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MACROSCOPIC EVOLUTION OF MECHANICAL AND THERMAL ENERGY IN A HARMONIC CHAIN WITH RANDOM FLIP OF VELOCITIES
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We consider an unpinned chain of harmonic oscillators with periodic boundary conditions, whose dynamics is perturbed by a random flip of the sign of the velocities. The dynamics conserves the total volume (or elongation) and the total energy of the system. We prove that in a diffusive space-time scaling limit the profiles corresponding to the two conserved quantities converge to the solution of a diffusive system of differential equations. While the elongation follows a simple autonomous linear diffusive equation, the evolution of the energy depends on the gradient of the square of the elongation.

Introduction

Harmonic chains with energy conserving random perturbations of the dynamics have recently received attention in the study of the macroscopic evolution of energy [START_REF] Basile | Thermal conductivity in harmonic lattices with random collisions[END_REF][START_REF] Bernardin | Fourier law and fluctuations for a microscopic model of heat conduction[END_REF][START_REF] Jara | Superdiffusion of energy in a system of harmonic oscillators with noise[END_REF][START_REF] Komorowski | Diffusive propagation of energy in a non-acoustic chain[END_REF][START_REF] Lukkarinen | Harmonic chain with velocity flips: thermalization and kinetic theory[END_REF][START_REF] Simon | Hydrodynamic limit for the velocity-flip model[END_REF]. They provide models that have a non-trivial macroscopic behavior which can be explicitly computed. We consider here the dynamics of an unpinned chain where the velocities of particles can randomly change sign. This random mechanism is equivalent to the deterministic collisions with independent environment particles of infinite mass. Since the chain is unpinned, the relevant conserved quantities of the dynamics are the energy and the volume (or elongation).

Under a diffusive space-time scaling, we prove that the profile of elongation evolves independently of the energy and follows the linear diffusive equation B t rpt, uq " 1 2γ B 2 uu rpt, uq.

(1.1)

Here u is the Lagrangian space coordinate of the system and γ ą 0 is the intensity of the random mechanism of collisions. The energy profile can be decomposed into the sum of mechanical and thermal energy ept, uq " e mech pt, uq `ethm pt, uq

where the mechanical energy is given by e mech pt, uq " 1 2 rpt, uq 2 , while the thermal part e thm pt, uq, that coincides with the temperature profile, evolves following the non-linear equation:

B t e thm pt, uq " 1 4γ B 2 uu e thm pt, uq `1 2γ pB u rpt, uqq 2 .

(1.2) This is equivalent to the following conservation law for the total energy:

B t ept, uq " 1 4γ B 2 uu ˆept, uq `rpt, uq 2 2 
˙.

(1.

3)

The derivation of the macroscopic equations (1.1) and (1.2) from the microscopic dynamical system of particles, after a diffusive rescaling of space and time, is the goal of this paper. Concerning the distribution of the energy in the frequency modes: the mechanical energy e mech pt, uq is concentrated on the modes corresponding to the largest wavelength, while the thermal energy e thm pt, uq is distributed uniformly over all frequencies. Note that1 2γ pB u rpt, uqq 2 is the rate of dissipation of the mechanical energy into thermal energy.

The presence of the non-linearity in the evolution of the energy makes the macroscopic limit non-trivial. Relative entropy methods (as introduced in [START_REF] Yau | Relative entropy and hydrodynamics of Ginzburg-Landau models[END_REF]) identify correctly the limit equation (see [START_REF] Simon | Hydrodynamic limit for the velocity-flip model[END_REF]), but in order to make them rigorous one needs sharp bounds on higher moments than cannot be controlled by the relative entropy 1 . In this sense the proof in [START_REF] Simon | Hydrodynamic limit for the velocity-flip model[END_REF] is not complete.

We follow here a different approach based on Wigner distributions. The Wigner distributions permit to control the energy distribution over various frequency modes and provide a natural separation between mechanical and thermal energies. The initial positions and velocities of particles can be random, and the only condition we ask, besides to have definite mean asymptotic profiles of elongation and energy, is that the thermal energy spectrum has a square integrable density. In the macroscopic limit we prove that locally the thermal energy spectrum has a constant density equal to the local thermal energy (or temperature), i.e. that the system is, at macroscopic positive times, in local equilibrium, even though it is not at initial time. Also follows from our result that the mechanical energy is concentrated on the lowest modes. This is a stronger local equilibrium result than the one usually obtained with relative entropy techniques. The Wigner distribution approach had been successfully applied in different contexts for systems perturbed by noise with more conservation laws in [START_REF] Jara | Superdiffusion of energy in a system of harmonic oscillators with noise[END_REF][START_REF] Komorowski | Diffusive propagation of energy in a non-acoustic chain[END_REF]. Here we need a particular asymmetric version of the Wigner distribution, in order to deal with a finite size discrete microscopic system.

When the system is pinned, only energy is conserved and its macroscopic evolution is linear, and much easier to be obtained. In this case the thermalization and the correlation structure have been studied in [START_REF] Lukkarinen | Thermalization in harmonic particle chains with velocity flips[END_REF][START_REF] Lukkarinen | Harmonic chain with velocity flips: thermalization and kinetic theory[END_REF].

When the chain of oscillators is anharmonic, still with velocity flip dynamics, the hydrodynamic limit is a difficult non-gradient problem, for the moment still open. In that case the macroscopic equations would be:

B t rpt, uq " 1 2γ B 2 
uu " τ pr, eq ‰ , B t ept, uq " B u " Dpr, eqB u β ´1pr, eq ‰ `1 4γ B 2 uu `τ pr, eq 2 ˘.

(1.4)

where τ pr, eq is the thermodynamic equilibrium tension as function of the volume r and of the energy e, and β ´1pr, eq is the corresponding temperature, while Dpr, eq is the thermal diffusivity defined by the usual Green-Kubo formula, as space-time variance of the energy current in the equilibrium infinite dynamics at average elongation r and energy e (see Section 4 for the definition of these quantities). The linear response and the existence of Dpr, eq have been proven in [START_REF] Bernardin | Transport properties of a chain of anharmonic oscillators with random flip of velocities[END_REF].

Microscopic dynamics

2.1. Periodic chain of oscillators. In the following we denote by T n :" Z{nZ " t0, . . . , n ´1u the discrete circle with n points, and, for any L ą 0, by TpLq thecontinuous circle of length L, and we set T :" Tp1q.

We consider a one-dimensional harmonic chain of n oscillators, all of mass 1, with periodic boundary conditions. The clearest way to describe this system is as a massive one dimensional discrete surface tϕ x P R, x P T n u. The element (or particle) x of the surface is at height ϕ x and has mass equal to 1. We call its velocity (that coincides with its momentum) p x P R. Each particle x is connected to the particles x ´1 and x `1 by harmonic springs, so that n ´1 and 0 are connected in the same way. The total energy of the system is given by the Hamiltonian:

H n :" ÿ xPTn E x , E x :" p 2 x 2 `pϕ x ´ϕx´1 q 2 2 . (2.1) 
In addition to the Hamiltonian dynamics associated to the harmonic potentials, particles are subject to a random interaction with the environment: at independently distributed random Poissonian times, the momentum p x is flipped into ´px . The resulting equations of the motion are # dϕ x ptq " n 2 p x ptq dt, dp x ptq " n 2 `ϕx`1 ptq `ϕx´1 ptq ´2ϕ x ptq ˘dt ´2p x pt ´q dN x pγn 2 tq, (2.2)

for any x P T n . Here tN x ptq ; t ě 0, x P T n u are n independent Poisson processes of intensity 1, and the constant γ is positive. We have already accelerated the time scale by n 2 , according to the diffusive scaling. Notice that the energy H n is conserved by this dynamics. There is another important conservation law that is given by the sum of the elongations of the springs, that we define as follows.

We call r x " ϕ x ´ϕx´1 the elongation of the spring between x and x ´1, and since x P T n we have r 0 " ϕ 0 ´ϕn´1 . The equation of the dynamics in these coordinates are given by: # dr x ptq " n 2 `px ptq ´px´1 ptq ˘dt dp x ptq " n 2 `rx`1 ptq ´rx ptq ˘dt ´2p x pt ´q dN x pγn 2 tq, x P T n .

(2.3)

This implies that the dynamics is completely defined giving the initial conditions tr x p0q, p x p0q, x P T n u.

