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MACROSCOPIC EVOLUTION OF MECHANICAL AND
THERMAL ENERGY IN A HARMONIC CHAIN WITH

RANDOM FLIP OF VELOCITIES

TOMASZ KOMOROWSKI, STEFANO OLLA, AND MARIELLE SIMON

Abstract. We consider an unpinned chain of harmonic oscillators with peri-
odic boundary conditions, whose dynamics is perturbed by a random flip of the
sign of the velocities. The dynamics conserves the total volume (or elongation)
and the total energy of the system. We prove that in a diffusive space-time
scaling limit the profiles corresponding to the two conserved quantities con-
verge to the solution of a diffusive system of differential equations. While the
elongation follows a simple autonomous linear diffusive equation, the evolution
of the energy depends on the gradient of the square of the elongation.
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1. Introduction

Harmonic chains with energy conserving random perturbations of the dynamics
have recently received attention in the study of the macroscopic evolution of en-
ergy [1, 2, 5, 8, 10, 12]. They provide models that have a non-trivial macroscopic
behavior which can be explicitly computed. We consider here the dynamics of
an unpinned chain where the velocities of particles can randomly change sign.
This random mechanism is equivalent to the deterministic collisions with inde-
pendent environment particles of infinite mass. Since the chain is unpinned, the
relevant conserved quantities of the dynamics are the energy and the volume (or
elongation).

Under a diffusive space-time scaling, we prove that the profile of elongation
evolves independently of the energy and follows the linear diffusive equation

Btrpt, uq “
1

2γ
B2

uurpt, uq. (1.1)

Here u is the Lagrangian space coordinate of the system and γ ą 0 is the intensity
of the random mechanism of collisions. The energy profile can be decomposed
into the sum of mechanical and thermal energy

ept, uq “ emechpt, uq ` ethmpt, uq

where the mechanical energy is given by emechpt, uq “ 1

2
rpt, uq2, while the thermal

part ethmpt, uq, that coincides with the temperature profile, evolves following the
non-linear equation:

Btethmpt, uq “
1

4γ
B2

uuethmpt, uq `
1

2γ
pBurpt, uqq2 . (1.2)

This is equivalent to the following conservation law for the total energy:

Btept, uq “
1

4γ
B2

uu

ˆ
ept, uq `

rpt, uq2

2

˙
. (1.3)
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The derivation of the macroscopic equations (1.1) and (1.2) from the microscopic
dynamical system of particles, after a diffusive rescaling of space and time, is
the goal of this paper. Concerning the distribution of the energy in the fre-
quency modes: the mechanical energy emechpt, uq is concentrated on the modes
corresponding to the largest wavelength, while the thermal energy ethmpt, uq is
distributed uniformly over all frequencies. Note that 1

2γ
pBurpt, uqq2 is the rate of

dissipation of the mechanical energy into thermal energy.
The presence of the non-linearity in the evolution of the energy makes the

macroscopic limit non-trivial. Relative entropy methods (as introduced in [13])
identify correctly the limit equation (see [12]), but in order to make them rigorous
one needs sharp bounds on higher moments than cannot be controlled by the
relative entropy1. In this sense the proof in [12] is not complete.

We follow here a different approach based on Wigner distributions. The Wigner
distributions permit to control the energy distribution over various frequency
modes and provide a natural separation between mechanical and thermal ener-
gies. The initial positions and velocities of particles can be random, and the only
condition we ask, besides to have definite mean asymptotic profiles of elongation
and energy, is that the thermal energy spectrum has a square integrable density.
In the macroscopic limit we prove that locally the thermal energy spectrum has
a constant density equal to the local thermal energy (or temperature), i.e. that
the system is, at macroscopic positive times, in local equilibrium, even though
it is not at initial time. Also follows from our result that the mechanical energy
is concentrated on the lowest modes. This is a stronger local equilibrium result
than the one usually obtained with relative entropy techniques. The Wigner dis-
tribution approach had been successfully applied in different contexts for systems
perturbed by noise with more conservation laws in [5, 8]. Here we need a partic-
ular asymmetric version of the Wigner distribution, in order to deal with a finite
size discrete microscopic system.

When the system is pinned, only energy is conserved and its macroscopic evo-
lution is linear, and much easier to be obtained. In this case the thermalization
and the correlation structure have been studied in [9, 10].

When the chain of oscillators is anharmonic, still with velocity flip dynamics,
the hydrodynamic limit is a difficult non-gradient problem, for the moment still
open. In that case the macroscopic equations would be:

Btrpt, uq “
1

2γ
B2

uu

“
τpr, eq

‰
,

Btept, uq “ Bu

“
Dpr, eqBuβ

´1pr, eq
‰

`
1

4γ
B2

uu

`
τpr, eq2

˘
.

(1.4)

1For more details related to these moments bounds, that are still conjectured but not proved
(on the contrary to what is claimed in [12]), we refer the reader to an erratum which is available
online at http://chercheurs.lille.inria.fr/masimon/erratum-v2.pdf.
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where τpr, eq is the thermodynamic equilibrium tension as function of the volume
r and of the energy e, and β´1pr, eq is the corresponding temperature, while
Dpr, eq is the thermal diffusivity defined by the usual Green-Kubo formula, as
space-time variance of the energy current in the equilibrium infinite dynamics
at average elongation r and energy e (see Section 4 for the definition of these
quantities). The linear response and the existence of Dpr, eq have been proven in
[3].

2. Microscopic dynamics

2.1. Periodic chain of oscillators. In the following we denote by Tn :“ Z{nZ “
t0, . . . , n´ 1u the discrete circle with n points, and, for any L ą 0, by TpLq the-
continuous circle of length L, and we set T :“ Tp1q.

We consider a one-dimensional harmonic chain of n oscillators, all of mass 1,
with periodic boundary conditions. The clearest way to describe this system is
as a massive one dimensional discrete surface tϕx P R, x P Tnu. The element (or
particle) x of the surface is at height ϕx and has mass equal to 1. We call its
velocity (that coincides with its momentum) px P R. Each particle x is connected
to the particles x ´ 1 and x ` 1 by harmonic springs, so that n ´ 1 and 0 are
connected in the same way. The total energy of the system is given by the
Hamiltonian:

Hn :“
ÿ

xPTn

Ex, Ex :“
p2x
2

`
pϕx ´ ϕx´1q

2

2
. (2.1)

In addition to the Hamiltonian dynamics associated to the harmonic potentials,
particles are subject to a random interaction with the environment: at indepen-
dently distributed random Poissonian times, the momentum px is flipped into
´px. The resulting equations of the motion are#

dϕxptq “ n2pxptq dt,

dpxptq “ n2
`
ϕx`1ptq ` ϕx´1ptq ´ 2ϕxptq

˘
dt´ 2pxpt´q dNxpγn2tq,

(2.2)

for any x P Tn. Here tNxptq ; t ě 0, x P Tnu are n independent Poisson processes
of intensity 1, and the constant γ is positive. We have already accelerated the
time scale by n2, according to the diffusive scaling. Notice that the energy Hn

is conserved by this dynamics. There is another important conservation law that
is given by the sum of the elongations of the springs, that we define as follows.
We call rx “ ϕx ´ ϕx´1 the elongation of the spring between x and x ´ 1, and
since x P Tn we have r0 “ ϕ0 ´ ϕn´1. The equation of the dynamics in these
coordinates are given by:#

drxptq “ n2
`
pxptq ´ px´1ptq

˘
dt

dpxptq “ n2
`
rx`1ptq ´ rxptq

˘
dt ´ 2pxpt´q dNxpγn2tq, x P Tn.

(2.3)

This implies that the dynamics is completely defined giving the initial conditions
trxp0q, pxp0q, x P Tnu.
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The periodicity in the ϕx variables would impose that
řn´1

x“0
rxp0q “ 0. On the

other hand the dynamics defined by (2.3) is well defined also if
řn´1

x“0
rxp0q ‰ 0

and has the conservation law
řn´1

x“0
rxptq “

řn´1

x“0
rxp0q :“ Rn. Note that Rn can

also assume negative values. In this case we can picture the particles as n points
q0, . . . , qn´1 P Tp|Rn|q, the circle of length |Rn|. These points can be defined as
qx :“

“řx

y“0
ry
‰
mod|Rn|

, for x “ 0, . . . , n ´ 1. It follows that qn “ q0. We will not

use neither the qx coordinates nor the ϕx coordinates, but we consider only the
evolution defined by (2.3) with initial configurations

řn´1

x“0
rxp0q “ Rn P R.

2.2. Generator and invariant measures. The generator of the stochastic dy-
namics (rptq :“ trxptquxPTn

, pptq :“ tpxptquxPTn
), is given by

Ln :“ n2An ` n2γ Sn,

where the Liouville operator An is formally given by

An “
ÿ

xPTn

"
ppx ´ px´1q

B

Brx
` prx`1 ´ rxq

B

Bpx

*
,

while, for f : Ωn Ñ R,

Snfpr,pq “
ÿ

xPTn

 
fpr,pxq ´ fpr,pq

(

where px is the configuration that is obtained from p by reversing the sign of the
velocity at site x, namely: ppxqy “ py if y ‰ x and ppxqx “ ´px.

The two conserved quantities Hn “
ř

xPTn
Ex and Rn “

ř
xPTn

rx, are de-
termined by the initial data (eventually random), and typically they should be
proportional to n: Hn “ ne,Rn “ nr, with e P R` the average energy per par-
ticle, and r P R the average spring elongation. Consequently the system has
a two parameters family of stationary measures given by the canonical Gibbs
distributions

µn
τ,βpdr, dpq “

ź

xPTn

exp
`

´ βpEx ´ τrxq ´ Gτ,β

˘
drxdpx, β ą 0, τ P R,

where

Gτ,β “ log
”a

2πβ´1

ż

R

e´β
2

pr2´2τrq dr
ı

“ log
”
2πβ´1 exp

´τ 2β
2

¯ı
.

As usual, the parameters β´1 ą 0 and τ P R are called respectively temperature
and tension. Observe that the function

rpτ, βq “ β´1 BτGτ,β “ τ (2.4)

gives the average equilibrium length in function of the tension τ , and

Epτ, βq “ τ rpτ, βq ´ BβGτ,β “ β´1 `
τ 2

2
(2.5)
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is the corresponding thermodynamic internal energy function. Note that the
energy Epτ, βq is composed by a thermal energy β´1 and a mechanical energy τ2

2
.

