It
should also be noted that in the present case, the table
of the Table method is sufficiently small (518 matrix ele-
ments) to be entirely stored in the low-latency L1 cache.
For larger numbers of electrons and basis sets, it will be
no longer true and important additional times should be
lost because of the numerous (partially) random access
to higher-level memories.

VI. SUMMARY

The objective of this work was to present in detail our
algorithm for computing very efficiently large multideter-
minant expansions. As illustrated here for the chlorine
atom and elsewhere in other applications,[1–4] this algo-
rithm allows to realize converged FN-DMC simulations
using a number of determinants superior to what has
been presented so far in the literature. For the chlorine

10

atom presented here, FN-DMC calculations using about
750 000 determinants with a computational increase of
only ∼ 400 compared to a single-determinant calculation
have been shown feasible. Several aspects make this algo-
rithm particularly efficient. They include not only algo-
rithmic improvements but also very practical considera-
tions about the way the calculations are implemented on
present-day processors. We strongly emphasize that this
last aspect is by no way anecdotal and must absolutely
be taken into account when an efficient algorithm has to
be devised and implemented. Our experience shows that
orders of magnitude in efficiency can be gained by taking
this aspect into consideration. Here, the choice of us-
ing SM updates instead of a more elegant scheme (such
as, for example, the Table method of Clark et al.[6] that
has a better formal scaling) has been driven by the fact
that massive computations of scalar products are ideally
suited to modern processors and can be performed ex-
tremely efficiently.
As just said, we calculate the determinants and their

derivatives using the Sherman-Morrison formula for up-
dating the inverse Slater matrices, as proposed in a num-
ber of previous works. In contrast with other imple-
mentations, we have found more efficient not to com-
pare the Slater matrix to a common reference (typically,
the Hartree-Fock determinant) but instead to perform
the Sherman-Morrison updates with respect to the pre-
viously computed determinant Dσ

i−1. To reduce the pref-
actor associated with this step we have sorted the list of
determinants with a suitably chosen order so that with
high probability successive determinants in the list differ
only by one- or two-column substitution, thus decreasing
the average number of substitution performed.
In this work, we have emphasized that multideter-

minant expansions contain in general a large number
of identical spin-specific determinants [for typical con-

figuration interaction-type wavefunctions the number of
unique spin-specific determinants Nσ

det
(σ =↑, ↓), having

a non-negligible weight in the wavefunction is of order
O(

√
Ndet)]. To have the full benefit of this remark, that

is, to get in practice a square-root law over a wide range
of numbers of determinants, it is essential to be able to
keep negligible the contributions whose cost scales with
the total number of determinants. As described in the
two sections devoted to the computation of the interme-
diate vectors and the gradients and Laplacian, the com-
putationally intensive parts of such contributions can be
mainly restricted to the calculation of two matrix-vector
products, performed only once for the wavefunction and
the 6Nel derivatives. A number of technical details re-
lated to the way such a calculation should be efficiently
implemented on a modern process have been given.

Finally, by taking advantage of the bilinear form for
the multideterminant expansion, Eq.(2), a new trunca-
tion scheme has been proposed. Instead of truncating
the expansion according to the magnitude of the coeffi-
cients of the expansion as usual, we propose to remove
spin-specific determinants instead according to their to-
tal contribution to the norm of the expansion. In this
way, more determinants can be handled for a price cor-
responding to shorter expansions.

Acknowledgments

AS and MC thank the Agence Nationale pour la
Recherche (ANR) for support through Grant No ANR
2011 BS08 004 01. This work has been possible thanks
to the computational support of CALMIP (Toulouse),
and GENCI projects x2015067347 and x2015081738.

[1] Emmanuel Giner, Anthony Scemama, and Michel Caf-
farel. Fixed-node diffusion Monte Carlo potential energy
curve of the fluorine molecule F2 using selected config-
uration interaction trial wavefunctions. J. Chem. Phys.,
142(4):044115, jan 2015.

[2] Anthony Scemama, Thomas Applencourt, Emmanuel
Giner, and Michel Caffarel. Accurate nonrelativistic
ground-state energies of 3d transition metal atoms. J.