The periodicity in the ϕ x variables would impose that ř n´1

x"0 r x p0q " 0. On the other hand the dynamics defined by (2.3) is well defined also if ř n´1

x"0 r x p0q ‰ 0 and has the conservation law ř n´1

x"0 r x ptq " ř n´1

x"0 r x p0q :" R n . Note that R n can also assume negative values. In this case we can picture the particles as n points q 0 , . . . , q n´1 P Tp|R n |q, the circle of length |R n |. These points can be defined as q x :" " ř x y"0 r y ‰ mod|Rn| , for x " 0, . . . , n ´1. It follows that q n " q 0 . We will not use neither the q x coordinates nor the ϕ x coordinates, but we consider only the evolution defined by (2.3) with initial configurations ř n´1

x"0 r x p0q " R n P R. 2.2. Generator and invariant measures. The generator of the stochastic dynamics (rptq :" tr x ptqu xPTn , pptq :" tp x ptqu xPTn ), is given by

L n :" n 2 A n `n2 γ S n ,
where the Liouville operator A n is formally given by

A n " ÿ xPTn " pp x ´px´1 q B Br x `pr x`1 ´rx q B Bp x * , while, for f : Ω n Ñ R, S n f pr, pq " ÿ xPTn f pr, p x q ´f pr, pq ( 
where p x is the configuration that is obtained from p by reversing the sign of the velocity at site x, namely: pp x q y " p y if y ‰ x and pp x q x " ´px . The two conserved quantities H n " ř xPTn E x and R n " ř xPTn r x , are determined by the initial data (eventually random), and typically they should be proportional to n: H n " ne, R n " nr, with e P R `the average energy per particle, and r P R the average spring elongation. Consequently the system has a two parameters family of stationary measures given by the canonical Gibbs distributions

µ n τ,β pdr, dpq " ź xPTn exp `´βpE x ´τ r x q ´Gτ,β ˘dr x dp x , β ą 0, τ P R, where G τ,β " log " a 2πβ ´1 ż R e ´β 2 pr 2 ´2τ rq dr ı " log " 2πβ ´1 exp ´τ 2 β 2 ¯ı.
As usual, the parameters β ´1 ą 0 and τ P R are called respectively temperature and tension. Observe that the function

rpτ, βq " β ´1 B τ G τ,β " τ (2.4)
gives the average equilibrium length in function of the tension τ , and

Epτ, βq " τ rpτ, βq ´Bβ G τ,β " β ´1 `τ 2 2 (2.5)
is the corresponding thermodynamic internal energy function. Note that the energy Epτ, βq is composed by a thermal energy β ´1 and a mechanical energy τ 2 2 . 2.3. Hydrodynamic limits. Let µ n pdr, dpq be an initial Borel probability distribution on Ω n . We denote by P n the law of the process tprptq, pptqq ; t ě 0u starting from the measure µ n and generating by L n , and by E n its corresponding expectation. We are given initial continuous profiles of tension tτ 0 puq ; u P Tu and of temperature tβ ´1 0 puq ą 0 ; u P Tu. The thermodynamic relations (2.4) and (2.5) give the corresponding initial profiles of elongation and energy as r 0 puq :" τ 0 puq and e 0 puq :" 1 β 0 puq `τ 2 0 puq 2 , u P T.

(2.6)

The initial distributions µ n are assumed to satisfy the following mean convergence statements:

1 n ÿ xPTn G ´x n ¯En " r x p0q ‰ Ý ÝÝÝ Ñ nÑ`8 ż T Gpuq r 0 puq du, (2.7) 1 n ÿ xPTn G ´x n ¯En " E x p0q ‰ Ý ÝÝÝ Ñ nÑ`8 ż T Gpuq e 0 puq du, (2.8) 
for any test function G that belongs to the set C 8 pTq of smooth functions on the torus. We expect the same convergence to happen at the macroscopic time t:

1 n ÿ xPTn G ´x n ¯En " r x ptq ‰ Ý ÝÝÝ Ñ nÑ`8 ż T Gpuq rpt, uq du, 1 n ÿ xPTn G ´x n ¯En " E x ptq ‰ Ý ÝÝÝ Ñ nÑ`8 ż T Gpuq ept, uq du, (2.9) 
where the macroscopic evolution for the volume and energy profiles follows the system of equations:

$ ' ' & ' ' % B t rpt, uq " 1 2γ B 2 uu rpt, uq, B t ept, uq " 1 4γ B 2 uu ´e `r2 2 ¯pt, uq, pt, uq P R `ˆT, (2.10) 
with the initial condition rp0, uq " r 0 puq, ep0, uq " e 0 puq.

The solutions ept, ¨q, rpt, ¨q of (2.10) are smooth when t ą 0 (the system of partial differential equations is parabolic). Note that the evolution of rpt, uq is autonomous of ept, uq. The precise assumptions that are needed for the convergence (2.9) are stated in Theorems 3.7 and 3.8 below.

Main results

3.1. Notations. ' The initial total energy can be random but with uniformly bounded expectation:

sup n 1 E n " 1 n ÿ xPTn E x p0q  ă `8. (3.9) 
' We assume that there exist continuous initial profiles r 0 : T Ñ R and e 0 : T Ñ p0, `8q such that Next assumption is important to obtain the macroscopic equation for the energy in (2.10). It concerns the energy spectrum of fluctuations around the means at initial time. Define the initial thermal energy spectrum u n p0, kq, k P p T n , as follows: let p rp0, kq and p pp0, kq denote respectively the Fourier transforms of the initial random configurations tr x p0qu xPTn and tp x p0qu xPTn , and let

E
u n p0, kq :" 1 2n E n " ˇˇp pp0, kq ˇˇ2 `ˇp rp0, kq ´En rp rp0, kqs ˇˇ2 ı , k P p T n . (3.14)
Due to the Parseval identity (3.3) we have

1 n ÿ kP p Tn u n p0, kq " 1 2n ÿ xPTn E n " p 2 
x p0q ``r x p0q ´En rr x p0qs ˘2ı .

Assumption 3.4. (Square integrable initial thermal energy spectrum)

sup n 1 " 1 n ÿ kP p Tn u 2 n p0, kq * ă `8. (3.15) 
This technical assumption can be seen as a way to ensure that the thermal energy does not concentrate on one (or very few) wavelength(s). Remark 3.5. Assumptions 3.1 and 3.4 are satisfied if the measures µ n are given by local Gibbs measures (non homogeneous product), corresponding to the given initial profiles of tension and temperature tτ 0 puq, β ´1 0 puq ; u P Tu, defined as follows:

dµ n τ 0 p¨q,β 0 p¨q " ź xPTn exp ! ´β0 ´x n ¯´E x ´τ0 ´x n ¯rx ¯´G τ 0 p x n q,β 0 p x n q ) dr x dp x . (3.16)
with r 0 puq " τ 0 puq and e 0 puq " β ´1 0 puq `r2 0 puq 2 , see [7, Sections 9.2.3-9.2.5]. Note that our assumptions are much more general, as we do not assume any specific condition on the correlation structure of µ n . In particular microcanonical versions of (3.16), where total energy and total volumes are conditioned at fixed values ne and nr, are included by our assumptions. Remark 3.6. We will see that macroscopically, our assumptions state that the initial energy has a mechanical part, related to τ 0 p¨q, that concentrates on the longest wavelength (i.e. around k " 0), see in Section 5 equation (5.33) for the precise meaning. For what concerns the thermal energy, (3.15) states that it has a square integrable density w.r.t. k.

Formulation of mean convergence.

In this section we state two theorems dealing with the mean convergence of the two conserved quantities, namely the elongation and energy. The first one (Theorem 3.7) is proved straightforwardly in Section 3.4 below. The second one is more involved, and is the main subject of the present paper. Theorem 3.7 (Mean convergence of the elongation profile). Assume that tµ n u nPN is a sequence of probability measures on Ω n such that (3.10) is satisfied, with r 0 P CpTq. Let rpt, uq be the solution defined on R `ˆT of the linear diffusive equation:

$ & % B t rpt, uq " 1 2γ B 2 uu rpt, uq, pt, uq P R `ˆT,
rp0, uq " r 0 puq.

(3.17)

Then, for any G P C 8 pTq and t P R `, 

lim nÑ`8 1 n ÿ xPTn G ´x n ¯En " p x ptq ‰ " 0, ( 3 
1 n ÿ xPTn ż R `G´t , x n ¯En " E x ptq ‰ dt " ż R `ˆT
Gpt, uq ept, uq dtdu, (3.20) where ept, uq " e mech pt, uq `ethm pt, uq, with ' the mechanical energy, given by e mech pt, uq :" 1 2 prpt, uqq 2 and the function rpt, uq being the solution of (3.17), ' the thermal energy e thm pt, uq, defined as the solution of

$ & % B t e thm pt, uq " 1 4γ B 2 uu e thm pt, uq `1 2γ `Bu rpt, uq ˘2,
e thm p0, uq " β ´1 0 puq " e 0 puq ´emech p0, uq ą 0.

(3.21)

The proof of Theorem 3.8 is the aim of Sections 5 -7.

Remark 3.9. Note that (3.17) and (3.21) are equivalent to the system (2.10). This new way of seeing the macroscopic equations is more convenient, as it naturally arises from the proof. More precisely, using (3.17) we conclude that the mechanical energy e mech pt, uq satisfies the equation

B t e mech pt, uq " 1 2γ
´B2 uu e mech pt, uq ´`B u rpt, uq ˘21 0 and the macroscopic energy density function satisfies

$ & % B t ept, uq " 1 4γ B 2 uu `ept, uq `emech pt, uq ˘,
ep0, uq " e 0 puq.

Remark 3.10. We actually prove a stronger result that includes a local equilibrium statement, see Theorem 7.5 below.