2.3. Hydrodynamic limits. Let µnpdr, dpq be an initial Borel probability dis-
tribution on Ωn. We denote by Pn the law of the process tprptq,pptqq ; t ě 0u
starting from the measure µn and generating by Ln, and by En its corresponding
expectation. We are given initial continuous profiles of tension tτ0puq ; u P Tu
and of temperature tβ´1

0
puq ą 0 ; u P Tu. The thermodynamic relations (2.4)

and (2.5) give the corresponding initial profiles of elongation and energy as

r0puq :“ τ0puq and e0puq :“
1

β0puq
`
τ 2
0

puq

2
, u P T. (2.6)

The initial distributions µn are assumed to satisfy the following mean convergence
statements:

1

n

ÿ

xPTn

G
´x
n

¯
En

“
rxp0q

‰
ÝÝÝÝÑ
nÑ`8

ż

T

Gpuq r0puq du, (2.7)

1

n

ÿ

xPTn

G
´x
n

¯
En

“
Exp0q

‰
ÝÝÝÝÑ
nÑ`8

ż

T

Gpuq e0puq du, (2.8)

for any test function G that belongs to the set C8pTq of smooth functions on the
torus. We expect the same convergence to happen at the macroscopic time t:

1

n

ÿ

xPTn

G
´x
n

¯
En

“
rxptq

‰
ÝÝÝÝÑ
nÑ`8

ż

T

Gpuq rpt, uq du,

1

n

ÿ

xPTn

G
´x
n

¯
En

“
Exptq

‰
ÝÝÝÝÑ
nÑ`8

ż

T

Gpuq ept, uq du,

(2.9)

where the macroscopic evolution for the volume and energy profiles follows the
system of equations:$

’’&
’’%

Btrpt, uq “
1

2γ
B2

uurpt, uq,

Btept, uq “
1

4γ
B2

uu

´
e`

r2

2

¯
pt, uq, pt, uq P R` ˆ T,

(2.10)

with the initial condition

rp0, uq “ r0puq, ep0, uq “ e0puq.

The solutions ept, ¨q, rpt, ¨q of (2.10) are smooth when t ą 0 (the system of par-
tial differential equations is parabolic). Note that the evolution of rpt, uq is au-
tonomous of ept, uq. The precise assumptions that are needed for the convergence
(2.9) are stated in Theorems 3.7 and 3.8 below.

3. Main results

3.1. Notations.
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3.1.1. Discrete Fourier transform. Let us denote by pf the Fourier transform of a
finite sequence tfxuxPTn

of numbers in C, defined as follows:

pfpkq “
ÿ

xPTn

fx e
´2iπxk, k P pTn :“

 
0, 1

n
, ..., n´1

n

(
. (3.1)

Reciprocally, for any f : pTn Ñ C, we denote by
 qfx

(
xPTn

its inverse Fourier

transform given by

qfx “
1

n

ÿ

kPpTn

e2iπxkfpkq, x P Tn. (3.2)

The Parseval identity reads

}f}2
L2 :“

1

n

ÿ

kPpTn

ˇ̌ pfpkq
ˇ̌
2

“
ÿ

xPTn

ˇ̌
fx
ˇ̌
2
. (3.3)

If tfxuxPTn
and tgxuxPTn

are two sequences indexed by the discrete torus, their
convolution is given by

pf ˚ gqx :“
ÿ

yPTn

fy gx´y, x P Tn.

3.1.2. Continuous Fourier transform. Let CpTq be the the space of continuous,
complex valued functions on T. For any function G P CpTq, let FG : Z Ñ C

denote its Fourier transform given as follows:

FGpηq :“

ż

T

Gpuq e´2iπuη du, η P Z. (3.4)

Similar identities to (3.2) and (3.3) can easily be written: for instance, we shall
repeatedly use the following

Gpuq “
ÿ

ηPZ

FGpηq e2iπηu, u P T. (3.5)

Note that when G is smooth the Fourier coefficients satisfy

sup
ηPZ

!
p1 ` η2qp|FGpηq|

)
ă `8, for any p P N. (3.6)

If J : TˆT Ñ C is defined on a two-dimensional torus, we still denote by FJpη, vq,
pη, vq P Z ˆ T, its Fourier transform with respect to the first variable. We equip
the set C8pT ˆ Tq of smooth (with respect to the first variable) functions with
the norm

}J}0 :“
ÿ

ηPZ

sup
vPT

ˇ̌
FJpη, vq

ˇ̌
. (3.7)

Let A0 be the completion of C8pTˆTq in this norm and pA1
0
, } ¨}1

0
q its dual space.
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3.1.3. A fundamental example. In what follows, we often consider the discrete
Fourier transform associated to a function G P CpTq, and to avoid any confusion

we introduce a new notation: let FnG : pTn Ñ C be the discrete Fourier transform
of the finite sequence tGp x

n
quxPTn

defined similarly to (3.1) as

FnGpkq :“
ÿ

xPTn

G
´x
n

¯
e´2iπxk, k P pTn.

In particular, we have the Parseval identity
ÿ

xPTn

G
´x
n

¯
f ‹
x “

1

n

ÿ

kPpTn

pFnGqpkq pf ‹pkq. (3.8)

Furthermore, note that

1

n
FnG

´η
n

¯
ÝÑ
nÑ8

FGpηq, for any η P Z.

3.2. Assumptions on initial data. Without losing too much of generality, one
can put natural assumptions on the initial probability measure µnpdr, dpq.

The first assumption concerns the mean of the initial configurations, and is
sufficient in order to derive the first of the hydrodynamic equations (2.10) :

Assumption 3.1. ‚ The initial total energy can be random but with uni-
formly bounded expectation:

sup
n>1

En

„
1

n

ÿ

xPTn

Exp0q


ă `8. (3.9)

‚ We assume that there exist continuous initial profiles r0 : T Ñ R and
e0 : T Ñ p0,`8q such that

Enrpxp0qs “ 0, Enrrxp0qs “ r0

´x
n

¯
for any x P Tn (3.10)

and for any G P C8pTq

1

n

ÿ

xPTn

G
´x
n

¯
En

“
Exp0q

‰
ÝÝÝÝÑ
nÑ`8

ż

T

Gpuq e0puq du. (3.11)

Identity (3.10), in particular, implies the mean convergence of the initial
elongation:

1

n

ÿ

xPTn

G
´x
n

¯
En

“
rxp0q

‰
ÝÝÝÝÑ
nÑ`8

ż

T

Gpuq r0puq du, (3.12)

for any G P C8pTq.

Remark 3.2. By energy conservation (3.9) implies that

sup
n>1

En

„
1

n

ÿ

xPTn

Exptq


ă `8, for all t ě 0. (3.13)
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Remark 3.3. Conditions in (3.10) are assumed in order to simplify the proof,
but they can be easily relaxed.

Next assumption is important to obtain the macroscopic equation for the en-
ergy in (2.10). It concerns the energy spectrum of fluctuations around the means

at initial time. Define the initial thermal energy spectrum unp0, kq, k P pTn, as
follows: let prp0, kq and ppp0, kq denote respectively the Fourier transforms of the
initial random configurations trxp0quxPTn

and tpxp0quxPTn
, and let

unp0, kq :“
1

2n
En

”ˇ̌
ppp0, kq

ˇ̌
2

`
ˇ̌
prp0, kq ´ Enrprp0, kqs

ˇ̌
2
ı
, k P pTn. (3.14)

Due to the Parseval identity (3.3) we have

1

n

ÿ

kPpTn

unp0, kq “
1

2n

ÿ

xPTn

En

”
p2xp0q `

`
rxp0q ´ Enrrxp0qs

˘
2
ı
.

Assumption 3.4. (Square integrable initial thermal energy spectrum)

sup
n>1

"
1

n

ÿ

kPpTn

u
2

np0, kq

*
ă `8. (3.15)

This technical assumption can be seen as a way to ensure that the thermal
energy does not concentrate on one (or very few) wavelength(s).

Remark 3.5. Assumptions 3.1 and 3.4 are satisfied if the measures µn are given
by local Gibbs measures (non homogeneous product), corresponding to the given
initial profiles of tension and temperature tτ0puq, β´1

0
puq ; u P Tu, defined as

follows:

dµn
τ0p¨q,β0p¨q “

ź

xPTn

exp
!

´ β0

´x
n

¯´
Ex ´ τ0

´x
n

¯
rx

¯
´ Gτ0p x

n
q,β0p x

n
q

)
drxdpx. (3.16)

with r0puq “ τ0puq and e0puq “ β´1

0
puq `

r2
0

puq

2
, see [7, Sections 9.2.3–9.2.5]. Note

that our assumptions are much more general, as we do not assume any specific
condition on the correlation structure of µn. In particular microcanonical versions
of (3.16), where total energy and total volumes are conditioned at fixed values ne
and nr, are included by our assumptions.

Remark 3.6. We will see that macroscopically, our assumptions state that the
initial energy has a mechanical part, related to τ0p¨q, that concentrates on the
longest wavelength (i.e. around k “ 0), see in Section 5 equation (5.33) for the
precise meaning. For what concerns the thermal energy, (3.15) states that it has
a square integrable density w.r.t. k.
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3.3. Formulation of mean convergence. In this section we state two theorems
dealing with the mean convergence of the two conserved quantities, namely the
elongation and energy. The first one (Theorem 3.7) is proved straightforwardly
in Section 3.4 below. The second one is more involved, and is the main subject
of the present paper.

Theorem 3.7 (Mean convergence of the elongation profile). Assume that tµnunPN

is a sequence of probability measures on Ωn such that (3.10) is satisfied, with
r0 P CpTq. Let rpt, uq be the solution defined on R` ˆ T of the linear diffusive
equation: $

&
%

Btrpt, uq “
1

2γ
B2

uurpt, uq, pt, uq P R` ˆ T,

rp0, uq “ r0puq.
(3.17)

Then, for any G P C8pTq and t P R`,

lim
nÑ`8

1

n

ÿ

xPTn

G
´x
n

¯
En

“
pxptq

‰
“ 0, (3.18)

lim
nÑ`8

1

n

ÿ

xPTn

G
´x
n

¯
En

“
rxptq

‰
“

ż

T

Gpuq rpt, uq du. (3.19)

Theorem 3.8 (Mean convergence of the empirical profile of energy). Let tµnunPN

be a sequence of probability measures on Ωn such that Assumptions 3.1 and 3.4
are satisfied. Then, for any smooth function G : R` ˆT Ñ R compactly supported
with respect to the time variable t P R`, we have

lim
nÑ`8

1

n

ÿ

xPTn

ż

R`

G
´
t,
x

n

¯
En

“
Exptq

‰
dt “

ż

R`ˆT

Gpt, uq ept, uq dtdu, (3.20)

where ept, uq “ emechpt, uq ` ethmpt, uq, with

‚ the mechanical energy, given by emechpt, uq :“ 1

2
prpt, uqq2 and the function

rpt, uq being the solution of (3.17),
‚ the thermal energy ethmpt, uq, defined as the solution of

$
&
%

Btethmpt, uq “
1

4γ
B2

uuethmpt, uq `
1

2γ

`
Burpt, uq

˘
2
,

ethmp0, uq “ β´1

0
puq “ e0puq ´ emechp0, uq ą 0.