Chem. Phys., 141(24):244110, dec 2014.
[3] Emmanuel Giner, Anthony Scemama, and Michel Caf-

farel. Using perturbatively selected configuration inter-
action in quantum Monte Carlo calculations. Canadian

Journal of Chemistry, 91(9):879–885, sep 2013.
[4] Michel Caffarel, Emmanuel Giner, Anthony Scemama,

and Alejandro Ramı́rez-Soĺıs. Spin Density Distribution
in Open-Shell Transition Metal Systems: A Compara-
tive Post-Hartree–Fock Density Functional Theory, and
Quantum Monte Carlo Study of the CuCl 2 Molecule. J.
Chem. Theory Comput., 10(12):5286–5296, dec 2014.

[5] Phani K. V. V. Nukala and P. R. C. Kent. A fast and ef-

ficient algorithm for slater determinant updates in quan-
tum monte carlo simulations. The Journal of Chemical

Physics, 130(20):204105, 2009.
[6] Bryan K. Clark, Miguel A. Morales, Jeremy McMinis,

Jeongnim Kim, and Gustavo E. Scuseria. Comput-
ing the energy of a water molecule using multidetermi-
nants: A simple efficient algorithm. J. Chem. Phys.,
135(24):244105, 2011.

[7] Gihan L. Weerasinghe, Pablo López Ŕıos, and Richard J.
Needs. Compression algorithm for multideterminant
wave functions. Physical Review E, 89(2), feb 2014.

[8] The best gain in computational savings given in [7] is
26.57 (Ns/Nd for B in Table I). However, it includes a fac-
tor of about 2.5 associated with the decompression of the
wavefunction written in terms of CSF’s and the regroup-
ing of identical determinants. For the sake of comparison,
this latter factor should not be taken into account since
the starting multideterminant wavefunction used here is
supposed to be expanded over a set of different determi-
nants.

11

[9] Anthony Scemama, Michel Caffarel, Emmanuel Oseret,
and William Jalby. QMC=Chem: A Quantum Monte
Carlo Program for Large-Scale Simulations in Chemistry
at the Petascale Level and beyond. In High Performance

Computing for Computational Science - VECPAR 2012,
pages 118–127. Springer Science Business Media, 2013.

[10] This general result can be illustrated in the particular
case of the chlorine atom considered here. Using our per-
turbatively selected CI wavefunction including up to one-
million of determinants (cc-pVDZ basis set), the number
of unique spin-specific determinants Nσ

det (see, table II)
is observed to scale roughly as the square root of the
total number of determinants for both spins. Indeed, a
least-square fit of the data using a law of the form cNγ

det

leads to about γ = 0.6 for both spin sectors. Let us now
consider a CISD calculation in the same basis set. Us-
ing a value of 10−9 as threshold for the coefficients, the
total contribution corresponding to the HF, single-, and
double-excitations are found to be about 0.936, 0.002,
and 0.062, respectively. Among all double excitations
present in the expansion, those involving two electrons
of opposite spins contribute for a total of about 0.050,
while spin-like excitations contribute only for 0.008 and
0.004 for the ↑ and ↓ sector, respectively.

[11] Raymond C. Clay and Miguel A. Morales. Influence
of single particle orbital sets and configuration selection
on multideterminant wavefunctions in quantum Monte
Carlo. J. Chem. Phys., 142(23):234103, jun 2015.

[12] Anthony Scemama, Michel Caffarel, Emmanuel Oseret,

and William Jalby. Quantum Monte Carlo for large
chemical systems: Implementing efficient strategies for
petascale platforms and beyond. J. Comput. Chem.,
34(11):938–951, jan 2013.

[13] Anthony Scemama and Emmanuel Giner. An efficient
implementation of Slater-Condon rules. ArXiv e-prints,
nov 2013.

[14] Arne Andersson, Torben Hagerup, Stefan Nilsson, and
Rajeev Raman. Sorting in linear time? In Proceedings of

the twenty-seventh annual ACM symposium on Theory

of computing - STOC 95. ACM Press, 1995.
[15] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammar-
ling, A. McKenney, and D. Sorensen. LAPACK Users’

Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999.

[16] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T.
Acquaviva, and W. Jalby. MAQAO: Modular assembler
quality Analyzer and Optimizer for Itanium 2. In Work-

shop on EPIC Architectures and Compiler Technology

San Jose, California, United-States, Mar 2005.
[17] David E. Woon and Thom H. Dunning. Gaussian ba-

sis sets for use in correlated molecular calculations. III.
The atoms aluminum through argon. J. Chem. Phys.,
98(2):1358, 1993.

[18] A. Scemama, E. Giner, T. Applencourt, G. David, and
M. Caffarel. Quantum package v0.6, September 2015.
doi:10.5281/zenodo.30624.