3.4. Proof of the hydrodynamic limit for the elongation. Here we give a simple proof of Theorem 3.7. From the evolution equations (2.3) we have the following identities:

1 n ÿ xPTn G ´x n ¯En " r x ptq ´rx p0q ‰ " n 2 ż t 0 1 n ÿ xPTn G ´x n ¯En " p x psq ´px´1 psq ‰ ds and 2γn 2 ż t 0 1 n ÿ xPTn G ´x n ¯En " p x psq ‰ ds " n 2 ż t 0 1 n ÿ xPTn G ´x n ¯En " r x`1 psq ´rx psq ‰ ds `1 n ÿ xPTn G ´x n ¯En " p x p0q ´px ptq ‰ .
Substituting from the second equation into the first one we conclude that

1 n ÿ xPTn G ´x n ¯En " r x ptq ´rx p0q ‰ " ż t 0 1 2γn ÿ xPTn ∆ n G ´x n ¯En " r x psq ‰ ds (3.22) ´1 2γn 2 ÿ xPTn ∇ n G ´x n ¯En " p x p0q ´px ptq ‰ ,
where

∇ n G ´x n ¯" n ´G´x `1 n ¯´G ´x n ¯∆ n G ´x n ¯" n ´∇n G ´x n ¯´∇ n G ´x ´1 n ¯¯.
By energy conservation and Assumption 3.1 it is easy to see that ˇˇˇ1

n 2 ÿ xPTn ∇ n G ´x n ¯En " p x ptq ‰ ˇˇˇ2 ď 1 n 2 ˆ1 n ÿ xPTn ˇˇ∇ n G ´x n ¯ˇˇ2 ˙ˆ1 n ÿ xPTn E n " p 2 x ptq ‰ ď CpGq n ˆ1 n ÿ xPTn E n " E 2 x p0q ‰ ˙ÝÑ nÑ8 0. (3.23) Let us define rpnq pt, uq :" E n " r x ptq ‰ , for any u P " x n , x`1 n ˘, n ě 1.
Thanks to the energy conservation we know that there exists R ą 0 such that sup ně1 sup tPr0,T s }r pnq pt, ¨q} L 2 pTq ": R ă `8.

(3.24)

The above means that for each t P r0, T s the sequence rpnq pt, ¨q( ně1 is contained in BR -the closed ball of radius R ą 0 in L 2 pTq, centered at 0. The ball is compact in L 2 w pTq -the space of square integrable functions on the torus T equipped with the weak L 2 topology. The topology restricted to BR is metrizable, with the respective metric given e.g. by dpf, gq :"

`8 ÿ n"1 1 2 n |xf ´g, φ n y L 2 pTq | 1 `|xf ´g, φ n y L 2 pTq | , f, g P BR ,
where tφ n u is a countable and dense subset of L 2 pTq that can be chosen of elements of C 8 pTq. From (3.22) and (3.23) we conclude in particular that for each T ą 0 the sequence rpnq p¨q ( is equicontinuous in C `r0, T s, BR ˘. Thus, according to the Arzela Theorem, see e.g. [6, p. 234], it is sequentially pre-compact in the space C pr0, T s, L 2 w pTqq for any T ą 0. Consequently, any limiting point of the sequence satisfies the partial differential equation (3.17) in a weak sense in the class of L 2 pTq functions. Uniqueness of the weak solution of the heat equation gives the convergence claimed in (3.19) and the identification of the limit as the strong solution of (3.17).

Concerning (3.18), from (2.3) we have

1 n ÿ xPTn G ´x n ¯En " p x ptq ‰ " e ´2γn 2 t n ÿ xPTn G ´x n ¯En " p x p0q ‰ `ż t 0 e ´2γn 2 pt´sq ÿ xPTn ∇ nG ´x n ¯En " r x psq ‰ ds,
where ∇ nGp x n q " n `Gp x n q ´Gp x´1 n q ˘. Using again energy conservation and the Cauchy-Schwarz inequality, it is easy to see that the right hand side of the above vanishes as n Ñ 8. Remark 3.11. Note that we have not used the fact that the initial average of the velocities vanishes. Additionally, by standard methods it is possible to obtain the convergence of elongation and momentum empirical distributions in probability (see (3.18) and (3.19)), but we shall not pursuit this here.

Conjecture for anharmonic interaction and thermodynamic considerations

Our results concern only harmonic interactions, but we can state the expected macroscopic behavior for the anharmonic case. Consider a non-quadratic potential V prq, of class C 1 and growing fast enough to `8 as |r| Ñ 8. The dynamics is now defined by # dr x ptq " n 2 `px ptq ´px´1 ptq ˘dt

dp x ptq " n 2 `V 1 pr x`1 ptqq ´V 1 pr x ptqq ˘dt ´2p x pt ´q dN x pγn 2 tq, x P T n . (4.1)
The stationary measures are given by the canonical Gibbs distributions

dµ n τ,β " ź xPTn e ´βpEx´τ rxq´G τ,β dr x dp x , τ P R, β ą 0, (4.2) 
where we denote

E x " p 2 x 2 `V pr x q,
the energy that we attribute to the particle x, and

G τ,β " log " a 2πβ ´1 ż e ´βpV prq´τ rq dr  . (4.3) 
Thermodynamic entropy Spr, eq is defined as

Spr, eq " inf τ PR,βą0 βe ´βτ r `Gpτ, βq ( . (4.4) 
Then we obtain the inverse temperature and tension as functions of the volume r and internal energy u:

β ´1pr, eq " B e Spr, eq, τ pr, eq " ´β´1 pr, eqB r Spr, eq

The macroscopic profiles of elongation rpt, uq and energy ept, uq will satisfy the equations

B t r " 1 2γ B 2 uu " τ pr, eq ‰ , B t e " B u " Dpr, eqB u β ´1‰ `1 4γ B 2 uu `τ pr, eq 2 ˘. (4.6)
Here the diffusivity Dpr, eq ą 0 is defined by a Green-Kubo formula for the infinite dynamics in equilibrium at the given values pr, eq. The precise definition and the proof of the convergence of Green-Kubo formula for this dynamics can be found in [START_REF] Bernardin | Transport properties of a chain of anharmonic oscillators with random flip of velocities[END_REF].

A straightforward calculation gives the expected increase of thermodynamic entropy:

d dt ż T Sprpt, uq, ept, uqq du " ż T β ˆpB u τ q 2 2γ
`Dpr, eq `Bu β

´1˘2 ˙du ě 0. (4.7)

Time-dependent Wigner distributions

Before exposing the strategy of the proof of Theorem 3.8, let us start by introducing our main tool: the Wigner distributions associated to the dynamics. 

´1 n ÿ k 1 P p Tn ! p ψpt ´, k ´k1 q ´p ψ ‹ pt ´, k 1 ´kq ) d p N pt, k 1 q, (5.4) 
with initial condition p ψp0, kq " p rp0, kq. The semi-martingales p N pt, kq ; t ě 0 ( are defined as p N pt, kq :"

ÿ xPTn N x pγn 2 tqe ´2iπxk , k P p T n .
Observe that we have p N ‹ pt, kq " p N pt, ´kq. In addition, its mean and covariance equal respectively

@ d p N pt, kq D " γn 3 δ k,0 dt, @ d p N pt, kq, d p N pt, k 1 q D " γn 3 t δ k,´k 1 dt,
where δ x,y is the usual Kronecker delta function, which equals 1 if x " y and 0 otherwise. The conservation of energy, and Parseval's identity, imply together that:

› › p ψptq › › L 2 " › › p ψp0q › › L 2
for all t ě 0.

(5.5) 5.2. Wigner distributions and Fourier transforms. The Wigner distribution W ǹ ptq corresponding to the wave function ψptq is a distribution defined by its action on smooth functions G P C 8 pT ˆTq as

@ W ǹ ptq, G D :" 1 n ÿ kP p Tn ÿ ηPZ W ǹ pt, η, kqpF Gq ‹ pη, kq, (5.6) 
where the Wigner function W ǹ ptq is given for any pk, ηq P p T n ˆZ by

W ǹ pt, η, kq :" 1 2n E n " p ψ ´t, k `η n ¯p ψ ‹ pt, kq ı . (5.7) 
Here, we use the mapping Z Q η Þ Ñ η n P p T n , and F Gpη, vq denotes the Fourier transform with respect to the first variable.

Remark 5.1. Note that this definition of the Wigner function is not the standard symmetric one. Indeed, since the setting here is discrete, it turns out that (5.7) is the convenient way to identify the Fourier modes, otherwise we would have worked with ill-defined quantities, for instance η 2n , which are not always integers. The main interest of the Wigner distribution is that mean convergence of the empirical energy profile (3.20) can be restated in terms of convergence of Wigner functions (more precisely, their Laplace transforms, see Theorem 7.5 below), thanks to the following identity: if Gpu, vq " Gpuq does not depend on the second variable v P T, then

@ W ǹ ptq, G D " 1 n ÿ xPTn E n " E x ptq ‰ G ´x n ¯.
(5.8) Indeed, from (5.6) we obtain then

@ W ǹ ptq, G D " 1 2n 2 ÿ kP p Tn ÿ x,x 1 PTn ÿ ηPZ E n " ψ ‹ x 1 ptqψ x ptq ‰ e 2πipx
1 ´xqk e 2πix η n pF Gq ‹ pηq.