(3.21)

The proof of Theorem 3.8 is the aim of Sections 5 – 7.

Remark 3.9. Note that (3.17) and (3.21) are equivalent to the system (2.10).
This new way of seeing the macroscopic equations is more convenient, as it nat-
urally arises from the proof. More precisely, using (3.17) we conclude that the
mechanical energy emechpt, uq satisfies the equation

Btemechpt, uq “
1

2γ

´
B2

uuemechpt, uq ´
`
Burpt, uq

˘2¯
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and the macroscopic energy density function satisfies
$
&
%

Btept, uq “
1

4γ
B2

uu

`
ept, uq ` emechpt, uq

˘
,

ep0, uq “ e0puq.

Remark 3.10. We actually prove a stronger result that includes a local equilib-
rium statement, see Theorem 7.5 below.

3.4. Proof of the hydrodynamic limit for the elongation. Here we give a
simple proof of Theorem 3.7. From the evolution equations (2.3) we have the
following identities:

1

n

ÿ

xPTn

G
´x
n

¯
En

“
rxptq ´ rxp0q

‰
“ n2

ż t

0

1

n

ÿ

xPTn

G
´x
n

¯
En

“
pxpsq ´ px´1psq

‰
ds

and

2γn2

ż t

0

1

n

ÿ

xPTn

G
´x
n

¯
En

“
pxpsq

‰
ds “ n2

ż t

0

1

n

ÿ

xPTn

G
´x
n

¯
En

“
rx`1psq ´ rxpsq

‰
ds

`
1

n

ÿ

xPTn

G
´x
n

¯
En

“
pxp0q ´ pxptq

‰
.

Substituting from the second equation into the first one we conclude that

1

n

ÿ

xPTn

G
´x
n

¯
En

“
rxptq ´ rxp0q

‰
“

ż t

0

1

2γn

ÿ

xPTn

∆nG
´x
n

¯
En

“
rxpsq

‰
ds (3.22)

´
1

2γn2

ÿ

xPTn

∇nG
´x
n

¯
En

“
pxp0q ´ pxptq

‰
,

where

∇nG
´x
n

¯
“ n

´
G
´x ` 1

n

¯
´ G

´x
n

¯¯

∆nG
´x
n

¯
“ n

´
∇nG

´x
n

¯
´ ∇nG

´x ´ 1

n

¯¯
.

By energy conservation and Assumption 3.1 it is easy to see that
ˇ̌
ˇ̌ 1
n2

ÿ

xPTn

∇nG
´x
n

¯
En

“
pxptq

‰ˇ̌ˇ̌
2

ď
1

n2

ˆ
1

n

ÿ

xPTn

ˇ̌
ˇ∇nG

´x
n

¯ˇ̌
ˇ
2
˙ˆ

1

n

ÿ

xPTn

En

“
p2xptq

‰˙

ď
CpGq

n

ˆ
1

n

ÿ

xPTn

En

“
E2

xp0q
‰˙

ÝÑ
nÑ8

0. (3.23)

Let us define

r̄pnqpt, uq :“ En

“
rxptq

‰
, for any u P

“
x
n
, x`1

n

˘
, n ě 1.
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Thanks to the energy conservation we know that there exists R ą 0 such that

sup
ně1

sup
tPr0,T s

}r̄pnqpt, ¨q}L2pTq “: R ă `8. (3.24)

The above means that for each t P r0, T s the sequence
 
r̄pnqpt, ¨q

(
ně1

is contained

in B̄R – the closed ball of radius R ą 0 in L2pTq, centered at 0. The ball is compact
in L2

wpTq – the space of square integrable functions on the torus T equipped with
the weak L2 topology. The topology restricted to B̄R is metrizable, with the
respective metric given e.g. by

dpf, gq :“
`8ÿ

n“1

1

2n
|xf ´ g, φnyL2pTq|

1 ` |xf ´ g, φnyL2pTq|
, f, g P B̄R,

where tφnu is a countable and dense subset of L2pTq that can be chosen of elements
of C8pTq. From (3.22) and (3.23) we conclude in particular that for each T ą 0
the sequence

 
r̄pnqp¨q

(
is equicontinuous in C

`
r0, T s, B̄R

˘
. Thus, according to the

Arzela Theorem, see e.g. [6, p. 234], it is sequentially pre-compact in the space
C pr0, T s,L2

wpTqq for any T ą 0. Consequently, any limiting point of the sequence
satisfies the partial differential equation (3.17) in a weak sense in the class of
L2pTq functions. Uniqueness of the weak solution of the heat equation gives the
convergence claimed in (3.19) and the identification of the limit as the strong
solution of (3.17).

Concerning (3.18), from (2.3) we have

1

n

ÿ

xPTn

G
´x
n

¯
En

“
pxptq

‰
“
e´2γn2t

n

ÿ

xPTn

G
´x
n

¯
En

“
pxp0q

‰

`

ż t

0

e´2γn2pt´sq
ÿ

xPTn

∇˚
nG

´x
n

¯
En

“
rxpsq

‰
ds,

where ∇˚
nGp x

n
q “ n

`
Gp x

n
q ´ Gpx´1

n
q
˘
. Using again energy conservation and the

Cauchy-Schwarz inequality, it is easy to see that the right hand side of the above
vanishes as n Ñ 8.

Remark 3.11. Note that we have not used the fact that the initial average of the
velocities vanishes. Additionally, by standard methods it is possible to obtain the
convergence of elongation and momentum empirical distributions in probability
(see (3.18) and (3.19)), but we shall not pursuit this here.

4. Conjecture for anharmonic interaction and thermodynamic

considerations

Our results concern only harmonic interactions, but we can state the expected
macroscopic behavior for the anharmonic case. Consider a non-quadratic poten-
tial V prq, of class C1 and growing fast enough to `8 as |r| Ñ 8. The dynamics

12



is now defined by
#
drxptq “ n2

`
pxptq ´ px´1ptq

˘
dt

dpxptq “ n2
`
V 1prx`1ptqq ´ V 1prxptqq

˘
dt ´ 2pxpt´q dNxpγn2tq, x P Tn.

(4.1)

The stationary measures are given by the canonical Gibbs distributions

dµn
τ,β “

ź

xPTn

e´βpEx´τrxq´Gτ,β drx dpx, τ P R, β ą 0, (4.2)

where we denote

Ex “
p2x
2

` V prxq,

the energy that we attribute to the particle x, and

Gτ,β “ log

„a
2πβ´1

ż
e´βpV prq´τrq dr


. (4.3)

Thermodynamic entropy Spr, eq is defined as

Spr, eq “ inf
τPR,βą0

 
βe´ βτr ` Gpτ, βq

(
. (4.4)

Then we obtain the inverse temperature and tension as functions of the volume
r and internal energy u:

β´1pr, eq “ BeSpr, eq, τ pr, eq “ ´β´1pr, eqBrSpr, eq (4.5)

The macroscopic profiles of elongation rpt, uq and energy ept, uq will satisfy the
equations

Btr “
1

2γ
B2

uu

“
τ pr, eq

‰
,

Bte “ Bu

“
Dpr, eqBuβ

´1
‰

`
1

4γ
B2

uu

`
τ pr, eq2

˘
.

(4.6)

Here the diffusivity Dpr, eq ą 0 is defined by a Green-Kubo formula for the infinite
dynamics in equilibrium at the given values pr, eq. The precise definition and the
proof of the convergence of Green-Kubo formula for this dynamics can be found
in [3].

A straightforward calculation gives the expected increase of thermodynamic
entropy:

d

dt

ż

T

Sprpt, uq, ept, uqq du “

ż

T

β

ˆ
pBuτ q2

2γ
` Dpr, eq

`
Buβ

´1
˘
2

˙
du ě 0. (4.7)

5. Time-dependent Wigner distributions

Before exposing the strategy of the proof of Theorem 3.8, let us start by intro-
ducing our main tool: the Wigner distributions associated to the dynamics.
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5.1. Wave function for the system of oscillators. Let pppt, kq and prpt, kq, for

k P pTn, denote the Fourier transforms of, respectively, the momentum and elon-
gation components of the microscopic configurations tpxptquxPTn

and trxptquxPTn
,

as in (3.1). Since they are real valued we have, for any k P pTn,

pp‹pt, kq “
ÿ

xPTn

e2πikxpxptq “ pppt,´kq and likewise pr‹pt, kq “ prpt,´kq. (5.1)

The wave function associated to the dynamics is defined as

ψxptq :“ rxptq ` ipxptq, x P Tn.

Its Fourier transform equals

pψpt, kq :“ prpt, kq ` ipppt, kq, k P pTn.

Taking into account (5.1) we obtain

pppt, kq “
1

2i

` pψpt, kq ´ pψ‹pt,´kq
˘
,

prpt, kq “
1

2

` pψpt, kq ` pψ‹pt,´kq
˘
.

With these definitions we have |ψx|2 “ 2Ex and the initial thermal energy spec-
trum, defined in (3.14), satisfies

unp0, kq “ runp0, kq ` Im
“
Covnpppp0, kq, prp0, kqq

‰
, k P pTn. (5.2)

Here CovnpX, Y q :“ EnrXY ‹s ´ EnrXsEnrY ‹s is the covariance of complex ran-
dom variables X and Y , and

runp0, kq :“
1

2n
En

”ˇ̌ pψp0, kq ´ Enrpψp0, kqs
ˇ̌
2
ı

Using Cauchy-Schwarz inequality we conclude easily that

1

2
runp0, kq ď unp0, kq ď 2runp0, kq, k P pTn.

Therefore, (3.15) is equivalent with

sup
n>1

"
1

n

ÿ

kPpTn

ru2np0, kq

*
ă `8. (5.3)

After a straightforward calculation, the equation that governs the time evolution
of the wave function can be deduced from (2.3) as follows:

d pψpt, kq “ ´ n2

´
2i sin2pπkqpψpt, kq ` sinp2πkq pψ‹pt,´kq

¯
dt

´
1

n

ÿ

k1PpTn

!
pψpt´, k ´ k1q ´ pψ‹pt´, k1 ´ kq

)
d pN pt, k1q, (5.4)
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with initial condition pψp0, kq “ prp0, kq. The semi-martingales
 pN pt, kq ; t ě 0

(

are defined as

pN pt, kq :“
ÿ

xPTn

Nxpγn2tqe´2iπxk, k P pTn.

Observe that we have pN ‹pt, kq “ pN pt,´kq. In addition, its mean and covariance
equal respectively

@
d pN pt, kq

D
“ γn3 δk,0 dt,@

d pN pt, kq, d pN pt, k1q
D

“ γn3t δk,´k1 dt,

where δx,y is the usual Kronecker delta function, which equals 1 if x “ y and 0
otherwise. The conservation of energy, and Parseval’s identity, imply together
that: ›› pψptq

››
L2

“
›› pψp0q

››
L2

for all t ě 0. (5.5)

5.2. Wigner distributions and Fourier transforms. The Wigner distribu-
tion W`

n ptq corresponding to the wave function ψptq is a distribution defined by
its action on smooth functions G P C8pT ˆ Tq as

@
W`

n ptq, G
D
:“

1

n

ÿ

kPpTn

ÿ

ηPZ

W`
n pt, η, kqpFGq‹pη, kq, (5.6)

where the Wigner function W`
n ptq is given for any pk, ηq P pTn ˆ Z by

W`
n pt, η, kq :“

1

2n
En

”
pψ
´
t, k `

η

n

¯
pψ‹pt, kq

ı
. (5.7)

Here, we use the mapping Z Q η ÞÑ η

n
P pTn, and FGpη, vq denotes the Fourier

transform with respect to the first variable.

Remark 5.1. Note that this definition of the Wigner function is not the standard
symmetric one. Indeed, since the setting here is discrete, it turns out that (5.7)
is the convenient way to identify the Fourier modes, otherwise we would have
worked with ill-defined quantities, for instance η

2n
, which are not always integers.

The main interest of the Wigner distribution is that mean convergence of
the empirical energy profile (3.20) can be restated in terms of convergence of
Wigner functions (more precisely, their Laplace transforms, see Theorem 7.5 be-
low), thanks to the following identity: if Gpu, vq ” Gpuq does not depend on the
second variable v P T, then

@
W`

n ptq, G
D

“
1

n

ÿ

xPTn

En

“
Exptq

‰
G
´x
n

¯
. (5.8)
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Indeed, from (5.6) we obtain then

@
W`

n ptq, G
D

“
1

2n2

ÿ

kPpTn

ÿ

x,x1PTn

ÿ

ηPZ

En

“
ψ‹
x1ptqψxptq

‰
e2πipx

1´xqke2πix
η
n pFGq‹pηq.

(5.9)
Performing the summation over k we conclude that the right hand side equals

1

2n

ÿ

x,x1PTn

ÿ

ηPZ

En

“
ψ‹
x1ptqψxptq

‰
1Z

´x1 ´ x

n

¯
e2πix

η
n pFGq‹pηq, (5.10)

where 1Z is the indicator function of the set of integers. Since 0 ď x, x1 ď n ´ 1
and |ψxptq|2 “ 2Exptq we conclude that the above expression equals

1

n

ÿ

xPTn

ÿ

ηPZ

En

“
Exptq

‰
e2πix

η
n pFGq‹pηq “

1

n

ÿ

xPTn

En

“
Exptq

‰
G
´x
n

¯
(5.11)

and (5.8) follows. Identity (5.8) can be also interpreted as follows: the k-average
of the Wigner distribution gives the Fourier transform of the energy:

1

n

ÿ

kPpTn

W`
n pt, η, kq “

1

2n

ÿ

xPTn

e´2πix
η
n En

“
|ψxptq|2

‰
“

1

n
En

„
pE
´
t,
η

n

¯
, η P Z.

(5.12)
To close the equations governing the evolution of W`

n ptq, we need to define three
other Wigner-type functions. We let

W´
n pt, η, kq :“

1

2n
En

”
pψ‹
´
t,´k ´

η

n

¯
pψpt,´kq

ı
“ pW`

n q‹pt,´η,´kq, (5.13)

Y `
n pt, η, kq :“

1

2n
En

„
pψ
´
t, k `

η

n

¯
pψpt,´kq


, (5.14)

Y ´
n pt, η, kq :“

1

2n
En

„
pψ‹
´
t,´k ´

η

n

¯
pψ‹pt, kq


“
`
Y `
n

˘‹
pt,´η,´kq. (5.15)

Remark 5.2. Note that an easy change of variable gives

1

n

ÿ

kPpTn

W`
n pt, η, kq “

1

n

ÿ

kPpTn

W´
n pt, η, kq, (5.16)

for any t > 0 and η P Z. This remark will be useful in what follows.

Thanks to identity (5.8), we have reduced the proof of Theorem 3.8 – and more
precisely the proof of convergence (3.20) – to the investigation of the Wigner
sequence tW`

n p¨q,Y`
n p¨q,Y´

n p¨q,W´
n p¨qun. The next sections are split as follows:

(1) we first prove that this last sequence is pre-compact (and therefore admits
a limit point) in Section 5.3.1;

(2) then, we characterize that limit point in several steps:
(a) we write a decomposition of the Wigner distribution into its mechan-

ical and thermal parts in Section 5.3.2;
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(b) the convergence of the mechanical part is achieved in Section 5.3.3
and Section 5.3.4;

(c) to solve the thermal part, we need to take its Laplace transform in
Section 6.1, and then to study the dynamics it follows in Section 6.2
and Section 6.3;

(d) the convergence statements for this Laplace transform are given in
Section 7, the main results being Proposition 7.1 and Proposition 7.4;

(e) finally, we go back to the convergence of the Wigner distributions in
Theorem 7.5, and then to the conclusion of the proof of Theorem 3.8
in Section 7.4.

5.3. Properties of the Wigner distributions.

5.3.1. Weak convergence. From (3.13) we have that, for any n > 1 and G P
C8pT ˆ Tq,

ˇ̌@
W`

n ptq, G
Dˇ̌

(5.17)

6
1

p2nq2
sup
ηPZ

" ÿ

kPpTn

En

”ˇ̌
ˇ pψ
´
t, k `

η

n

¯ˇ̌
ˇ
2
ı* 1

2

" ÿ

kPpTn

En

”ˇ̌ pψpt, kq
ˇ̌
2
ı* 1

2

}G}0

ď
}G}0
2n

En

„ ÿ

xPTn

Exptq


ď C}G}0,

where the norm }G}0 is defined by (3.7). Hence, for the corresponding dual norm,
we have the bound

sup
t>0

sup
n>1

"››W`
n ptq

››1

0
`
››W´

n ptq
››1

0
`
››Y`

n ptq
››1

0
`
››Y´

n ptq
››1

0

*
6 4C, (5.18)

which implies weak convergence. Note that condition (3.11) ensures that, if
Gpu, vq ” Gpuq at the initial time t “ 0, then we have

lim
nÑ`8

@
W˘

n p0q, G
D

“

ż

T

e0puq G‹puq du,

5.3.2. Decomposition into the mechanical and fluctuating part. We decompose
the wave function into its mean w.r.t. En and its fluctuating part, as follows:

ψxptq “ ψxptq ` rψxptq, x P Tn, t ě 0.

Notice that for the initial data we have ψxp0q “ r0
`
x
n

˘
. It need not be true

for t ą 0. The Fourier transform of the sequences tψxptqu and t rψxptqu shall be

denoted by pψpt, kq and
prψpt, kq. The deterministic function pψpt, kq satisfies the
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autonomous equation:

dpψpt, kq “ ´ n2

´
2i sin2pπkqpψpt, kq ` sinp2πkqpψ

‹

pt,´kq
¯
dt

´ n2γ
!p
ψpt, kq ´ p

ψ
‹

pt,´kq
)
dt, (5.19)

with initial condition pψp0, kq “ pFnr0qpkq.

The Wigner distribution W`
n ptq can be decomposed accordingly as follows:

W`
n ptq “ W

`

n ptq ` ĂW`
n ptq, (5.20)

where the Fourier transforms of W
`

n ptq and ĂW`
n ptq are given by

W
`

n pt, η, kq :“
1

2n
pψ
´
t, k `

η

n

¯ pψ
‹

pt, kq (5.21)

ĂW`
n pt, η, kq :“

1

2n
En

„
prψ
´
t, k `

η

n

¯ prψ
‹

pt, kq


, (5.22)

for any pη, kq P Z ˆ pTn.

At initial time t “ 0, to simplify notations we write W
`

n pη, kq :“ W
`

n p0, η, kq

and ĂW`
n pη, kq :“ ĂW`

n p0, η, kq. Note that the mean part is completely explicit: we
have

W
`

n pη, kq “
1

2n
pFnr0q

´
k `

η

n

¯
pFnr0q‹pkq, (5.23)

Recalling (5.2), the initial thermal energy spectrum can be rewritten as

unp0, kq “
1

2n
En

”ˇ̌ prψp0, kq
ˇ̌
2
ı
.

Reproducing the decomposition (5.14) one can easily write similar definitions

for W
´

n ,
ĂW´

n and the respective Y
˘

n ,
rY˘

n distributions. Due to the fact that
sψxp0q “ r0p x

n
q and is real-valued (and extending the convention of omitting the

argument t “ 0 for all Wigner-type distributions) we have

W
´

n pη, kq “ W
`

n pη, kq “ Y
`

n pη, kq “ Y
´

n pη, kq “ Wnpr0 ; η, kq, (5.24)

where we define

Wnpr ; η, kq :“
1

2n
pFnrq

´
k `

η

n

¯
pFnrq‹pkq, (5.25)

for any r P CpTq and pη, kq P Z ˆ pTn.
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5.3.3. Asymptotics of ĂW`
n . Throughout the remainder of the paper we shall use

the following notation: given a function f : pTn Ñ C we denote its k-average by

“
fp¨q

‰
n
:“

1

n

ÿ

kPpTn

fpkq. (5.26)

The initial fluctuating Wigner function is related, as n Ñ `8, to the initial
thermal energy ethmp0, uq “ e0puq ´ r2

0
puq{2 as follows:

”
ĂW`

n pη, ¨q
ı
n

ÝÝÝÑ
nÑ8

`
Fethmp0, ¨q

˘
pηq, for any η P Z. (5.27)

The last convergence follows from Assumption 3.1 and from an explicit compu-
tation that yields:

”
ĂW`

n pη, ¨q
ı
n

“
1

n

ÿ

xPTn

En

“
Exp0q

‰
e´2πiη x

n ´ Fn

´r2
0

2

¯´η
n

¯
.