(5.9) Performing the summation over k we conclude that the right hand side equals 1 2n

ÿ x,x 1 PTn ÿ ηPZ E n " ψ ‹ x 1 ptqψ x ptq ‰ 1 Z ´x1 ´x n ¯e2πix η n pF Gq ‹ pηq, (5.10) 
where 1 Z is the indicator function of the set of integers. Since 0 ď x, x 1 ď n ´1 and |ψ x ptq| 2 " 2E x ptq we conclude that the above expression equals 1 n

ÿ xPTn ÿ ηPZ E n " E x ptq ‰ e 2πix η n pF Gq ‹ pηq " 1 n ÿ xPTn E n " E x ptq ‰ G ´x n ¯(5.11)
and (5.8) follows. Identity (5.8) can be also interpreted as follows: the k-average of the Wigner distribution gives the Fourier transform of the energy:

1 n ÿ kP p Tn W ǹ pt, η, kq " 1 2n ÿ xPTn e ´2πix η n E n " |ψ x ptq| 2 ‰ " 1 n E n " p E ´t, η n ¯, η P Z.
(5.12) To close the equations governing the evolution of W ǹ ptq, we need to define three other Wigner-type functions. We let for any t 0 and η P Z. This remark will be useful in what follows.

W ń pt, η, kq :" 1 2n E n " p ψ ‹ ´t, ´k ´η n ¯p ψpt, ´kq ı " pW ǹ q ‹ pt, ´η, ´kq, (5.13) 
Thanks to identity (5.8), we have reduced the proof of Theorem 3.8 -and more precisely the proof of convergence (3.20) -to the investigation of the Wigner sequence tW ǹ p¨q, Y ǹ p¨q, Y ń p¨q, W ń p¨qu n . The next sections are split as follows:

(1) we first prove that this last sequence is pre-compact (and therefore admits a limit point) in Section 5.3.1; (2) then, we characterize that limit point in several steps:

(a) we write a decomposition of the Wigner distribution into its mechanical and thermal parts in Section 5.3.2;

(b) the convergence of the mechanical part is achieved in Section 5.3.3 and Section 5.3.4; (c) to solve the thermal part, we need to take its Laplace transform in Section 6.1, and then to study the dynamics it follows in Section 6.2 and Section 6.3; (d) the convergence statements for this Laplace transform are given in Section 7, the main results being Proposition 7.1 and Proposition 7.4; (e) finally, we go back to the convergence of the Wigner distributions in Theorem 7.5, and then to the conclusion of the proof of Theorem 3.8 in Section 7.4.

5.3.

Properties of the Wigner distributions.

5.3.1.

Weak convergence. From (3.13) we have that, for any n 1 and G P C 8 pT ˆTq, ˇˇ@ W ǹ ptq, G Dˇˇ( 5.17)

1 p2nq 2 sup ηPZ " ÿ kP p Tn E n "ˇˇˇp ψ ´t, k `η n ¯ˇˇ2 ı *1 2 " ÿ kP p Tn E n " ˇˇp ψpt, kq ˇˇ2 ı *1 2 }G} 0 ď }G} 0 2n E n " ÿ xPTn E x ptq  ď C}G} 0 ,
where the norm }G} 0 is defined by (3.7). Hence, for the corresponding dual norm, we have the bound with initial condition p ψp0, kq " pF n r 0 qpkq.

sup t 0 sup n 1 " › › W ǹ ptq › › 1 0 `› › W ń ptq › › 1 0 `› › Y ǹ ptq › › 1 0 `› › Y ń ptq › › 1 0 * 4C, ( 5 
The Wigner distribution W ǹ ptq can be decomposed accordingly as follows:

W ǹ ptq " W ǹ ptq `Ă W ǹ ptq, (5.20) 
where the Fourier transforms of W ǹ ptq and Ă W ǹ ptq are given by W ǹ pt, η, kq :" 1 2n

p ψ ´t, k `η n ¯p ψ ‹ pt, kq (5.21) Ă W ǹ pt, η, kq :" 1 2n E n " p r ψ ´t, k `η n ¯p r ψ ‹ pt, kq  , (5.22) 
for any pη, kq P Z ˆp T n .

At initial time t " 0, to simplify notations we write W ǹ pη, kq :" W ǹ p0, η, kq and Ă W ǹ pη, kq :" Ă W ǹ p0, η, kq. Note that the mean part is completely explicit: we have W ǹ pη, kq " 1 2n pF n r 0 q ´k `η n ¯pF n r 0 q ‹ pkq, (5.23) Recalling (5.2), the initial thermal energy spectrum can be rewritten as

u n p0, kq " 1 2n E n " ˇˇp r ψp0, kq ˇˇ2 ı .
Reproducing the decomposition (5.14) one can easily write similar definitions for W ń , Ă W ń and the respective Y n , r Y n distributions. Due to the fact that s ψ x p0q " r 0 p x n q and is real-valued (and extending the convention of omitting the argument t " 0 for all Wigner-type distributions) we have

W ń pη, kq " W ǹ pη, kq " Y ǹ pη, kq " Y ń pη, kq " W n pr 0 ; η, kq, (5.24) 
where we define e ´2πipm`ξ`ηq x n e 2πipm`ξ 1 q x 1 n pF rq ‹ pξqpF rqpξ 1 qpF Gq ‹ ´η, m n ¯.

W
Due to smoothness of rp¨q, its Fourier coefficients decay rapidly. Therefore for a fixed η P Z and for any ρ P p0, 1q we have that the limit lim nÑ`8 f n pηq equals lim nÑ`8

1 2n 2 ÿ |ξ|ďn ρ |ξ 1 |ďn ρ ÿ m,x,x 1 PTn e ´2πipm`ξ`ηq x n e 2πipm`ξ 1 q x 1 n pF rq ‹ pξqpF rqpξ 1 qpF Gq ‹ ´η, m n ¯.
Summing over x, x 1 we conclude that lim nÑ`8 f n pηq equals lim nÑ`8

1 2

ÿ |ξ|ďn ρ |ξ 1 |ďn ρ ÿ mPTn 1 Z ´m `ξ `η n ¯1Z ´m `ξ1 n ¯pF rq ‹ pξqpF r 0 qpξ 1 qpF Gq ‹ ´η, m n ¯.
Taking into account the fact that m P T n and the magnitude of ξ, ξ 1 is negligible when compared with n we conclude that the terms under the summation on the right hand side are non zero only if m `ξ1 " 0 and m `ξ `η " 0, or m `ξ1 " n and m `ξ `η " n. Therefore, In particular, for the initial conditions of our dynamics, Proposition 5.3 and (5.24) imply:

lim nÑ`8 ÿ ηPZ " W ǹ pη, ¨qpF Gq ‹ pη, ¨qı n " ÿ ξ,ηPZ W pr 0 ; η, ξqpF Gq ‹ pη, 0q " 1 2 ż T r 2 0 puqG ‹ pu, 0q du.
(5.33)

One of the main point of the proof of our theorem is to show that this convergence holds for any macroscopic time t ą 0, i.e. that for any compactly supported G P C 8 pR `ˆT 2 q we have lim nÑ`8

ÿ ηPZ ż `8 0 " W ǹ pt, η, ¨qpF Gq ‹ pt, η, ¨qı n dt " ÿ ξ,ηPZ ż `8 0 W pr t ; η, ξqpF Gq ‹ pt, η, 0qdt " 1 2 ż R `ˆT
r 2 pt, uqGpt, uq dtdu.

(5.34)

This would amount to showing that the Wigner distribution W ǹ ptq associated to ψ x ptq is asymptotically equivalent to the one corresponding to the macroscopic profile r pt, ¨q via (5.29). This fact is not a consequence of Theorem 3.7, that implies only a weak convergence of ψ x ptq to r pt, ¨q. We will prove (5.34) in Proposition 7.1 below, showing the convergence of the corresponding Laplace transforms (see (7.2)).

6. Strategy of the proof and explicit resolutions 6.1. Laplace transform of Wigner functions. Since our subsequent argument is based on an application of the Laplace transform of the Wigner functions, we give some explicit formulas for the object that can be written in case of our model. For any bounded complex-valued, Borel measurable function R `Q t Þ Ñ f t we define the Laplace operator L as:

Lpf ¨qpλq :" ż `8 0 e ´λt f t dt, λ ą 0.
Given the solution r t " rpt, ¨q of (3.17), we define the Laplace transform of the Wigner distribution (5.29) associated to a macroscopic profile, as follows: for any pλ, η, ξq P R `ˆZ 2 , wpr ¨; η, ξqpλq " L `W pr ¨; η, ξq ˘pλq "

ż `8 0 e ´λt W pr t ; η, ξq dt.
The following formulas are easily deduced, by a direct calculation, from (3.17), and are left to the reader: Lemma 6.1. For any pλ, η, ξq P R `ˆZ 2 we have wpr ¨; η, ξqpλq " W pr 0 ; η, ξq

2π 2 γ rξ 2 `pη `ξq 2 s `λ . (6.1)
Consequently,

1 2 L ´F `pB u r t q 2 ˘pηq ¯pλq " 1 2 ż `8 0 e ´λt F `pB u r t q 2 ˘pηq dt " 4π 2 ÿ ξPZ pη `ξqξ wpr ¨; η, ξqpλq. (6.2) 
Finally, we define w ǹ the Laplace transform of W ǹ as the tempered distribution given for any G P C 8 pT ˆTq and λ ą 0 by

@ w ǹ pλq, G D " ż `8 0 e ´λt @ W ǹ ptq, G D dt :" 1 n ÿ kP p Tn ÿ ηPZ w ǹ pλ, η, kqpF Gq ‹ pη, kq, (6.3 
) where w ǹ is the Laplace transform of W ǹ as follows:

w ǹ pλ, η, kq :" ż `8 0 e ´λt W ǹ pt, η, kq dt, pλ, η, kq P R `ˆZ ˆp T n .
In a similar fashion we can also define w ń pλq and y n pλq the Laplace transforms of W ń ptq and Y n ptq, respectively, and their counterparts w ń , and y n .