In addition, Assumption 3.4 on the initial spectrum (see (3.15)) implies that

w˚ :“ sup
ně1

sup
ηPZ

#
ÿ

ιPt´,`u

„ˇ̌
ˇĂW ι

npη, ¨q
ˇ̌
ˇ
2

`
ˇ̌
ˇrY ι

npη, ¨q
ˇ̌
ˇ
2


n

+
ă `8. (5.28)

5.3.4. Wigner distribution associated to a macroscopic smooth profile. Similarly
to (5.25), given a continuous real-valued function tr :“ rpuq ; u P Tu, define

W pr ; η, ξq :“
1

2
pFrqpξ ` ηqpFrq‹pξq, pη, ξq P Z

2. (5.29)

Observe that, for any η P Z,
ÿ

ξPZ

W pr ; η, ξq “
1

2
Fpr2qpηq. (5.30)

Proposition 5.3. Suppose that r P CpTq and G P C8pT ˆ Tq. Then

lim
nÑ`8

ÿ

ηPZ

”
Wnpr ; η, ¨qpFGq‹pη, ¨q

ı
n

“
ÿ

ηPZ

ˆÿ

ξPZ

W pr ; η, ξq

˙
pFGq‹pη, 0q

“
1

2

ż

T

r2puqG‹pu, 0q du.

(5.31)

Proof. We prove the proposition under the assumption that r P C8pTq. The
general case can be obtained by an approximation of a continuous initial profile
by a sequence of smooth ones.

Using the dominated convergence theorem we conclude that the expression on
the left hand side of (5.31) equals

ř
ηPZ limnÑ`8 fnpηq, with

fnpηq :“
”
W

`

n pη, ¨qpFGq‹pη, ¨q
ı
n
, η P Z. (5.32)
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This can be written as

fnpηq “
1

2n2

ÿ

kPpTn

ÿ

x,x1PTn

e´2πiη x
n e2πikpx1´xqr

´x
n

¯
r
´x1

n

¯
pFGq‹pη, kq.

Using Fourier representation (see (3.5)), we can write fnpηq as

1

2n2

ÿ

ξ,ξ1PZ

ÿ

m,x,x1PTn

e´2πipm`ξ`ηq x
n e2πipm`ξ1qx1

n pFrq‹pξqpFrqpξ1qpFGq‹
´
η,
m

n

¯
.

Due to smoothness of rp¨q, its Fourier coefficients decay rapidly. Therefore for a
fixed η P Z and for any ρ P p0, 1q we have that the limit limnÑ`8 fnpηq equals

lim
nÑ`8

1

2n2

ÿ

|ξ|ďnρ

|ξ1|ďnρ

ÿ

m,x,x1PTn

e´2πipm`ξ`ηq x
n e2πipm`ξ1qx1

n pFrq‹pξqpFrqpξ1qpFGq‹
´
η,
m

n

¯
.

Summing over x, x1 we conclude that limnÑ`8 fnpηq equals

lim
nÑ`8

1

2

ÿ

|ξ|ďnρ

|ξ1|ďnρ

ÿ

mPTn

1Z

´m ` ξ ` η

n

¯
1Z

´m` ξ1

n

¯
pFrq‹pξqpFr0qpξ1qpFGq‹

´
η,
m

n

¯
.

Taking into account the fact that m P Tn and the magnitude of ξ, ξ1 is negligible
when compared with n we conclude that the terms under the summation on the
right hand side are non zero only if m` ξ1 “ 0 and m` ξ ` η “ 0, or m` ξ1 “ n

and m` ξ ` η “ n. Therefore,

lim
nÑ`8

fnpηq “ lim
nÑ`8

1

2

ÿ

|ξ|ďnρ

|ξ1|ďnρ

ÿ

mPTn

δn,m`ξ`η δn,m`ξ1 pFrq‹pξqpFrqpξ1qpFGq‹
´
η,
m

n

¯

` lim
nÑ`8

1

2

ÿ

|ξ|ďnρ

|ξ1|ďnρ

ÿ

mPTn

δ0,m`ξ`η δ0,m`ξ1 pFrq‹pξqpFrqpξ1qpFGq‹
´
η,
m

n

¯

“
1

2
pFGq‹pη, 0q

ÿ

ξPZ

pFrq‹pξqpFrqpξ ` ηq

and formula (5.31) follows. �

In particular, for the initial conditions of our dynamics, Proposition 5.3 and
(5.24) imply:

lim
nÑ`8

ÿ

ηPZ

”
W

`

n pη, ¨qpFGq‹pη, ¨q
ı
n

“
ÿ

ξ,ηPZ

W pr0 ; η, ξqpFGq‹pη, 0q

“
1

2

ż

T

r2
0
puqG‹pu, 0q du.

(5.33)
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One of the main point of the proof of our theorem is to show that this convergence
holds for any macroscopic time t ą 0, i.e. that for any compactly supported
G P C8pR` ˆ T2q we have

lim
nÑ`8

ÿ

ηPZ

ż `8

0

”
W

`

n pt, η, ¨qpFGq‹pt, η, ¨q
ı
n
dt

“
ÿ

ξ,ηPZ

ż `8

0

W prt ; η, ξqpFGq‹pt, η, 0qdt

“
1

2

ż

R`ˆT

r2pt, uqGpt, uq dtdu.

(5.34)

This would amount to showing that the Wigner distribution W
`

n ptq associated to
ψxptq is asymptotically equivalent to the one corresponding to the macroscopic
profile r pt, ¨q via (5.29). This fact is not a consequence of Theorem 3.7, that
implies only a weak convergence of ψxptq to r pt, ¨q. We will prove (5.34) in
Proposition 7.1 below, showing the convergence of the corresponding Laplace
transforms (see (7.2)).

6. Strategy of the proof and explicit resolutions

6.1. Laplace transform of Wigner functions. Since our subsequent argu-
ment is based on an application of the Laplace transform of the Wigner functions,
we give some explicit formulas for the object that can be written in case of our
model. For any bounded complex-valued, Borel measurable function R` Q t ÞÑ ft
we define the Laplace operator L as:

Lpf¨qpλq :“

ż `8

0

e´λtft dt, λ ą 0.

Given the solution rt “ rpt, ¨q of (3.17), we define the Laplace transform of the
Wigner distribution (5.29) associated to a macroscopic profile, as follows: for any
pλ, η, ξq P R` ˆ Z2,

wpr¨ ; η, ξqpλq “ L
`
W pr¨ ; η, ξq

˘
pλq “

ż `8

0

e´λt W prt ; η, ξq dt.

The following formulas are easily deduced, by a direct calculation, from (3.17),
and are left to the reader:

Lemma 6.1. For any pλ, η, ξq P R` ˆ Z2 we have

wpr¨ ; η, ξqpλq “
W pr0 ; η, ξq

2π2

γ
rξ2 ` pη ` ξq2s ` λ

. (6.1)
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Consequently,

1

2
L
´
F
`
pBurtq

2
˘

pηq
¯

pλq “
1

2

ż `8

0

e´λt F
`
pBurtq

2
˘

pηq dt

“ 4π2
ÿ

ξPZ

pη ` ξqξ wpr¨ ; η, ξqpλq. (6.2)

Finally, we define w`
n the Laplace transform of W`

n as the tempered distribu-
tion given for any G P C8pT ˆ Tq and λ ą 0 by

@
w`

n pλq, G
D

“

ż `8

0

e´λt
@
W`

n ptq, G
D
dt :“

1

n

ÿ

kPpTn

ÿ

ηPZ

w`
n pλ, η, kqpFGq‹pη, kq,

(6.3)
where w`

n is the Laplace transform of W`
n as follows:

w`
n pλ, η, kq :“

ż `8

0

e´λt W`
n pt, η, kq dt, pλ, η, kq P R` ˆ Z ˆ pTn.

In a similar fashion we can also define w´
n pλq and y˘

n pλq the Laplace transforms
of W´

n ptq and Y˘
n ptq, respectively, and their counterparts w´

n , and y
˘
n .

6.2. Dynamics of the Wigner distributions. Using the time evolution equa-
tions (5.4), one can first write a closed system of evolution equations forW˘

n ptq, Y ˘
n ptq

defined respectively in (5.7), (5.13), (5.14), (5.15).
For that purpose we first define two functions δns and σns as follows: for any

pη, kq P Z ˆ pTn,

pδnsqpη, kq :“ 2n
´
sin2

´
π
´
k `

η

n

¯¯
´ sin2pπkq

¯
, (6.4)

pσnsqpη, kq :“ 2
´
sin2

´
π
´
k `

η

n

¯¯
` sin2pπkq

¯
.
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For the brevity sake, we drop the variables pt, η, kq P R` ˆ Z ˆ pTn from the
subsequent notation. From (5.4) one can easily check that:

$
’’’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’’’%

BtW
`
n “ ´inpδnsq W

`
n ´ n2 sinp2πkq Y `

n ´ n2 sin
`
2π

`
k ` η

n

˘˘
Y ´
n

` γn2
L
`
2W`

n ´ Y `
n ´ Y ´

n

˘
,

BtY
`
n “ n2 sinp2πkq W`

n ´ in2pσnsq Y
`
n ´ n2 sin

`
2π

`
k ` η

n

˘˘
W´

n

` γn2
L
`
2Y `

n ´ W`
n ´ W´

n

˘
` γn

ÿ

kPpTn

pY ´
n ´ Y `

n q,

BtY
´
n “ n2 sin

`
2π

`
k ` η

n

˘˘
W`

n ` in2pσnsq Y
´
n ´ n2 sinp2πkq W´

n

` γn2
L
`
2Y ´

n ´ W`
n ´ W´

n

˘
` γn

ÿ

kPpTn

pY `
n ´ Y ´

n q,

BtW
´
n “ inpδnsq W

´
n ` n2 sin

`
2π

`
k ` η

n

˘˘
Y `
n ` n2 sinp2πkq Y ´

n

` γn2
L
`
2W´

n ´ Y `
n ´ Y ´

n

˘
,

(6.5)

where L is the operator that is defined for any f : Z ˆ pTn Ñ C as

pLfqpη, kq :“
“
fpη, ¨q

‰
n

´ fpη, kq, pη, kq P Z ˆ pTn.

Recalling the decomposition (5.20) and the evolution equations (5.19) for the

mean part of the wave function, we have similarly that W
˘

n ptq, Y
˘

n ptq satisfy the
autonomous equations:

$
’’’’’’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’’’’’’%

BtW
`

n “ ´inpδnsq W
`

n ´ n2 sinp2πkq Y
`

n ´ n2 sin
`
2π

`
k ` η

n

˘˘
Y

´

n

´ γn2
`
2W

`

n ´ Y
`

n ´ Y
´

n

˘
,

BtY
`

n “ n2 sinp2πkq W
`

n ´ in2pσnsq Y
`

n ´ n2 sin
`
2π

`
k ` η

n

˘˘
W

´

n

´ γn2
`
2Y

`

n ´ W
`

n ´ W
´

n

˘
,

BtY
´

n “ n2 sin
`
2π

`
k ` η

n

˘˘
W

`

n ` in2pσnsq Y
´

n ´ n2 sinp2πkq W
´

n

´ γn2
`
2Y

´

n ´ W
`

n ´ W
´

n

˘

BtW
´

n “ inpδnsq W
´

n ` n2 sin
`
2π

`
k ` η

n

˘˘
Y

`

n ` n2 sinp2πkq Y
´

n

´ γn2
`
2W

´

n ´ Y
`

n ´ Y
´

n

˘
,

(6.6)

6.3. Laplace transform of the dynamical system. We deduce from (6.5) an
equation satisfied by wn – the four-dimensional vector of Laplace transforms of
the Wigner functions defined by wn :“ rw`

n , y
`
n , y

´
n , w

´
n sT. For the clarity sake we
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shall use the notation

1 :“ r1, 1, 1, 1sT, e :“ r1,´1,´1, 1sT,

v
0

n :“
“
W`

n p0q, Y `
n p0q, Y ´

n p0q,W´
n p0q

‰T
,

v
0

n :“
“
W

`

n , Y
`

n , Y
´

n ,W
´

n

‰T
, rv0n :“

“ĂW`
n ,

rY `
n ,

rY ´
n ,

ĂW´
n

‰T
,

and from (5.20) we have v
0

n “ v
0

n ` rv0n. We also remark that (5.16) implies:
”
w`

n pλ, η, ¨q
ı
n

“
”
w´

n pλ, η, ¨q
ı
n
, for any pλ, ηq P R` ˆ Z.

Let us finally define In as the scalar product

Inpλ, ηq :“ e ¨
”
wnpλ, η, ¨q

ı
n

“
”`
w`

n ´ y`
n ´ y´

n ` w´
n

˘
pλ, η, ¨q

ı
n
.

As before, we shall often drop the variables pλ, η, kq from the notations. We are
now ready to take the Laplace transform of both sides of (6.5): we obtain a linear
system that can be written for any pλ, η, kq in the form

pMn wnqpλ, η, kq “ v
0

npη, kq ` γn2 Inpλ, ηq e, (6.7)

where the 2 ˆ 2 block matrix Mn :“ Mnpλ, η, kq is defined as follows:

Mn :“

»
– An ´n2 γ´

n Id2

´n2 γ`
n Id2 Bn

fi
fl , (6.8)

where, given a positive integer N , IdN denotes the N ˆ N identity matrix, and
An, Bn are 2 ˆ 2 matrices:

An :“

»
– an ´n2γ´

´n2γ` bn

fi
fl , Bn :“

»
– b‹

n ´n2γ´

´n2γ` a‹
n

fi
fl .

Here and below,
#
an :“ λ ` inpδnsq ` 2γn2,

bn :“ λ ` in2pσnsq ` 2γn2,

#
γ˘
n :“ γ ˘ sin

`
2π

`
k ` η

n

˘˘
,

γ˘ :“ γ ˘ sinp2πkq.
(6.9)

An elementary observation yields the following symmetry properties

γ˘
n p´η,´kq “ γ¯

n pη, kq, γ˘p´η,´kq “ γ¯pη, kq, (6.10)

By the linearity of the Laplace transform we can write

wn “ wn ` rwn, (6.11)

where wn is the Laplace transform of pW
`

n ptq, Y
`

n ptq, Y
´

n ptq,W
´

n ptqq, and rwn is

the Laplace transform of pĂW`
n ptq, rY `

n ptq, rY ´
n ptq,ĂW´

n ptqq.
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Performing the Laplace transform of both sides of (6.6) we conclude that wn

solves the equation

Mnwn “ v
0

n “ W
`

n 1. (6.12)

Using (6.7) we conclude that rwn solves

Mnrwn “ rv0n ` γn2 In e. (6.13)

Following (6.11) we also write In “ In ` rIn, where

Inpλ, ηq :“ e ¨
”
wnpλ, η, ¨q

ı
n

and rInpλ, ηq :“ e ¨
”
rwnpλ, η, ¨q

ı
n
.

In Section 8.1, we show that the matrix Mn is invertible, therefore we can solve
and rewrite (6.12) and (6.13) as:

wn “ W
`

n M´1

n 1, (6.14)

rwn “ M´1

n
rv0n ` γn2 In M´1

n e. (6.15)

In Section 7 we study the contribution of the terms appearing in the right hand
sides of both (6.14) and (6.15) that reflect upon the evolution of the mechanical
and fluctuating components of the energy functional.

7. Proof of the hydrodynamic behavior of the energy

In this section we conclude the proof of Theorem 3.8, up to technical lemmas
that are proved in Section 8.

7.1. Mechanical energy wn. We start with the recollection of the results con-
cerning the mechanical energy. The Laplace transform wn is autonomous from
the thermal part and satisfies (6.14). Let us introduce, for any λ ą 0 and η P Z,
the mechanical Laplace-Wigner function

W`
mech

pλ, ηq :“
ÿ

ξPZ

W pr0 ; η, ξq
2π2

γ
rξ2 ` pξ ` ηq2s ` λ

. (7.1)

From Lemma 6.1, it follows that W`
mech

pλ, ηq is the Fourier-Laplace transform

of the mechanical energy density emechpt, uq “ 1

2
prpt, uqq2, where rpt, uq is the

solution of (3.17).
Given M P N we denote by PM the subspace of C8pT ˆ Tq consisting of all

trigonometric polynomials that are finite linear combinations of e2πiηue2πiξv, with
η P t´M, . . . ,Mu, ξ P Z and u, v P T.
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Proposition 7.1 (Mechanical part). For any M P N there exists λM ą 0 such
that for any G P PM and λ ą λM we have

lim
nÑ8

ÿ

ηPZ

”
wnpλ, η, ¨qpFGq‹pη, ¨q

ı
n

“

ˆ ÿ

η,ξPZ

W pr0 ; η, ξq
2π2

γ
rξ2 ` pξ ` ηq2s ` λ

pFGq‹pη, 0q

˙
1

“

ˆ
1

2

ż

T

ż `8

0

e´λt prpt, uqq2 G‹pu, 0q dt du

˙
1.

(7.2)

Moreover, for any η P t´M, ...,Mu

lim
nÑ8

!
γn2 Inpλ, ηq

)
“

4π2

γ

ÿ

ξPZ

ξpξ ` ηqW pr0 ; η, ξq
2π2

γ
rξ2 ` pξ ` ηq2s ` λ

“
1

2γ
L

´
F
`
pBurq2

˘
pηq

¯
pλq. (7.3)

The proof of Proposition 7.1 is exposed in Section 8.3.

7.2. The closing of thermal energy equation. We now analyse equation

(6.15) concerning the fluctuating part. After averaging (6.15) over k P pTn and
scalarly multiplying by e, we obtain the equation:

rIn “ rzp0q
n ` γn2

`rIn ` In

˘
Mn, (7.4)

where

rzp0q
n :“

”
e ¨ pM´1

n
rv0nq

ı
n

Mn :“
”
e ¨ pM´1

n eq
ı
n
.

Therefore from (7.4) we solve explicitly

rInpλ, ηq “
n2 rzp0q

n pλ, ηq `
`
γn2 Inpλ, ηq

˘ `
n2Mnpλ, ηq

˘

n2
`
1 ´ γn2 Mnpλ, ηq

˘ . (7.5)

Asymptotics of n2Inpλ, ηq is given in (7.3). Below we describe the terms n2 rzp0q
n pλ, ηq

and n2Mnpλ, ηq that also appear in the right hand side of (7.5).

Lemma 7.2. Fix M P N. There exists λM ą 0 such that, for any λ ą λM and
η P t´M, ...,Mu

lim
nÑ8

!
γn2 Mnpλ, ηq

)
“ 1, (7.6)

lim
nÑ8

!
n2

`
1 ´ γn2 Mnpλ, ηq

˘)
“

1

2γ

´
λ `

η2π2

γ

¯
, (7.7)
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and

lim
nÑ8

!
γn2 rzp0q

n pλ, ηq
)

“
`
Fethmp0, ¨q

˘
pηq. (7.8)

As a direct consequence of the above lemma and (7.3), we obtain:

Corollary 7.3. Fix M P N. There exists λM ą 0 such that, for any λ ą λM ,
η P t´M, ...,Mu

lim
nÑ8

rInpλ, ηq “ 2W`
thm

pλ, ηq,

where

W`
thm

pλ, ηq :“
´
λ `

η2π2

γ

¯´1
"`

Fethmp0, ¨q
˘
pηq `

1

2γ
L
´
F
`
pBurq2

˘
pηq

¯
pλq

*
.

The following lemma finalizes the identification of the limit for the Fourier
transform of the thermal energy:

Proposition 7.4. Fix M P N. There exists λM ą 0 such that, for any λ ą λM ,
η P t´M, ...,Mu

lim
nÑ8

!
rInpλ, ηq ´ 2

“
rw`
n pλ, η, ¨q

‰
n

)
“ 0. (7.9)

The proofs of Lemma 7.2 and Proposition 7.4 go very much along the lines of
the arguments presented in Section 8 and we will not present the details here.
They are basically consequences of the following limit

lim
nÑ8

 
n2 e1 ¨ M´1

n pλ, η, kq e
(

“
1

2γ
,

which is proved in Section 8.2.

7.3. Asymptotics of rwn and wn. With a little more work one can prove the
following local equilibrium result, which is an easy consequence of Proposition
7.1, Corollary 7.3 and Proposition 7.4 (recall also (6.15)).