6.2. Dynamics of the Wigner distributions. Using the time evolution equations (5.4), one can first write a closed system of evolution equations for W n ptq, Y n ptq defined respectively in (5.7), (5.13), (5.14), (5.15).

For that purpose we first define two functions δ n s and σ n s as follows: for any pη, kq P Z ˆp T n ,

pδ n sqpη, kq :" 2n ´sin 2 ´π´k `η n ¯¯´sin 2 pπkq ¯, (6.4) 
pσ n sqpη, kq :" 2 ´sin 2 ´π´k `η n ¯¯`sin 2 pπkq ¯.

For the brevity sake, we drop the variables pt, η, kq P R `ˆZ ˆp T n from the subsequent notation. From (5.4) one can easily check that: $ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' %

B t W ǹ " ´inpδ n sq W ǹ ´n2 sinp2πkq Y ǹ ´n2 sin `2π `k `η n ˘˘Y ń `γn 2 L `2W ǹ ´Y ǹ ´Y ń ˘, B t Y ǹ " n 2 sinp2πkq W ǹ ´in 2 pσ n sq Y ǹ ´n2 sin `2π `k `η n ˘˘W ń `γn 2 L `2Y ǹ ´W ǹ ´W ń ˘`γn ÿ kP p Tn pY ń ´Y ǹ q, B t Y ń " n 2 sin `2π `k `η n ˘˘W ǹ `in 2 pσ n sq Y ń ´n2 sinp2πkq W ń `γn 2 L `2Y ń ´W ǹ ´W ń ˘`γn ÿ kP p Tn pY ǹ ´Y ń q, B t W ń " inpδ n sq W ń `n2 sin `2π `k `η n ˘˘Y ǹ `n2 sinp2πkq Y ń `γn 2 L `2W ń ´Y ǹ ´Y ń ˘, (6.5) 
where L is the operator that is defined for any f :

Z ˆp T n Ñ C as pLf qpη, kq :" " f pη, ¨q‰ n ´f pη, kq, pη, kq P Z ˆp T n .
Recalling the decomposition (5.20) and the evolution equations (5.19) for the mean part of the wave function, we have similarly that W n ptq, Y n ptq satisfy the autonomous equations: $ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' %

B t W ǹ " ´inpδ n sq W ǹ ´n2 sinp2πkq Y ǹ ´n2 sin `2π `k `η n ˘˘Y ń ´γn 2 `2W ǹ ´Y ǹ ´Y ń ˘, B t Y ǹ " n 2 sinp2πkq W ǹ ´in 2 pσ n sq Y ǹ ´n2 sin `2π `k `η n ˘˘W ń ´γn 2 `2Y ǹ ´W ǹ ´W ń ˘, B t Y ń " n 2 sin `2π `k `η n ˘˘W ǹ `in 2 pσ n sq Y ń ´n2 sinp2πkq W ń ´γn 2 `2Y ń ´W ǹ ´W ń Bt W ń " inpδ n sq W ń `n2 sin `2π `k `η n ˘˘Y ǹ `n2 sinp2πkq Y ń ´γn 2 `2W ń ´Y ǹ ´Y ń ˘, (6.6) 
6.3. Laplace transform of the dynamical system. We deduce from (6.5) an equation satisfied by w n -the four-dimensional vector of Laplace transforms of the Wigner functions defined by w n :" rw ǹ , y ǹ , y ń , w ń s T . For the clarity sake we shall use the notation 1 :" r1, 1, 1, 1s T , e :" r1, ´1, ´1, 1s T ,

v 0 n :" " W ǹ p0q, Y ǹ p0q, Y ń p0q, W ń p0q ‰ T , v 0 n :" " W ǹ , Y ǹ , Y ń , W ń ‰ T , r v 0 n :" " Ă W ǹ , r Y ǹ , r Y ń , Ă W ń ‰ T ,
and from (5.20) we have v 0 n " v 0 n `r v 0 n . We also remark that (5.16) implies:

" w ǹ pλ, η, ¨qı n " " w ń pλ, η, ¨qı n ,
for any pλ, ηq P R `ˆZ.

Let us finally define I n as the scalar product

I n pλ, ηq :" e ¨"w n pλ, η, ¨qı n " " `wǹ ´yǹ ´yń `wń ˘pλ, η, ¨qı n .
As before, we shall often drop the variables pλ, η, kq from the notations. We are now ready to take the Laplace transform of both sides of (6.5): we obtain a linear system that can be written for any pλ, η, kq in the form pM n w n qpλ, η, kq " v 0 n pη, kq `γn 2 I n pλ, ηq e, (

where the 2 ˆ2 block matrix M n :" M n pλ, η, kq is defined as follows:

M n :" » - A n ´n2 γ ń Id 2 ´n2 γ ǹ Id 2 B n fi fl , (6.8) 
where, given a positive integer N, Id N denotes the N ˆN identity matrix, and A n , B n are 2 ˆ2 matrices:

A n :" » - a n ´n2 γ ń2 γ `bn fi fl , B n :" » - b ‹ n ´n2 γ ń2 γ `a‹ n fi fl .
Here and below, #

a n :" λ `inpδ n sq `2γn 2 , b n :" λ `in 2 pσ n sq `2γn 2 , # γ n :" γ ˘sin `2π `k `η n ˘˘, γ ˘:" γ ˘sinp2πkq. (6.9) 
An elementary observation yields the following symmetry properties γ n p´η, ´kq " γ n pη, kq, γ ˘p´η, ´kq " γ ¯pη, kq, (6.10)

By the linearity of the Laplace transform we can write

w n " w n `r w n , (6.11) 
where w n is the Laplace transform of pW ǹ ptq, Y ǹ ptq, Y ń ptq, W ń ptqq, and r w n is the Laplace transform of p Ă W ǹ ptq, r Y ǹ ptq, r Y ń ptq, Ă W ń ptqq.

Performing the Laplace transform of both sides of (6.6) we conclude that w n solves the equation In Section 8.1, we show that the matrix M n is invertible, therefore we can solve and rewrite (6.12) and (6.13) as:

M n w n " v 0 n " W ǹ 1. ( 6 
w n " W ǹ M ´1 n 1, (6.14) r w n " M ´1 n r v 0 n `γn 2 I n M ´1 n e. ( 6 

.15)

In Section 7 we study the contribution of the terms appearing in the right hand sides of both (6.14) and (6.15) that reflect upon the evolution of the mechanical and fluctuating components of the energy functional.

Proof of the hydrodynamic behavior of the energy

In this section we conclude the proof of Theorem 3.8, up to technical lemmas that are proved in Section 8. 7.1. Mechanical energy w n . We start with the recollection of the results concerning the mechanical energy. The Laplace transform w n is autonomous from the thermal part and satisfies (6.14). Let us introduce, for any λ ą 0 and η P Z, the mechanical Laplace-Wigner function W mech pλ, ηq :" ÿ ξPZ W pr 0 ; η, ξq

2π 2 γ rξ 2 `pξ `ηq 2 s `λ . (7.1) 
From Lemma 6.1, it follows that W mech pλ, ηq is the Fourier-Laplace transform of the mechanical energy density e mech pt, uq " 1 2 prpt, uqq 2 , where rpt, uq is the solution of (3.17).

Given M P N we denote by P M the subspace of C 8 pT ˆTq consisting of all trigonometric polynomials that are finite linear combinations of e 2πiηu e 2πiξv , with η P t´M, . . . , Mu, ξ P Z and u, v P T. The following lemma finalizes the identification of the limit for the Fourier transform of the thermal energy: We will not give the details for the proof of this last theorem, since the argument is very similar to Proposition 7.1. 7.4. End of the proof of Theorem 3.8. The proof of convergence (3.20) has been reduced to the investigation of the Wigner distributions. Recall that from the uniform bound (5.18), we know that the sequence of all Wigner distributions tW ǹ p¨q, Y ǹ p¨q, Y ń p¨q, W ń p¨qu n is sequentially pre-compact with respect to the ‹weak topology in the dual space of L 1 pR `, A 0 q. More precisely, one can choose a subsequence n m such that any of the components above, say for instance W ǹm p¨q, ‹-weakly converges in the dual space of L 1 pR `, A 0 q to some W `p¨q.

To characterize its limit, we consider w ǹm pλq obtained by taking the Laplace transforms of the respective W ǹm p¨q. For any λ ą 0, it converges ‹-weakly, as n m Ñ `8, in A 1 0 to some w `pλq that is the Laplace transform of W `p¨q. The latter is defined as xw `pλq, Gy :"

ż 8 0 xW `ptq, e ´λt Gy dt λ ą 0, G P A 0 .
Given a trigonometric polynomial G P C 8 pTˆTq we conclude, thanks to Theorem 7.5, that for any

λ ą λ M , @ w `pλq, G D " ż R `ˆT 2
e ´λt ept, uqGpu, vq dt du dv, (7.12)

where ept, uq is defined as in Theorem 3.8 and M P N is such that F Gpη, vq " 0 for all |η| ą M. Due to the uniqueness of the Laplace transform (that can be argued by analytic continuation), this proves that in fact equality (7.12) holds for all λ ą 0. By a density argument it can be then extended to all G P A 0 and shows that W `pt, u, vq " ept, uq, for any pt, u, vq P R `ˆT 2 . This ends the proof of (3.20), and thus Theorem 3.8.

Proofs of the technical results stated in Section 7

In what follows we shall adopt the following notation: we say that the sequence C n pλ, η, kq ĺ 1 if for any given integer M P N, there exist λ M ą 0 and n

M P N such that sup ! C n pλ, η, kq ; λ ą λ M , η P t´M, ..., Mu, n ą n M , k P p T n ) ă `8.
8.1. Invertibility of M n pλ, η, kq.

Proposition 8.1. The matrix M n pλ, η, kq defined in (6.8) is invertible for all n ě 1, λ ą 0 and pη, kq P Z ˆp T n .

Proof. The block entries of the matrix M n defined in (6.9) satisfy the commutation relation

rA n , B n s " A n B n ´Bn A n " » - 0 ´2γ ´n2 Rera n ´bn s ´2γ `n2 Rerb n ´an s 0 fi fl " 0.
Thanks to the well known formula for the determinants of block matrices with commuting entries we have (see e.g. [4, formula (Ib), p. 46])

detpM n q " detpA n B n ´γǹ γ ń n 4 Id 2 q " ˇˇa n b ‹ n `n3 pδγ n q ˇˇ2 ´4n 4 γ `γ´p Rera n sq 2
and, substituting from (6.9), we get

detpM n q " n 6 ´pδ n sq pσ n sq `pδγ n q ¯2 ``λ `2γn 2 ˘2 " λ 2 `n2 `4γλ `pδ n sq 2 n4 ´2 sin 2 p2πkq `2 sin 2 `2π `k `η n ˘˘`pσ n sq 2 ¯*. (8.1) 
Here δ n s, σ n s are given by (6.4) and δγ n pη, kq :" npγ `γ´´γǹ γ ń q " n ´sin 2 `2π `k `η n ˘˘´sin 2 p2πkq

¯.

The proposition is a direct conclusion of (8.1).

It is also clear that detpM n q " n 8 ∆ n ,

where On the one hand, note that for k sufficiently far from 0, the dominant term is p4γ 2 Γ n q{n 2 and then ∆ n " 4γ 2 `4 sin 2 p2πkq `16 sin 4 pπkq ˘.

∆ n " 1 n 2 " 4γ 2 Γ n `4γ
On the other hand, for k " ξ n and fixed ξ P Z we have

n 2 ∆ n ´λ, η, ξ n ¯" 1 n 6 detpM n q ´λ, η, ξ n ¯" 16γ 2 " λγ `2π 2 `ξ2 `pη `ξq 2 ˘ı. (8.5)
Since the block entries of M n commute we can also write From the above asymptotics it is clear that M ´1 n pλ, η, kq Ñ 0 for a fixed k ‰ 0. In addition, M ´1 n pλ, η, ξ n q and n 2 e T M ´1 n pλ, η, kq tend to finite limits that we need to compute explicitly in order to complete the proof.

M ´1 n " » - " A n B n ´pγ ǹ γ ń n 4 qId 2 ı ´1 0 0 " A n B n ´pγ ǹ γ ń n 4 qId 2 ı ´1fi fl » - B n γ ń n 2 Id 2 γ ǹ n 2 Id 2 A n fi fl . Lemma 
Using (8.6) From the above and a direct calculation we obtain (8.9).

8.3.

Proof of Proposition 7.1. Basically the argument follows the same idea as the proof of Proposition 5.3. In fact (8.8) implies that w n pλ, η, kq concentrates on small k-s like W ǹ pη, kq. The main difficulty is to deal with the averaging r¨s n . For that purpose, for ρ P `0, This concludes the proof of (7.2). Concerning the proof of (7.3), recall that

I n " " e ¨pM ´1 n 1q W ǹ ı n ,
and that we have already computed the limit (8.9). Consequently, the result will follow if we are able to show that the contribution to the k-averaging from the higher frequencies is negligible. The quantity n 2 I n can be written as I n `II n , where I n and II n correspond to the summations over p T n,ρ and p T c n,ρ respectively. Using the explicit computations (8.11) ¯1Z ´´k `ξ ´η n ¯pF r 0 qpξqpF r 0 q ‹ pξ 1 q, where 1 Z is the indicator function of the integer lattice. Due to the assumed separation of k from 0, see (8.13), and the decay of the Fourier coefficients of r 0 p¨q (that belongs to C 8 pTq) we conclude from the above that lim nÑ`8 I 1 n " 0, thus also lim nÑ`8 I n " 0.

Moreover, a similar calculation also yields where w ˚is given by (5.28). This concludes the proof of Proposition 7.2. Proposition 7.4 is also a direct consequence of (8.10): instead of computing the limit of r I n pλ, ηq " " `r w ǹ ´r y ǹ ´r y ń `r w ń ˘pλ, η, ¨qı n we can compute the limit of 2 " r w ǹ pλ, η, ¨q‰ n by using very similar arguments.

" 1 2 pF

 12 m`ξ`η δ n,m`ξ 1 pF rq ‹ pξqpF rqpξ 1 qpF Gq ‹ ´η, m`ξ`η δ 0,m`ξ 1 pF rq ‹ pξqpF rqpξ 1 qpF Gq ‹ ´η, m n Gq ‹ pη, 0q ÿ ξPZ pF rq ‹ pξqpF rqpξ `ηq and formula (5.31) follows.
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 7493 Fix M P N. There exists λ M ą 0 such that, for any λ ą λ M , η P t´M, ..., Mu lim nÑ8 ! r I n pλ, ηq ´2 " r w ǹ pλ, η, ¨q‰ n The proofs of Lemma 7.2 and Proposition 7.4 go very much along the lines of the arguments presented in Section 8 and we will not present the details here. They are basically consequences of the following limit lim nÑ8 Asymptotics of r w n and w n . With a little more work one can prove the following local equilibrium result, which is an easy consequence of Proposition 7.1, Corollary 7.3 and Proposition 7.4 (recall also (6.15)). Theorem 7.5. Fix M P N. There exists λ M ą 0 such that, for any λ ą λ M and G P P M we have lim nÑ`8 ÿ ηPZ " w ǹ pλ, η, ¨qpF Gq ‹ pη, ¨qı n " ÿ ηPZ " W thm pλ, ηq ż T pF Gq ‹ pη, vq dv `Wm ech pλ, ηq pF Gq ‹ pη, pλ, η, ¨qpF Gq ‹ pη, ¨qı n " ÿ ηPZ W mech pλ, ηq pF Gq ‹ pη, 0q, (7.11)

n 2 e

 2 ¨pM ´1 n 1q ´λ, η, ξ n ¯pF r 0 qpξ `ηqpF r 0 q ‹ pξq,Using the Cauchy-Schwarz inequality we have ˇˇK p2q n pλ, ηq ˇˇď

  3.1.1. Discrete Fourier transform. Let us denote by p f the Fourier transform of a finite sequence tf x u xPTn of numbers in C, defined as follows: Continuous Fourier transform. Let CpTq be the the space of continuous, complex valued functions on T. For any function G P CpTq, let F G : Z Ñ C denote its Fourier transform given as follows:

	3.1.3. A fundamental example. In what follows, we often consider the discrete
	Fourier transform associated to a function G P CpTq, and to avoid any confusion
	p f pkq " we introduce a new notation: let F n G : p ÿ xPTn f x e ´2iπxk , T n Ñ C be the discrete Fourier transform k P p T n :" 0, 1 n , ..., n´1 n ( . (3.1) Reciprocally, for any f : p T n Ñ C, we denote by q f x ( xPTn its inverse Fourier of the finite sequence tGp x n qu xPTn defined similarly to (3.1) as F n Gpkq :" ÿ G ¯e´2iπxk , k P p T n . ´x n xPTn transform given by q f x " 1 n ÿ kP p Tn e 2iπxk f pkq, x P T n . (3.2) In particular, we have the Parseval identity ÿ xPTn G ´x n ¯f ‹ x " 1 kP p Tn n ÿ pF n Gqpkq p f ‹ pkq. (3.8)
	The Parseval identity reads }f } 2 L 2 :" Furthermore, note that 1 n F n G ¯ÝÑ 1 n kP p ÿ Tn ´η n nÑ8 F Gpηq, ˇˇp f pkq	ˇˇ2 "	ÿ xPTn for any η P Z. ˇˇf x ˇˇ2 .	(3.3)
	3.2. Assumptions on initial data. Without losing too much of generality, one If tf x u xPTn and tg x u xPTn are two sequences indexed by the discrete torus, their can put natural assumptions on the initial probability measure µ n pdr, dpq. convolution is given by pf ˚gq x :" The first assumption concerns the mean of the initial configurations, and is ÿ f y g x´y , x P T n . sufficient in order to derive the first of the hydrodynamic equations (2.10) :
	Assumption 3.1.			yPTn	
	3.1.2. F Gpηq :"	ż	Gpuq e ´2iπuη du,	η P Z.	(3.4)
			T			
	Similar identities to (3.2) and (3.3) can easily be written: for instance, we shall
	repeatedly use the following Gpuq "	ÿ	F Gpηq e 2iπηu ,	u P T.	(3.5)
			ηPZ			
	Note that when G is smooth the Fourier coefficients satisfy sup ! ) p1 `η2 q p |F Gpηq| ă `8, for any p P N.	(3.6)
	ηPZ					
	If J : TˆT Ñ C is defined on a two-dimensional torus, we still denote by F Jpη, vq,
	pη, vq P Z ˆT, its Fourier transform with respect to the first variable. We equip
	the set C 8 pT ˆTq of smooth (with respect to the first variable) functions with
	the norm	}J} 0 :"	ÿ	sup	ˇˇF Jpη, vq ˇˇ.	(3.7)
					ηPZ	vPT
	Let A 0 be the completion of C 8 pT ˆTq in this norm and pA 1 0 , } ¨}1 0 q its dual space.