Theorem 7.5. Fix M P N. There exists λM ą 0 such that, for any λ ą λM and
G P PM we have

lim
nÑ`8

ÿ

ηPZ

”
w`

n pλ, η, ¨qpFGq‹pη, ¨q
ı
n

“
ÿ

ηPZ

"
W`

thm
pλ, ηq

ż

T

pFGq‹pη, vq dv ` W`
mech

pλ, ηq pFGq‹pη, 0q

*
(7.10)

and

lim
nÑ`8

ÿ

ηPZ

”
y`
n pλ, η, ¨qpFGq‹pη, ¨q

ı
n

“
ÿ

ηPZ

W`
mech

pλ, ηq pFGq‹pη, 0q, (7.11)

We will not give the details for the proof of this last theorem, since the argument
is very similar to Proposition 7.1.
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7.4. End of the proof of Theorem 3.8. The proof of convergence (3.20) has
been reduced to the investigation of the Wigner distributions. Recall that from
the uniform bound (5.18), we know that the sequence of all Wigner distributions
tW`

n p¨q,Y`
n p¨q,Y´

n p¨q,W´
n p¨qun is sequentially pre-compact with respect to the ‹-

weak topology in the dual space of L1pR`,A0q. More precisely, one can choose a
subsequence nm such that any of the components above, say for instance W`

nm
p¨q,

‹-weakly converges in the dual space of L1pR`,A0q to some W`p¨q.
To characterize its limit, we consider w`

nm
pλq obtained by taking the Laplace

transforms of the respective W`
nm

p¨q. For any λ ą 0, it converges ‹-weakly, as
nm Ñ `8, in A1

0
to some w`pλq that is the Laplace transform of W`p¨q. The

latter is defined as

xw`pλq, Gy :“

ż 8

0

xW`ptq, e´λtGy dt λ ą 0, G P A0.

Given a trigonometric polynomial G P C8pTˆTq we conclude, thanks to Theorem
7.5, that for any λ ą λM ,

@
w`pλq, G

D
“

ż

R`ˆT2

e´λt ept, uqGpu, vq dt du dv, (7.12)

where ept, uq is defined as in Theorem 3.8 and M P N is such that FGpη, vq ” 0
for all |η| ą M .

Due to the uniqueness of the Laplace transform (that can be argued by ana-
lytic continuation), this proves that in fact equality (7.12) holds for all λ ą 0.
By a density argument it can be then extended to all G P A0 and shows that
W`pt, u, vq “ ept, uq, for any pt, u, vq P R` ˆ T2. This ends the proof of (3.20),
and thus Theorem 3.8.

8. Proofs of the technical results stated in Section 7

In what follows we shall adopt the following notation: we say that the sequence
Cnpλ, η, kq ĺ 1 if for any given integer M P N, there exist λM ą 0 and nM P N

such that

sup
!
Cnpλ, η, kq ; λ ą λM , η P t´M, ...,Mu, n ą nM , k P pTn

)
ă `8.

8.1. Invertibility of Mnpλ, η, kq.

Proposition 8.1. The matrix Mnpλ, η, kq defined in (6.8) is invertible for all

n ě 1, λ ą 0 and pη, kq P Z ˆ pTn.

Proof. The block entries of the matrix Mn defined in (6.9) satisfy the commuta-
tion relation

rAn, Bns “ AnBn ´ BnAn “

»
– 0 ´2γ´n2 Reran ´ bns

´2γ`n2 Rerbn ´ ans 0

fi
fl “ 0.
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Thanks to the well known formula for the determinants of block matrices with
commuting entries we have (see e.g. [4, formula (Ib), p. 46])

detpMnq “ detpAnBn ´ γ`
n γ

´
n n

4 Id2q “
ˇ̌
anb

‹
n ` n3pδγnq

ˇ̌
2

´ 4n4γ`γ´pReransq2

and, substituting from (6.9), we get

detpMnq “ n6

´
pδnsq pσnsq ` pδγnq

¯2

`
`
λ ` 2γn2

˘
2

"
λ2 ` n2

`
4γλ ` pδnsq

2
˘

` n4

´
2 sin2p2πkq ` 2 sin2

`
2π

`
k ` η

n

˘˘
` pσnsq

2

¯*
. (8.1)

Here δns, σns are given by (6.4) and

δγnpη, kq :“ npγ`γ´ ´ γ`
n γ

´
n q “ n

´
sin2

`
2π

`
k ` η

n

˘˘
´ sin2p2πkq

¯
.

The proposition is a direct conclusion of (8.1). �

It is also clear that

detpMnq “ n8∆n, (8.2)

where

∆n “
1

n2

"
4γ2 Γn ` 4γ2

`
4λγ ` pδnsq

2
˘

`
`
pδnsqpσnsq ` pδγnq

˘
2

*
` 4γλ

Γn

n4
`
Cn

n3
.

(8.3)
for some |Cn| ĺ 1 and

Γnpη, kq :“ n2

´
2 sin2p2πkq ` 2 sin2

`
2π

`
k ` η

n

˘˘
` pσnsq

2

¯
. (8.4)

On the one hand, note that for k sufficiently far from 0, the dominant term is
p4γ2 Γnq{n2 and then

∆n „ 4γ2
`
4 sin2p2πkq ` 16 sin4pπkq

˘
.

On the other hand, for k “ ξ

n
and fixed ξ P Z we have

n2 ∆n

´
λ, η,

ξ

n

¯
“

1

n6
detpMnq

´
λ, η,

ξ

n

¯
„ 16γ2

”
λγ`2π2

`
ξ2 ` pη ` ξq2

˘ ı
. (8.5)

Since the block entries of Mn commute we can also write

M´1

n “

»
–
”
AnBn ´ pγ`

n γ
´
n n

4qId2

ı´1

0

0
”
AnBn ´ pγ`

n γ
´
n n

4qId2

ı´1

fi
fl
»
– Bn γ´

n n
2 Id2

γ`
n n

2 Id2 An

fi
fl .
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Note that

”
AnBn ´ pγ`

n γ
´
n n

4qId2

ı´1

“
1

detpMnq

»
–
a‹
nbn ` n3 pδγnq 2γ´n2 Rerans

2γ`n2 Rerbns anb
‹
n ` n3 pδγnq

fi
fl .

With these formulas we conclude that

M´1

n “
1

detpMnq

»
—————————–

d`
n γ´dn γ´

n c
‹
n γ´γ´

n c
0

n

γ`d0n d´
n γ`γ´

n c
0

n γ´
n cn

γ`
n c

‹
n γ´γ`

n c
0

n pd´
n q‹ γ´pd0nq‹

γ`γ`
n c

0

n γ`
n cn γ`d‹

n pd`
n q‹

fi
ffiffiffiffiffiffiffiffiffifl

(8.6)

where all the constants are explicit and given by

$
’’’’’’’’’’’’’’&
’’’’’’’’’’’’’’%

d`
n :“ a‹

n

ˇ̌
bn
ˇ̌
2

` n3b‹
npδγnq ´ 2γ´γ`n4 Rerans,

d´
n :“ b‹

n

ˇ̌
an
ˇ̌
2

` n3a‹
npδγnq ´ 2γ´γ`n4 Rerbns,

dn :“ 2n2a‹
n Rerans ´ n2a‹

nbn ´ n5pδγnq,

d0n :“ 2n2b‹
n Rerbns ´ n2anb

‹
n ´ n5pδγnq,

cn :“ n2anb
‹
n ` n5pδγnq,

c0n :“ 2n4 Rerans.

(8.7)

8.2. Asymptotics of the coefficients. Substituting from (6.9) into the respec-
tive formulas of (8.7) and then identifying the order of magnitude of the appearing
terms we conclude the following:
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Lemma 8.2. The following asymptotic equalities hold:

d`
n

n6
“ 4γ3 ` 4γ sin2p2πkq ` 2γpσnsq

2 ´
ipδnsq

n

`
4γ2 ` pσnsq

2
˘

`
Cn

n2
,

cn

n6
“ 4γ2 ´ 2iγpσnsq ` sin2

`
2π

`
k ` η

n

˘˘
´ sin2p2πkq `

pδnsqpσnsq

n
`
Cn

n2
,

dn

n6
“ 4γ2 ´ 2iγpσnsq ` sin2p2πkq ´ sin2

`
2π

`
k ` η

n

˘˘
´ 2iγ

pδnsq

n
´

pδnsqpσnsq

n
`
Cn

n2
,

c0n
n6

“ 4γ `
Cn

n2
,

d0n
n6

“ 4γ2 ´ 2iγpσnsq ` sin2p2πkq ´ sin2
`
2π

`
k ` η

n

˘˘
´ 2iγ

pδnsq

n
´

pδnsqpσnsq

n
`
Cn

n2
,

d´
n

n6
“ 4γ3 ` 4γ sin2p2πkq ´ 4iγ2pσnsq ` 2γ

´
sin2

`
2π

`
k ` η

n

˘˘
´ sin2p2πkq

¯
`
Cn

n2
,

with Cn ĺ 1.

From the above asymptotics it is clear that M´1

n pλ, η, kq Ñ 0 for a fixed k ‰ 0.
In addition, M´1

n pλ, η, ξ

n
q and n2 eT M´1

n pλ, η, kq tend to finite limits that we
need to compute explicitly in order to complete the proof.

Using (8.6), (8.2) and the formulas for the asymptotics of the entries of M´1

n ,
provided by Lemma 8.2, we conclude that

lim
nÑ8

M´1

n

´
λ, η,

ξ

n

¯
“

γ

4λγ ` 8π2 rξ2 ` pξ ` ηq2s
1 b 1. (8.8)

The above in particular implies that eT ¨ M´1

n pλ, η, ξ
n

q1 Ñ 0, for any ξ P Z. By
the same token we can also compute

lim
nÑ`8

!
n2 eT ¨ M´1

n

´
λ, η,

ξ

n

¯
1
)

“
4π2 ξpξ ` ηq

λγ2 ` 2γπ2 rξ2 ` pξ ` ηq2s
, (8.9)

and

lim
nÑ8

!
n2 eT ¨ M´1

n pλ, η, kq
)

“
1

2γ
r1, 0, 0, 1s , k ‰ 0. (8.10)

We prove here only (8.9) and we let the reader verify (8.8) and (8.10) using similar
computations. An explicit calculation gives

n2 eT ¨ pM´1

n 1q “
n2 Ξn

detpMnq
, (8.11)
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where

Ξnpλ, η, kq :“ 2Re
“
d`
n ´ d´

n

‰
` γ´pdn ´ pd0nq‹q ` γ`pd‹

n ´ d0nq

` 4i sin
`
2π

`
k ` η

n

˘˘
Imrcns ` 4 sinp2πkq sin

`
2π

`
k ` η

n

˘˘
c0n.

Substituting from (8.7) yields:

Ξnpλ, η, kq “pλ ` 2γn2q

"
2
“
n4pσnsq

2 ´ n2pδnsq
2
‰

` 4in4

´
sinp2πkq ´ sin

`
2π

`
k ` η

n

˘˘¯
pσnsq

` 4in3

´
sin

`
2π

`
k ` η

n

˘˘
` sinp2πkq

¯
pδnsq

` 8n4 sinp2πkq sin
`
2π

`
k ` η

n

˘˘*
. (8.12)

From the above and a direct calculation we obtain (8.9).