  Remark 3.3. Conditions in (3.10) are assumed in order to simplify the proof, but they can be easily relaxed.

	n rp x p0qs " 0,			E n rr x p0qs " r 0	´x n	¯for any x P T n	(3.10)
	and for any G P C 8 pTq 1 n ÿ xPTn G ´x n ¯En	"	E x p0q	‰	Ý ÝÝÝ Ñ nÑ`8	ż	T	Gpuq e 0 puq du.	(3.11)
	Identity (3.10), in particular, implies the mean convergence of the initial
	elongation: 1 n	ÿ xPTn	G	´x n	¯En	" r x p0q	‰	Ý ÝÝÝ Ñ nÑ`8	ż	T	Gpuq r 0 puq du,	(3.12)
	for any G P C 8 pTq.								
	Remark 3.2. By energy conservation (3.9) implies that sup n 1 E n " 1 xPTn n  ÿ E x ptq ă `8, for all t ě 0.	(3.13)

  5.1.Wave function for the system of oscillators. Let p ppt, kq and p rpt, kq, for k P p T n , denote the Fourier transforms of, respectively, the momentum and elongation components of the microscopic configurations tp x ptqu xPTn and tr x ptqu xPTn , as in(3.1). Since they are real valued we have, for any k P p T n ,The wave function associated to the dynamics is defined as ψ x ptq :" r x ptq `ip x ptq, x P T n .

	p p ‹ pt, kq "	ÿ	e 2πikx p x ptq " p ppt, ´kq and likewise p r ‹ pt, kq " p rpt, ´kq. (5.1)
		xPTn				
	Its Fourier transform equals			
			p ψpt, kq :" p rpt, kq `ip ppt, kq,	k P p T n .
	Taking into account (5.1) we obtain
			p ppt, kq " p rpt, kq "	1 2i 1 2 `p ψpt, kq `p ψ ‹ pt, ´kq `p ψpt, kq ´p ψ ‹ pt, ´kq ˘. ˘,
			r u n p0, kq :"	1 2n	E n	" ˇˇp ψp0, kq ´En r p ψp0, kqs	ˇˇ2	ı
	Using Cauchy-Schwarz inequality we conclude easily that
	1 2 r u Therefore, (3.15) is equivalent with sup n 1 " 1 kP p Tn n ÿ	r u 2 n p0, kq	*	ă `8.	(5.3)
	After a straightforward calculation, the equation that governs the time evolution
	of the wave function can be deduced from (2.3) as follows: d p ψpt, kq " ´n2 ´2i sin 2 pπkq p ψpt, kq `sinp2πkq p ψ ‹ pt, ´kq ¯dt

With these definitions we have |ψ x | 2 " 2E x and the initial thermal energy spectrum, defined in (3.14), satisfies

u n p0, kq " r u n p0, kq `Im " Cov n pp pp0, kq, p rp0, kqq ‰ , k P p T n .

(5.2)

Here Cov n pX, Y q :" E n rXY ‹ s ´En rXs E n rY ‹ s is the covariance of complex random variables X and Y , and n p0, kq ď u n p0, kq ď 2r u n p0, kq, k P p T n .

  Notice that for the initial data we have ψ x p0q " r 0 `x n ˘. It need not be true for t ą 0. The Fourier transform of the sequences tψ x ptqu and t r ψ x ptqu shall be

	autonomous equation:						
	d p ψpt, kq " ´n2 ´2i sin 2 pπkq p ψpt, kq `sinp2πkq p ψ	‹	pt, ´kq ¯dt
	´n2 γ	! p ψpt, kq ´p ψ	‹	pt, ´kq	)	dt,	(5.19)
	nÑ`8	@ W n p0q, G	D	"	ż
	denoted by p ψpt, kq and	p r ψpt, kq. The deterministic function p ψpt, kq satisfies the

.18) which implies weak convergence. Note that condition

(3.11) 

ensures that, if Gpu, vq " Gpuq at the initial time t " 0, then we have lim T e 0 puq G ‹ puq du, 5.3.2. Decomposition into the mechanical and fluctuating part. We decompose the wave function into its mean w.r.t. E n and its fluctuating part, as follows: ψ x ptq " ψ x ptq `r ψ x ptq,

x P T n , t ě 0.

  CpTq and pη, kq P Z ˆp T n .5.3.3. Asymptotics of ĂW ǹ . Throughout the remainder of the paper we shall use the following notation: given a function f : p T n Ñ C we denote its k-average by " f p¨q ‰Proof. We prove the proposition under the assumption that r P C 8 pTq. The general case can be obtained by an approximation of a continuous initial profile by a sequence of smooth ones.

	n pr ; η, kq :" The initial fluctuating Wigner function is related, as n Ñ `8, to the initial 1 2n pF n rq ´k `η n ¯pF n rq ‹ pkq, (5.25) 1 n ÿ kP p Tn f pkq. (5.26) The last convergence follows from Assumption 3.1 and from an explicit compu-tation that yields: " Ă W ǹ pη, ¨qı n " 1 n ÿ xPTn E n " E x p0q ‰ e ´2πiη x n ´Fn ´r2 0 2 ¯´η n ¯. In addition, Assumption 3.4 on the initial spectrum (see (3.15)) implies that w ˚:" sup ně1 sup ηPZ # ÿ ιPt´,`u " ˇˇĂ W ι n pη, ¨qˇˇˇ2 `ˇˇr Y ι n pη, ¨qˇˇˇ2  n + ă `8. (5.28) " 1 2 ż T r 2 puqG ‹ pu, 0q du. (5.31) Using the dominated convergence theorem we conclude that the expression on the left hand side of (5.31) equals ř ηPZ lim nÑ`8 f n pηq, with f n pηq :" " W ǹ pη, ¨qpF Gq ‹ pη, ¨qı n , η P Z. (5.32) This can be written as f n pηq " 1 2n 2 ÿ kP p Tn ÿ x,x 1 PTn e ´2πiη x n e 2πikpx 1 ´xq r ´x n ¯r´x 1 ¯pF Gq ‹ pη, kq. n Using Fourier representation (see (3.5)), we can write f n pηq as 1 ÿ ÿ for any r P n :" thermal energy e thm p0, uq " e 0 puq ´r2 0 puq{2 as follows: " Ă W ǹ pη, ¨qı n Ý ÝÝ Ñ nÑ8 ¨q˘p ηq, for any η P Z. (5.27) `F e thm p0, 2n 2 ξ,ξ 1 PZ m,x,x 1 PTn

5.3.4. Wigner distribution associated to a macroscopic smooth profile. Similarly to (5.25), given a continuous real-valued function tr :" rpuq ; u P Tu, define W pr ; η, ξq :" 1 2 pF rqpξ `ηqpF rq ‹ pξq, pη, ξq P Z 2 . (5.29) Observe that, for any η P Z, ÿ ξPZ W pr ; η, ξq " 1 2 F pr 2 qpηq. (5.30) Proposition 5.3. Suppose that r P CpTq and G P C 8 pT ˆTq. Then lim nÑ`8 ÿ ηPZ " W n pr ; η, ¨qpF Gq ‹ pη, ¨qı n " ÿ ηPZ ˆÿ ξPZ W pr ; η, ξq ˙pF Gq ‹ pη, 0q