8.3. Proof of Proposition 7.1. Basically the argument follows the same idea
as the proof of Proposition 5.3. In fact (8.8) implies that wnpλ, η, kq concentrates

on small k-s like W
`

n pη, kq. The main difficulty is to deal with the averaging r¨sn.
For that purpose, for ρ P

`
0, 1

2

˘
, define

pTn,ρ :“
!
k P pTn : | sinpπkq| ě n´ρ

)
(8.13)

and its complement pTc
n,ρ :“ pTnzpTn,ρ. Recall the left hand side of (7.2): it can be

written as In ` IIn, where In and IIn correspond to the summations over pTn,ρ and
pTc
n,ρ respectively. First we show that for G P PM

In “
ÿ

ηPZ

1

n

ÿ

kPpTn,ρ

`
M´1

n pλ, η, kq1
˘
W

`

n pη, kqpFGq‹pη, kq ÝÑ
nÑ8

0. (8.14)

In fact we have
››››
ÿ

ηPZ

1

n

ÿ

|ξ|ěnρ

´
M´1

n

´
λ, η,

ξ

n

¯
1
¯
W

`

n

´
η,
ξ

n

¯
pFGq‹

´
η,
ξ

n

¯››››
8

ď C}G}0
ÿ

|η|ďM

ÿ

|ξ|ěnρ

›››M´1

n

´
λ, η,

ξ

n

¯
1
›››

8
ÝÑ
nÑ8

0,

where the constant C depends only on the initial mechanical energy. Then by the
same argument as the one used in the proof of Proposition 5.3, and from (5.31)
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and (8.8) we have

lim
nÑ8

ÿ

|η|ďM

1

n

ÿ

|ξ|ănρ

´
M´1

n

´
λ, η,

ξ

n

¯
1
¯
W

`

n

´
η,
ξ

n

¯
pFGq‹

´
η,
ξ

n

¯

“
ÿ

η,ξPZ

γW pr0 ; η, ξq

λγ ` 2π2 rξ2 ` pξ ` ηq2s
pFGq‹pη, 0q 1.

This concludes the proof of (7.2). Concerning the proof of (7.3), recall that

In “
”
e ¨ pM´1

n 1q W
`

n

ı
n
,

and that we have already computed the limit (8.9). Consequently, the result will
follow if we are able to show that the contribution to the k-averaging from the
higher frequencies is negligible. The quantity n2 In can be written as In ` IIn,

where In and IIn correspond to the summations over pTn,ρ and pTc
n,ρ respectively.

Using the explicit computations (8.11), (8.12) and (8.3) we can write

n2 e ¨ pM´1

n 1q ´ γ´1 “ γ´1

"
2
´
sinp2πkq ´ sin

`
2π

`
k ` η

n

˘˘¯2

`
Cn

n

*

ˆ

"
2 sin2p2πkq ` 2 sin2

`
2π

`
k ` η

n

˘˘
` pσnsq

2 `
C 1

n

n2

*´1

.

It is clear from the above equality that

lim
nÑ`8

sup
|η|ďM

sup
kPpTn,ρ

ˇ̌
ˇ̌n2 e ¨ pM´1

n 1qpλ, η, kq ´
1

γ

ˇ̌
ˇ̌ “ 0. (8.15)

Thanks to (8.15) we conclude that limnÑ`8pIn ´ I1
nq “ 0, where

I1
n :“

1

γn

ÿ

kPpTn,ρ

W
`

n pη, kq. (8.16)

After a straightforward calculation using the definition of W
`

n pη, kq (see (5.21)
and (5.23)) we conclude that (8.16) equals

1

2γ

ÿ

ξ,ξ1PZ

ÿ

kPpTn,ρ

1Z

´
k ´

ξ1

n

¯
1Z

´
´ k `

ξ ´ η

n

¯
pFr0qpξqpFr0q

‹pξ1q,

where 1Z is the indicator function of the integer lattice. Due to the assumed
separation of k from 0, see (8.13), and the decay of the Fourier coefficients of
r0p¨q (that belongs to C8pTq) we conclude from the above that limnÑ`8 I1

n “ 0,
thus also limnÑ`8 In “ 0.

Moreover, a similar calculation also yields

IIn “
1

2

ÿ

ξPNρ,n

n2 e ¨ pM´1

n 1q
´
λ, η,

ξ

n

¯
pFr0qpξ ` ηqpFr0q

‹pξq,
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where

Nρ,n :“
!
ξ P Z : |ξ| ď n

2
,

ˇ̌
sin

`
πξ

n

˘ˇ̌
ď n´ρ

)
.

Using the dominated convergence theorem we conclude from (8.9) that

lim
nÑ`8

IIn “
ÿ

ξPZ

4π2ξpξ ` ηq W pr0 ; η, ξq

λγ2 ` 2γπ2 rξ2 ` pξ ` ηq2s
. (8.17)

8.4. Proof of Lemma 7.2 and Proposition 7.4. Since (7.6) is a direct con-
sequence of (7.7), we prove directly (7.7), that is a consequence of the following
lemma.

Lemma 8.3. The following asymptotic equality holds:

Snpλ, ηq :“ n2
`
1 ´ γn2 Mnpλ, ηq

˘
“

1

2γ

´
λ `

η2π2

γ

¯
`
Cn

n
, (8.18)

where |Cn| ĺ 1.

Proof. After a direct calculation, we obtain

Snpλ, ηq “

„
n2

detpMnq

`
detpMnq ´ γn2Θn

˘

n

,

where

Θn :“ 2Re
”
d`
n ` d´

n ` 2γ2c0n ´ 2γcn

ı
´ γ´

`
dn ` pd0nq‹

˘
´ γ`

`
d‹
n ` d0n

˘
.

Therefore, from (8.7) and Lemma 8.2, we have

Snpλ, ηq “
λ

2γn

ÿ

kPpTn

Inpη, kq `
1

4γ2n

ÿ

kPpTn

IInpη, kq.

where

In :“
Γn ` 2λγ ` pδnsq

2 ` Cn

n

Γn ` 4λγ ` pδnsq2 ` γ´2
`
pδnsqpσnsq ` pδγnq

˘2
` C1

n

n

,

IIn :“
n2

`
pσnsqpδnsq ` pδγnq

˘2

Γn ` 4λγ ` pδnsq2 ` γ´2
`
pδnsqpσnsq ` pδγnq

˘2
` C1

n

n

.

The expressions Cn, C
1
n satisfy |Cn| ` |C 1

n| ĺ 1. Directly from the definition of In
and IIn we conclude that |In| ` |IIn| ĺ 1 and

lim
nÑ`8

1

n

ÿ

kPpTn

In “ 1,

lim
nÑ`8

1

n

ÿ

kPpTn

IIn “ p2πηq2
ż

T

“
4 sinp2πvq sin2pπvq ` sinp4πvq

‰
2

4 sin2p2πvq ` 16 sin4pπvq
dv.
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Using trigonometric identities

2 sin2pπvq “ 1 ´ cosp2πvq and sinp4πvq “ 2 sinp2πvq cosp2πvq

we conclude that the last integral equals
ż

T

“
2 sinp2πvqp1 ´ cosp2πvqq ` sinp4πvq

‰
2

4 sin2p2πvq ` 4r1 ´ cosp2πvqs2
dv “

ż

T

sin2p2πvq

2p1 ´ cosp2πvqq
dv “

1

2
.

Thus, we obtain

Snpλ, ηq “
1

2γ

´
λ `

π2η2

γ

¯
`
Cn

n
,

with |Cn| ĺ 1. �

It remains to prove (7.8).This would be a direct consequence of (8.10), but we
need some care in exchanging the limit with the r¨sn averaging.

Choose ρ P p0, 1q, then we can decompose

n2

”
e ¨

`
M´1

n
rv0n
˘ı

n
“

1

2γ

´”
ĂW`

n

ı
n

`
”
ĂW´

n

ı
n

¯
` Kp1q

n ` Kp2q
n

where

Kp1q
n pλ, ηq “

1

n

ÿ

kPpTn,ρ

´
n2eT M´1

n pλ, η, kq ´
1

2γ
u
¯

¨ rv0npη, kq

with u “ r1, 0, 0, 1sT, and the definition of K
p2q
n differs from K

p1q
n only in that the

range of the summation in k extends over pTc
n,ρ.

From (5.27) we have

lim
nÑ8

”
ĂW`

n pη, ¨q
ı
n

“ lim
nÑ8

”
ĂW´

n pη, ¨q
ı
n

“
`
Fethmp0, ¨q

˘
pηq,

and therefore we only have to prove that K
p1q
n and K

p2q
n vanish as n Ñ 8. Con-

cerning K
p1q
n we write

ˇ̌
Kp1q

n pλ, ηq
ˇ̌

ď sup
kPpTn,ρ

››››n
2eT M´1

n pλ, η, kq ´
1

2γ
u

››››
8

›››
“rv0npη, ¨q

‰
n

›››
8

ď C sup
kPpTn,ρ

››››n
2eT M´1

n pλ, η, kq ´
1

2γ
u

››››
8

, (8.19)

where C depends on the bound on the initial energy. By direct estimation, using
the information on the asymptotic behavior for the coefficients of M´1

n , provided
by (8.10), we conclude that the right hand side of (8.19) converges to 0 as n Ñ 8,
for any given λ and η.

Concerning K
p2q
n , since n2 eT ¨ M´1

n pλ, η, kq are uniformly bounded in k, for any
integer M there exists a constant CM ą 0 such that, for all n, λ ą λM , |η| ď M ,

ˇ̌
Kp2q

n pλ, ηq
ˇ̌

ď
CM

n

ÿ

kPpTc
n,ρ

ˇ̌
rv0npη, kq

ˇ̌
.
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Using the Cauchy-Schwarz inequality we have

ˇ̌
Kp2q

n pλ, ηq
ˇ̌

ď
C 1

M

n

ˇ̌pTc
n,ρ

ˇ̌ 1
2

˜
ÿ

kPpTn

E
ˇ̌
rv0npη, kq

ˇ̌
2

¸ 1

2

ď C 1
M

ˆˇ̌pTc
n,ρ

ˇ̌

n

˙ 1

2

w
1

2

˚ ÝÑ
nÑ8

0,

where w˚ is given by (5.28). This concludes the proof of Proposition 7.2.
Proposition 7.4 is also a direct consequence of (8.10): instead of computing the

limit of
rInpλ, ηq “

”`
rw`
n ´ ry`

n ´ ry´
n ` rw´

n

˘
pλ, η, ¨q

ı
n

we can compute the limit of
2
“
rw`
n pλ, η, ¨q

‰
n

by using very similar arguments.
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