  Proposition 7.1 (Mechanical part). For any M P N there exists λ M ą 0 such that for any G P P M and λ ą λ M we have Asymptotics of n 2 I n pλ, ηq is given in(7.3). Below we describe the terms n 2 r z p0q n pλ, ηq and n 2 M n pλ, ηq that also appear in the right hand side of (7.5). Fix M P N. There exists λ M ą 0 such that, for any λ ą λ M and η P t´M, ..., Mu Corollary 7.3. Fix M P N. There exists λ M ą 0 such that, for any λ ą λ M , η P t´M, ..., Mu lim

	lim nÑ8 and As a direct consequence of the above lemma and (7.3), we obtain: ÿ ηPZ " w n pλ, η, ¨qpF Gq ‹ pη, ¨qı n " ˆÿ η,ξPZ lim ! γn 2 r z p0q n pλ, ηq ) " `F e thm p0, ¨q˘p ηq. nÑ8 W pr 0 ; η, ξq 2π 2 `λ pF Gq ‹ pη, 0q (7.8) ˙1 γ rξ 2 `pξ `ηq 2 s " ż ż `8 e ´λt prpt, uqq 2 G ‹ pu, 0q dt du ˙1. ˆ1 2 T 0 (7.2) nÑ8 r I n pλ, ηq " 2W thm pλ, ηq,
	Moreover, for any η P t´M, ..., Mu lim nÑ8 ! γn 2 I n pλ, ηq ) " " where W thm pλ, ηq :" ´λ `η2 π 2 γ ¯´1 " `F e thm p0, 4π 2 γ ÿ ξPZ 1 2γ L ´F ¨q˘p ξpξ `ηqW pr 0 ; η, ξq 2π 2 `pB u rq 2 ˘pηq ¯pλq. γ rξ 2 `pξ `ηq 2 s `λ ηq `1 2γ L ´F `pB u rq 2 ˘pηq ¯pλq	(7.3) * .
	The proof of Proposition 7.1 is exposed in Section 8.3.
	7.2. The closing of thermal energy equation. We now analyse equation (6.15) concerning the fluctuating part. After averaging (6.15) over k P p T n and
	scalarly multiplying by e, we obtain the equation:
				r I n " r z p0q n `γn 2 `r I n `In ˘Mn ,	(7.4)
	where							
				r z p0q n :" M n :"	" e ¨pM ´1 n r v 0 n q " ı n ı e ¨pM ´1 n eq . n
	Therefore from (7.4) we solve explicitly	
	r I n pλ, ηq "	n 2 r z p0q n pλ, ηq ``γn 2 I n pλ, ηq ˘`n 2 M n pλ, ηq `1 ´γn 2 M n pλ, ηq ˘. n2 (7.5)
	Lemma 7.2. lim nÑ8	!	γn 2 M n pλ, ηq	)	" 1,		(7.6)
	lim nÑ8	!	n 2 `1 ´γn 2 M n pλ, ηq ˘) "	1 2γ	´λ	`η2 π 2 γ	¯,	(7.7)

  pη, kq :" n 2 ´2 sin 2 p2πkq `2 sin 2 `2π `k `η n ˘˘`pσ n sq 2 ¯.

	˘2*	`4γλ	Γ n n 4	`Cn n 3 .
				(8.3)
	for some |C n | ĺ 1 and			
	Γ (8.4)

2 

`4λγ `pδ n sq 2 ˘``p δ n sqpσ n sq `pδγ n q n

  8.2. The following asymptotic equalities hold: d ǹ n 6 " 4γ 3 `4γ sin 2 p2πkq `2γpσ n sq 2 ´ipδ n sq n `4γ 2 `pσ n sq 2 ˘`C n " 4γ 2 ´2iγpσ n sq `sin 2 p2πkq ´sin 2 `2π `k `η n ˘˘´2iγ " 4γ 3 `4γ sin 2 p2πkq ´4iγ 2 pσ n sq `2γ ´sin 2 `2π `k `η n ˘˘´sin 2 p2πkq

					n 2 ,
	c n n 6 " 4γ 2 ´2iγpσ n sq `sin 2 `2π `k `η n ˘˘´sin 2 p2πkq	`pδ n sqpσ n sq n	`Cn n 2 ,
	d n n 6 " 4γ 2 ´2iγpσ n sq `sin 2 p2πkq ´sin 2 `2π `k `η n ˘˘´2iγ	pδ n sq n	´pδ n sqpσ n sq n	`Cn n 2 ,
	c 0 n n 6 " 4γ	`Cn n 2 ,		
	d 0 n n 6 pδ n sq n	´pδ n sqpσ n sq n	`Cn n 2 ,
	d n 6 ¯`C n ń n 2 ,

with C n ĺ 1.

  , (8.2) and the formulas for the asymptotics of the entries of M ´1 n , provided by Lemma 8.2, we conclude that The above in particular implies that e T ¨M´1 n pλ, η, ξ n q1 Ñ 0, for any ξ P Z. By the same token we can also compute lim We prove here only (8.9) and we let the reader verify (8.8) and (8.10) using similar computations. An explicit calculation givesn 2 e T ¨pM ´1 n 1q " n 2 Ξ n detpM n q , (8.11) where Ξ n pλ, η, kq :" 2Re " d ǹ ´dń ‰ `γ´p d n ´pd 0 n q ‹ q `γ`p d ‹ `η n ˘˘Imrc n s `4 sinp2πkq sin `2π `k `η n ˘˘c 0 n . pσ n sq 2 ´n2 pδ n sq 2 ‰ `4in 4 ´sinp2πkq ´sin `2π `k `η n ˘˘¯p σ n sq `4in 3 ´sin `2π `k `η n ˘˘`sinp2πkq ¯pδ n sq

										n	´d0 n q
	`4i sin `2π `k Substituting from (8.7) yields:		
		Ξ n pλ, η, kq "pλ `2γn 2 q n 4 `8n 4 sinp2πkq sin `2π `k `η n " 2 "	˘˘* .	(8.12)
		lim nÑ8	M ´1 n ´λ, η,	ξ n	¯"	γ 4λγ `8π 2 rξ 2 `pξ `ηq 2 s	1 b 1.	(8.8)
	nÑ`8	!	n 2 e T ¨M´1 n ´λ, η,	ξ n	¯1)	"	4π 2 ξpξ `ηq λγ 2 `2γπ 2 rξ 2 `pξ `ηq 2 s	,	(8.9)
	and	lim nÑ8	!	n 2 e T ¨M´1 n pλ, η, kq	)	"	1 2γ	r1, 0, 0, 1s , k ‰ 0.	(8.10)

  T n,ρ . Recall the left hand side of (7.2): it can be written as I n `II n , where I n and II n correspond to the summations over p T n,ρ and p T c n,ρ respectively. First we show that for G P P M C depends only on the initial mechanical energy. Then by the same argument as the one used in the proof of Proposition 5.3, and from (5.31) ; η, ξq λγ `2π 2 rξ 2 `pξ `ηq 2 s pF Gq ‹ pη, 0q 1.

	1 2 ˘, define T n,ρ :" p ! k P p T ´ρ) n,ρ :" p T c and its complement p T n z p I n " ÿ ηPZ 1 n ÿ kP p Tn,ρ `M´1 n pλ, η, kq1 ˘W In fact we have › › › › ÿ ηPZ 1 n ÿ |ξ|ěn ρ ´M´1 n ´λ, η, ξ n ¯1¯W ǹ ´η, ξ n ¯pF Gq ‹ ´η, ξ n ¯› › › › 8 ď C}G} 0 ÿ |η|ďM ÿ |ξ|ěn ρ › › ›M ´1 n ´λ, η, nÑ8 ξ n lim nÑ8 ÿ |η|ďM 1 n ÿ |ξ|ăn ρ ´M´1 n ´λ, η, ξ n ¯1¯W ǹ ´η, ξ n ¯pF Gq ‹ ´η, ξ n " (8.13) 0. (8.14) ¯1› › › 8 ÝÑ nÑ8 0, η,ξPZ where the constant and (8.8) we have ÿ γW pr 0

n : | sinpπkq| ě n ǹ pη, kqpF Gq ‹ pη, kq ÝÑ

  , (8.12) and (8.3) we can write n 2 e ¨pM ´1 n 1q ´γ´1 " γ

				´1 "	2 ´sinp2πkq ´sin `2π `k `η n	˘˘¯2	`Cn n
	It is clear from the above equality that lim nÑ`8 sup |η|ďM sup kP p Tn,ρ ˇˇˇn 2 e ¨pM ´1 n 1qpλ, η, kq	´1 γ	ˇˇˇ" 0.	(8.15)
	Thanks to (8.15) we conclude that lim nÑ`8 pI n	´I1 n q " 0, where
					I 1 n :"	1 γn	kP p Tn,ρ ÿ	W ǹ pη, kq.	(8.16)
	After a straightforward calculation using the definition of W ǹ pη, kq (see (5.21)
	and (5.23)) we conclude that (8.16) equals
	1 2γ	ÿ ξ,ξ 1 PZ	ÿ kP p Tn,ρ	1 Z ´k	´ξ1 n

* ˆ"2 sin 2 p2πkq `2 sin 2 `2π `k `η n ˘˘`pσ n sq 2 `C1 n n 2 * ´1 .

For more details related to these moments bounds, that are still conjectured but not proved (on the contrary to what is claimed in[START_REF] Simon | Hydrodynamic limit for the velocity-flip model[END_REF]), we refer the reader to an erratum which is available online at http://chercheurs.lille.inria.fr/masimon/erratum-v2.pdf.
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Note that

With these formulas we conclude that

where all the constants are explicit and given by $ ' ' ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' ' ' %

8.2. Asymptotics of the coefficients. Substituting from (6.9) into the respective formulas of (8.7) and then identifying the order of magnitude of the appearing terms we conclude the following:

where N ρ,n :"

.

Using the dominated convergence theorem we conclude from (8.9) that lim nÑ`8 ) is a direct consequence of (7.7), we prove directly (7.7), that is a consequence of the following lemma.

Lemma 8.3. The following asymptotic equality holds:

where

Proof. After a direct calculation, we obtain

where

Therefore, from (8.7) and Lemma 8. where Thus, we obtain

It remains to prove (7.8).This would be a direct consequence of (8.10), but we need some care in exchanging the limit with the r¨s n averaging.

Choose ρ P p0, 1q, then we can decompose 

where C depends on the bound on the initial energy. By direct estimation, using the information on the asymptotic behavior for the coefficients of M ´1 n , provided by (8.10), we conclude that the right hand side of (8.19) converges to 0 as n Ñ 8, for any given λ and η.